| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS |
| #include <ATen/Dispatch.h> |
| #include <ATen/TensorMeta.h> |
| #include <ATen/TensorUtils.h> |
| |
| #include <ATen/core/Tensor.h> |
| #include <ATen/native/ConvUtils.h> |
| #include <ATen/native/CPUBlas.h> |
| #include <ATen/native/im2col.h> |
| |
| #ifndef AT_PER_OPERATOR_HEADERS |
| #include <ATen/Functions.h> |
| #include <ATen/NativeFunctions.h> |
| #else |
| #include <ATen/ops/empty.h> |
| #include <ATen/ops/ones.h> |
| #include <ATen/ops/slow_conv_transpose2d_native.h> |
| #include <ATen/ops/sum.h> |
| #include <ATen/ops/zeros.h> |
| #endif |
| |
| #include <c10/core/TensorOptions.h> |
| #include <c10/util/irange.h> |
| |
| namespace at { |
| namespace { |
| static inline void slow_conv_transpose2d_shape_check( |
| const Tensor& input, |
| const Tensor& grad_output, |
| const Tensor& weight, |
| const Tensor& bias, |
| int kernel_height, |
| int kernel_width, |
| int stride_height, |
| int stride_width, |
| int pad_height, |
| int pad_width, |
| int output_padding_height, |
| int output_padding_width, |
| int dilation_height, |
| int dilation_width, |
| bool weight_nullable) { |
| TORCH_CHECK( |
| kernel_width > 0 && kernel_height > 0, |
| "kernel size should be greater than zero, but got kernel_height: ", |
| kernel_height, |
| " kernel_width: ", |
| kernel_width); |
| TORCH_CHECK( |
| stride_width > 0 && stride_height > 0, |
| "stride should be greater than zero, but got stride_height: ", |
| stride_height, |
| " stride_width: ", |
| stride_width); |
| TORCH_CHECK( |
| dilation_width > 0 && dilation_height > 0, |
| "dilation should be greater than zero, but got dilation_height: ", |
| dilation_height, |
| ", dilation_width: ", |
| dilation_width); |
| TORCH_CHECK( |
| (output_padding_width < stride_width || |
| output_padding_width < dilation_width) && |
| (output_padding_height < stride_height || |
| output_padding_height < dilation_height), |
| "output padding must be smaller than either stride or dilation, but got output_padding_height: ", |
| output_padding_height, |
| " output_padding_width: ", |
| output_padding_width, |
| " stride_height: ", |
| stride_height, |
| " stride_width: ", |
| stride_width, |
| " dilation_height: ", |
| dilation_height, |
| " dilation_width: ", |
| dilation_width); |
| |
| if (weight.defined()) { |
| TORCH_CHECK( |
| weight.numel() != 0 && (weight.dim() == 2 || weight.dim() == 4), |
| "non-empty 2D or 4D weight tensor expected, but got: ", |
| weight.sizes()); |
| if (bias.defined()) { |
| check_dim_size(bias, 1, 0, weight.size(1)); |
| } |
| } else if (!weight_nullable) { |
| AT_ERROR("weight tensor is expected to be non-nullable"); |
| } |
| |
| int ndim = input.dim(); |
| int dimf = 0; |
| int dimh = 1; |
| int dimw = 2; |
| |
| if (ndim == 4) { |
| dimf++; |
| dimh++; |
| dimw++; |
| } |
| |
| TORCH_CHECK( |
| input.numel() != 0 && (ndim == 3 || ndim == 4), |
| "non-empty 3D or 4D input tensor expected but got a tensor with size ", |
| input.sizes()); |
| |
| int64_t input_height = input.size(dimh); |
| int64_t input_width = input.size(dimw); |
| int64_t output_height = (input_height - 1) * stride_height - 2 * pad_height + |
| (dilation_height * (kernel_height - 1) + 1) + output_padding_height; |
| int64_t output_width = (input_width - 1) * stride_width - 2 * pad_width + |
| (dilation_width * (kernel_width - 1) + 1) + output_padding_width; |
| |
| if (output_width < 1 || output_height < 1) { |
| AT_ERROR( |
| "Given input size per channel: (", |
| input_height, |
| " x ", |
| input_width, |
| "). " |
| "Calculated output size per channel: (", |
| output_height, |
| " x ", |
| output_width, |
| "). Output size is too small"); |
| } |
| |
| if (weight.defined()) { |
| int64_t n_input_plane = weight.size(0); |
| check_dim_size(input, ndim, dimf, n_input_plane); |
| } |
| |
| if (grad_output.defined()) { |
| if (weight.defined()) { |
| int64_t n_output_plane = weight.size(1); |
| check_dim_size(grad_output, ndim, dimf, n_output_plane); |
| } else if (bias.defined()) { |
| int64_t n_output_plane = bias.size(0); |
| check_dim_size(grad_output, ndim, dimf, n_output_plane); |
| } |
| check_dim_size(grad_output, ndim, dimh, output_height); |
| check_dim_size(grad_output, ndim, dimw, output_width); |
| } |
| } |
| } // namespace |
| |
| namespace meta { |
| TORCH_META_FUNC(slow_conv_transpose2d) |
| (const Tensor& input, |
| const Tensor& weight, |
| IntArrayRef kernel_size, |
| OptionalTensorRef bias_opt, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef output_padding, |
| IntArrayRef dilation) { |
| TORCH_CHECK( |
| kernel_size.size() == 2, |
| "It is expected kernel_size equals to 2, but got size ", |
| kernel_size.size()); |
| |
| TORCH_CHECK( |
| dilation.size() == 2, |
| "It is expected dilation equals to 2, but got size ", |
| dilation.size()); |
| |
| TORCH_CHECK( |
| padding.size() == 2, |
| "It is expected padding equals to 2, but got size ", |
| padding.size()); |
| |
| TORCH_CHECK( |
| stride.size() == 2, |
| "It is expected stride equals to 2, but got size ", |
| stride.size()); |
| |
| TORCH_CHECK( |
| output_padding.size() == 2, |
| "It is expected stride equals to 2, but got size ", |
| output_padding.size()); |
| |
| int64_t kernel_height = kernel_size[0]; |
| int64_t kernel_width = kernel_size[1]; |
| int64_t dilation_height = dilation[0]; |
| int64_t dilation_width = dilation[1]; |
| int64_t pad_height = padding[0]; |
| int64_t pad_width = padding[1]; |
| int64_t stride_height = stride[0]; |
| int64_t stride_width = stride[1]; |
| int64_t output_padding_height = output_padding[0]; |
| int64_t output_padding_width = output_padding[1]; |
| |
| slow_conv_transpose2d_shape_check( |
| input, |
| Tensor(), |
| weight, |
| bias_opt.getTensorRef(), |
| kernel_height, |
| kernel_width, |
| stride_height, |
| stride_width, |
| pad_height, |
| pad_width, |
| output_padding_height, |
| output_padding_width, |
| dilation_height, |
| dilation_width, |
| false); |
| |
| int n_output_plane = weight.size(1); |
| |
| bool use_channels_last = native::thnn_conv_use_channels_last(input, weight); |
| auto memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous; |
| |
| Tensor input_ = input.contiguous(memory_format); |
| |
| if (input_.dim() == 3) { |
| input_.resize_({1, input_.size(0), input_.size(1), input_.size(2)}); |
| } |
| |
| int64_t input_height = input_.size(2); |
| int64_t input_width = input_.size(3); |
| int64_t output_height = (input_height - 1) * stride_height - 2 * pad_height + |
| (dilation_height * (kernel_height - 1) + 1) + output_padding_height; |
| int64_t output_width = (input_width - 1) * stride_width - 2 * pad_width + |
| (dilation_width * (kernel_width - 1) + 1) + output_padding_width; |
| |
| // Batch size + input planes |
| int64_t batch_size = input_.size(0); |
| |
| // Resize output |
| TensorOptions options(input.options()); |
| set_output_raw_strided( |
| 0, |
| {batch_size, n_output_plane, output_height, output_width}, |
| {}, |
| options.memory_format(memory_format)); |
| } |
| } // namespace meta |
| |
| namespace native { |
| |
| namespace { |
| void slow_conv_transpose2d_out_cpu_template( |
| const Tensor& output, |
| const Tensor& input, |
| const Tensor& weight, |
| IntArrayRef kernel_size, |
| const Tensor& bias, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef output_padding, |
| IntArrayRef dilation) { |
| int64_t kernel_height = kernel_size[0]; |
| int64_t kernel_width = kernel_size[1]; |
| int64_t dilation_height = dilation[0]; |
| int64_t dilation_width = dilation[1]; |
| int64_t pad_height = padding[0]; |
| int64_t pad_width = padding[1]; |
| int64_t stride_height = stride[0]; |
| int64_t stride_width = stride[1]; |
| int64_t output_padding_height = output_padding[0]; |
| int64_t output_padding_width = output_padding[1]; |
| |
| int n_input_plane = weight.size(0); |
| int n_output_plane = weight.size(1); |
| |
| bool use_channels_last = thnn_conv_use_channels_last(input, weight); |
| auto memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous; |
| |
| Tensor input_ = input.contiguous(memory_format); |
| Tensor weight_ = weight.contiguous(memory_format); |
| Tensor bias_ = bias.defined() ? bias.contiguous() : Tensor(); |
| |
| bool is_batch = false; |
| if (input_.dim() == 3) { |
| // Force batch |
| is_batch = true; |
| input_.resize_({1, input.size(0), input.size(1), input.size(2)}); |
| } |
| |
| int64_t input_height = input_.size(2); |
| int64_t input_width = input_.size(3); |
| int64_t output_height = (input_height - 1) * stride_height - 2 * pad_height + |
| (dilation_height * (kernel_height - 1) + 1) + output_padding_height; |
| int64_t output_width = (input_width - 1) * stride_width - 2 * pad_width + |
| (dilation_width * (kernel_width - 1) + 1) + output_padding_width; |
| |
| // Batch size + input planes |
| int64_t batch_size = input_.size(0); |
| |
| // Create temporary columns |
| Tensor columns = at::empty({0}, input.options()); |
| if (use_channels_last) { |
| columns.resize_({batch_size, input_height * input_width, kernel_height * kernel_width * n_output_plane}); |
| } else { |
| columns.resize_({batch_size, n_output_plane * kernel_height * kernel_width, input_height * input_width}); |
| } |
| columns.zero_(); |
| |
| // Materialize if COW, since we cannot do so during parallel_for |
| output.mutable_data_ptr(); |
| |
| AT_DISPATCH_FLOATING_TYPES_AND3(at::ScalarType::Long, at::ScalarType::BFloat16, |
| at::ScalarType::Half, input.scalar_type(), "slow_conv_transpose2d_out_cpu", [&] { |
| |
| at::parallel_for(0, batch_size, 0, [&](int64_t begin, int64_t end) { |
| // For each elt in batch, do: |
| for (const auto elt : c10::irange(begin, end)) { |
| // Matrix multiply per output: |
| Tensor input_n = input_.select(0, elt); |
| Tensor output_n = output.select(0, elt); |
| Tensor columns_n = columns.select(0, elt); |
| |
| if (use_channels_last) { |
| int64_t m = kernel_height * kernel_width * n_output_plane; |
| int64_t n = input_height * input_width; |
| int64_t k = n_input_plane; |
| |
| // column-major matrices |
| cpublas::gemm( |
| TransposeType::NoTranspose, |
| TransposeType::NoTranspose, |
| m, |
| n, |
| k, |
| static_cast<scalar_t>(1), |
| weight_.const_data_ptr<scalar_t>(), |
| m, |
| input_n.const_data_ptr<scalar_t>(), |
| k, |
| static_cast<scalar_t>(0), |
| columns_n.mutable_data_ptr<scalar_t>(), |
| m); |
| } else { |
| int64_t m = input_height * input_width; |
| int64_t n = n_output_plane * kernel_height * kernel_width; |
| int64_t k = n_input_plane; |
| |
| // column-major matrices |
| cpublas::gemm( |
| TransposeType::NoTranspose, |
| TransposeType::Transpose, |
| m, |
| n, |
| k, |
| static_cast<scalar_t>(1), |
| input_n.const_data_ptr<scalar_t>(), |
| m, |
| weight_.const_data_ptr<scalar_t>(), |
| n, |
| static_cast<scalar_t>(0), |
| columns_n.mutable_data_ptr<scalar_t>(), |
| m); |
| } |
| |
| // Unpack columns back into input: |
| col2im<scalar_t>( |
| columns_n.data_ptr<scalar_t>(), |
| n_output_plane, |
| output_height, |
| output_width, |
| input_height, |
| input_width, |
| kernel_height, |
| kernel_width, |
| pad_height, |
| pad_width, |
| stride_height, |
| stride_width, |
| dilation_height, |
| dilation_width, |
| output_n.data_ptr<scalar_t>(), |
| use_channels_last); |
| } |
| }); |
| }); |
| |
| if (bias.defined()) { |
| output.add_(bias_.reshape({-1, 1, 1})); |
| } |
| |
| // Resize output |
| if (is_batch) { |
| output.resize_({n_output_plane, output_height, output_width}); |
| } |
| } |
| |
| static void slow_conv_transpose2d_backward_out_cpu_template( |
| const Tensor& input_, |
| const Tensor& grad_output_, |
| Tensor& grad_input, |
| const Tensor& weight_, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef output_padding, |
| IntArrayRef dilation) { |
| TORCH_CHECK( |
| kernel_size.size() == 2, |
| "It is expected kernel_size equals to 2, but got size ", |
| kernel_size.size()); |
| |
| TORCH_CHECK( |
| dilation.size() == 2, |
| "It is expected dilation equals to 2, but got size ", |
| dilation.size()); |
| |
| TORCH_CHECK( |
| padding.size() == 2, |
| "It is expected padding equals to 2, but got size ", |
| padding.size()); |
| |
| TORCH_CHECK( |
| stride.size() == 2, |
| "It is expected stride equals to 2, but got size ", |
| stride.size()); |
| |
| TORCH_CHECK( |
| output_padding.size() == 2, |
| "It is expected stride equals to 2, but got size ", |
| output_padding.size()); |
| |
| int64_t kernel_height = kernel_size[0]; |
| int64_t kernel_width = kernel_size[1]; |
| int64_t dilation_height = dilation[0]; |
| int64_t dilation_width = dilation[1]; |
| int64_t pad_height = padding[0]; |
| int64_t pad_width = padding[1]; |
| int64_t stride_height = stride[0]; |
| int64_t stride_width = stride[1]; |
| int64_t output_padding_height = output_padding[0]; |
| int64_t output_padding_width = output_padding[1]; |
| |
| int64_t n_input_plane = weight_.size(0); |
| int64_t n_output_plane = weight_.size(1); |
| |
| bool use_channels_last = thnn_conv_use_channels_last(input_, weight_); |
| auto memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous; |
| |
| slow_conv_transpose2d_shape_check( |
| input_, |
| grad_output_, |
| weight_, |
| Tensor(), |
| kernel_height, |
| kernel_width, |
| stride_height, |
| stride_width, |
| pad_height, |
| pad_width, |
| output_padding_height, |
| output_padding_width, |
| dilation_height, |
| dilation_width, |
| false); |
| |
| Tensor input = input_.contiguous(memory_format); |
| Tensor grad_output = grad_output_.contiguous(memory_format); |
| Tensor weight = weight_.contiguous(memory_format); |
| |
| bool is_batch = false; |
| if (input.dim() == 3) { |
| // Force batch |
| is_batch = true; |
| input.resize_({1, input.size(0), input.size(1), input.size(2)}); |
| grad_output.resize_( |
| {1, grad_output.size(0), grad_output.size(1), grad_output.size(2)}); |
| } |
| |
| int64_t input_width = input.size(3); |
| int64_t input_height = input.size(2); |
| int64_t output_height = (input_height - 1) * stride_height - 2 * pad_height + |
| (dilation_height * (kernel_height - 1) + 1) + output_padding_height; |
| int64_t output_width = (input_width - 1) * stride_width - 2 * pad_width + |
| (dilation_width * (kernel_width - 1) + 1) + output_padding_width; |
| |
| // Batch size + input planes |
| int64_t batch_size = input.size(0); |
| |
| // Resize output |
| grad_input.resize_({batch_size, n_input_plane, input_height, input_width}, memory_format); |
| grad_input.zero_(); |
| |
| // Create temporary columns |
| bool need_columns = (kernel_height != 1 || kernel_width != 1 || stride_height != 1 || |
| stride_width != 1 || pad_height != 0 || pad_width != 0 || |
| dilation_height != 1 || dilation_width != 1); |
| |
| Tensor grad_columns = at::empty({0}, input.options()); |
| if (need_columns) { |
| if (use_channels_last) { |
| grad_columns.resize_({input_height * input_width, kernel_height * kernel_width * n_output_plane}); |
| } else { |
| grad_columns.resize_({n_output_plane * kernel_height * kernel_width, input_height * input_width}); |
| } |
| } |
| |
| AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Half, |
| grad_output.scalar_type(), "slow_conv_transpose2d_backward_out_cpu", [&] { |
| // Helpers |
| Tensor grad_input_n = Tensor(); |
| Tensor grad_output_n = Tensor(); |
| |
| // For each elt in batch, do: |
| for (const auto elt : c10::irange(batch_size)) { |
| // Matrix multiply per sample: |
| grad_input_n = grad_input.select(0, elt); |
| grad_output_n = grad_output.select(0, elt); |
| |
| if (need_columns) { |
| // Extract columns: |
| im2col<scalar_t>( |
| grad_output_n.data_ptr<scalar_t>(), |
| n_output_plane, |
| output_height, |
| output_width, |
| input_height, |
| input_width, |
| kernel_height, |
| kernel_width, |
| pad_height, |
| pad_width, |
| stride_height, |
| stride_width, |
| dilation_height, |
| dilation_width, |
| grad_columns.data_ptr<scalar_t>(), |
| use_channels_last); |
| } |
| |
| auto gemm_in_ptr = need_columns ? grad_columns.data_ptr<scalar_t>() |
| : grad_output_n.data_ptr<scalar_t>(); |
| |
| if (use_channels_last) { |
| int64_t m = n_input_plane; |
| int64_t n = input_height * input_width; |
| int64_t k = n_output_plane * kernel_height * kernel_width; |
| |
| // column-major matrices |
| cpublas::gemm( |
| TransposeType::Transpose, |
| TransposeType::NoTranspose, |
| m, |
| n, |
| k, |
| static_cast<scalar_t>(1), |
| weight.const_data_ptr<scalar_t>(), |
| k, |
| gemm_in_ptr, |
| k, |
| static_cast<scalar_t>(0), |
| grad_input_n.mutable_data_ptr<scalar_t>(), |
| m); |
| |
| } else { |
| int64_t m = input_height * input_width; |
| int64_t n = n_input_plane; |
| int64_t k = n_output_plane * kernel_height * kernel_width; |
| |
| // column-major matrices |
| cpublas::gemm( |
| TransposeType::NoTranspose, |
| TransposeType::NoTranspose, |
| m, |
| n, |
| k, |
| static_cast<scalar_t>(1), |
| gemm_in_ptr, |
| m, |
| weight.const_data_ptr<scalar_t>(), |
| k, |
| static_cast<scalar_t>(0), |
| grad_input_n.mutable_data_ptr<scalar_t>(), |
| m); |
| } |
| } |
| |
| // Resize output |
| if (is_batch) { |
| grad_input.resize_({n_input_plane, input_height, input_width}); |
| } |
| }); |
| } |
| |
| void slow_conv_transpose2d_acc_grad_parameters_cpu( |
| const Tensor& input_, |
| const Tensor& weight_, |
| const Tensor& grad_output_, |
| Tensor& grad_weight, |
| Tensor& grad_bias, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef output_padding, |
| IntArrayRef dilation, |
| int scale_) { |
| TORCH_CHECK( |
| kernel_size.size() == 2, |
| "It is expected kernel_size equals to 2, but got size ", |
| kernel_size.size()); |
| |
| TORCH_CHECK( |
| dilation.size() == 2, |
| "It is expected dilation equals to 2, but got size ", |
| dilation.size()); |
| |
| TORCH_CHECK( |
| padding.size() == 2, |
| "It is expected padding equals to 2, but got size ", |
| padding.size()); |
| |
| TORCH_CHECK( |
| stride.size() == 2, |
| "It is expected stride equals to 2, but got size ", |
| stride.size()); |
| |
| TORCH_CHECK( |
| output_padding.size() == 2, |
| "It is expected stride equals to 2, but got size ", |
| output_padding.size()); |
| |
| int64_t kernel_height = kernel_size[0]; |
| int64_t kernel_width = kernel_size[1]; |
| int64_t dilation_height = dilation[0]; |
| int64_t dilation_width = dilation[1]; |
| int64_t pad_height = padding[0]; |
| int64_t pad_width = padding[1]; |
| int64_t stride_height = stride[0]; |
| int64_t stride_width = stride[1]; |
| int64_t output_padding_height = output_padding[0]; |
| int64_t output_padding_width = output_padding[1]; |
| |
| bool use_channels_last = thnn_conv_use_channels_last(input_, weight_); |
| auto memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous; |
| |
| slow_conv_transpose2d_shape_check( |
| input_, |
| grad_output_, |
| grad_weight, |
| grad_bias, |
| kernel_height, |
| kernel_width, |
| stride_height, |
| stride_width, |
| pad_height, |
| pad_width, |
| output_padding_height, |
| output_padding_width, |
| dilation_height, |
| dilation_width, |
| true); |
| |
| int n_input_plane = weight_.size(0); |
| int n_output_plane = weight_.size(1); |
| |
| Tensor input = input_.contiguous(memory_format); |
| Tensor grad_output = grad_output_.contiguous(memory_format); |
| TORCH_CHECK(grad_weight.is_contiguous(memory_format), "grad_weight needs to be contiguous"); |
| |
| if (input.dim() == 3) { |
| input.resize_({1, input.size(0), input.size(1), input.size(2)}); |
| grad_output.resize_( |
| {1, grad_output.size(0), grad_output.size(1), grad_output.size(2)}); |
| } |
| |
| int64_t input_width = input.size(3); |
| int64_t input_height = input.size(2); |
| int64_t output_height = (input_height - 1) * stride_height - 2 * pad_height + |
| (dilation_height * (kernel_height - 1) + 1) + output_padding_height; |
| int64_t output_width = (input_width - 1) * stride_width - 2 * pad_width + |
| (dilation_width * (kernel_width - 1) + 1) + output_padding_width; |
| |
| // Batch size + input planes |
| int64_t batch_size = input.size(0); |
| |
| // Resize temporary columns |
| bool need_columns = (kernel_height != 1 || kernel_width != 1 || stride_height != 1 || |
| stride_width != 1 || pad_height != 0 || pad_width != 0 || |
| dilation_height != 1 || dilation_width != 1); |
| |
| Tensor columns = at::empty({0}, input.options()); |
| if (need_columns) { |
| if (use_channels_last) { |
| columns.resize_({input_height * input_width, kernel_height * kernel_width * n_output_plane}); |
| } else { |
| columns.resize_({n_output_plane * kernel_height * kernel_width, input_height * input_width}); |
| } |
| } |
| |
| AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Half, |
| input.scalar_type(), "slow_conv_transpose2d_acc_grad_parameters_cpu", [&] { |
| // Helpers |
| Tensor input_n = Tensor(); |
| Tensor grad_output_n = Tensor(); |
| |
| scalar_t scale = static_cast<scalar_t>(scale_); |
| |
| // For each elt in batch, do: |
| for (const auto elt : c10::irange(batch_size)) { |
| // Matrix multiply per output: |
| grad_output_n = grad_output.select(0, elt); |
| |
| // Do Weight: |
| if (grad_weight.defined()) { |
| // Matrix multiply per output: |
| input_n = input.select(0, elt); |
| |
| if (need_columns) { |
| // Extract columns: |
| im2col<scalar_t>( |
| grad_output_n.data_ptr<scalar_t>(), |
| n_output_plane, |
| output_height, |
| output_width, |
| input_height, |
| input_width, |
| kernel_height, |
| kernel_width, |
| pad_height, |
| pad_width, |
| stride_height, |
| stride_width, |
| dilation_height, |
| dilation_width, |
| columns.data_ptr<scalar_t>(), |
| use_channels_last); |
| } |
| |
| auto gemm_in_ptr = need_columns ? columns.data_ptr<scalar_t>() |
| : grad_output_n.data_ptr<scalar_t>(); |
| |
| if (use_channels_last) { |
| int64_t m = kernel_height * kernel_width * n_output_plane; |
| int64_t n = n_input_plane; |
| int64_t k = input_height * input_width; |
| |
| // column-major matrices |
| cpublas::gemm( |
| TransposeType::NoTranspose, |
| TransposeType::Transpose, |
| m, |
| n, |
| k, |
| static_cast<scalar_t>(scale), |
| gemm_in_ptr, |
| m, |
| input_n.const_data_ptr<scalar_t>(), |
| n, |
| static_cast<scalar_t>(1), |
| grad_weight.mutable_data_ptr<scalar_t>(), |
| m); |
| } else { |
| int64_t m = n_output_plane * kernel_height * kernel_width; |
| int64_t n = n_input_plane; |
| int64_t k = input_height * input_width; |
| |
| // column-major matrices |
| cpublas::gemm( |
| TransposeType::Transpose, |
| TransposeType::NoTranspose, |
| m, |
| n, |
| k, |
| static_cast<scalar_t>(scale), |
| gemm_in_ptr, |
| k, |
| input_n.const_data_ptr<scalar_t>(), |
| k, |
| static_cast<scalar_t>(1), |
| grad_weight.mutable_data_ptr<scalar_t>(), |
| m); |
| } |
| } |
| } |
| }); |
| } |
| |
| } // namespace |
| |
| TORCH_IMPL_FUNC(slow_conv_transpose2d_structured_cpu) |
| (const Tensor& input, |
| const Tensor& weight, |
| IntArrayRef kernel_size, |
| OptionalTensorRef bias_opt, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef output_padding, |
| IntArrayRef dilation, |
| const Tensor& output){ |
| const Tensor& bias = bias_opt.getTensorRef(); |
| |
| slow_conv_transpose2d_out_cpu_template( |
| output, |
| input, |
| weight, |
| kernel_size, |
| bias, |
| stride, |
| padding, |
| output_padding, |
| dilation); |
| } |
| |
| static std::tuple<Tensor&, Tensor&, Tensor&> slow_conv_transpose2d_backward_out_cpu(const Tensor& grad_output, |
| const Tensor& input, |
| const Tensor& weight, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef output_padding, |
| IntArrayRef dilation, |
| Tensor& grad_input, |
| Tensor& grad_weight, |
| Tensor& grad_bias) { |
| if (grad_input.defined()) { |
| slow_conv_transpose2d_backward_out_cpu_template( |
| input, |
| grad_output, |
| grad_input, |
| weight, |
| kernel_size, |
| stride, |
| padding, |
| output_padding, |
| dilation); |
| } |
| |
| if (grad_bias.defined()) { |
| at::sum_out(grad_bias, grad_output, IntArrayRef{0, 2, 3}); |
| } |
| |
| if (grad_weight.defined()) { |
| grad_weight.resize_(weight.sizes(), weight.suggest_memory_format()); |
| grad_weight.zero_(); |
| slow_conv_transpose2d_acc_grad_parameters_cpu( |
| input, |
| weight, |
| grad_output, |
| grad_weight, |
| grad_bias, |
| kernel_size, |
| stride, |
| padding, |
| output_padding, |
| dilation, |
| 1); |
| } |
| |
| return std::tuple<Tensor&, Tensor&, Tensor&>( |
| grad_input, grad_weight, grad_bias); |
| } |
| |
| static std::tuple<Tensor, Tensor, Tensor> slow_conv_transpose2d_backward_cpu( |
| const Tensor& grad_output, |
| const Tensor& input, |
| const Tensor& weight, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef output_padding, |
| IntArrayRef dilation, |
| std::array<bool, 3> output_mask) { |
| Tensor grad_input; |
| Tensor grad_weight; |
| Tensor grad_bias; |
| |
| if (output_mask[0]) { |
| grad_input = at::empty({0}, grad_output.options()); |
| } else { |
| grad_input = Tensor(); |
| } |
| |
| if (output_mask[1]) { |
| grad_weight = at::empty({0}, grad_output.options()); |
| } else { |
| grad_weight = Tensor(); |
| } |
| |
| if (output_mask[2]) { |
| grad_bias = at::empty({0}, grad_output.options()); |
| } else { |
| grad_bias = Tensor(); |
| } |
| |
| if (grad_input.defined()) { |
| slow_conv_transpose2d_backward_out_cpu_template( |
| input, |
| grad_output, |
| grad_input, |
| weight, |
| kernel_size, |
| stride, |
| padding, |
| output_padding, |
| dilation); |
| } |
| |
| if (grad_bias.defined()) { |
| at::sum_out(grad_bias, grad_output, IntArrayRef{0, 2, 3}); |
| } |
| |
| if (grad_weight.defined()) { |
| grad_weight.resize_(weight.sizes(), weight.suggest_memory_format()); |
| grad_weight.zero_(); |
| slow_conv_transpose2d_acc_grad_parameters_cpu( |
| input, |
| weight, |
| grad_output, |
| grad_weight, |
| grad_bias, |
| kernel_size, |
| stride, |
| padding, |
| output_padding, |
| dilation, |
| 1); |
| } |
| |
| return std::tuple<Tensor, Tensor, Tensor>(grad_input, grad_weight, grad_bias); |
| } |
| |
| REGISTER_ALL_CPU_DISPATCH(slow_conv_transpose2d_backward_stub, &slow_conv_transpose2d_backward_cpu); |
| |
| } // namespace native |
| } // namespace at |