blob: 3808aef75c4d57760873c6e39c1761d6378d2118 [file] [log] [blame]
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/edge.h"
#include "torch/csrc/autograd/engine.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/functions/accumulate_grad.h"
#include "torch/csrc/autograd/functions/tensor.h"
#include "torch/csrc/autograd/generated/Functions.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/autograd/variable_version.h"
#include <ATen/ATen.h>
#include <ATen/core/Error.h>
#include <list>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <string>
#include <vector>
namespace torch {
namespace autograd {
Variable::Impl::Impl(at::Tensor data, bool requires_grad, Edge gradient_edge)
: TensorImpl(data.type().type_id(), data.type().scalarType(), data.type().allocator(), /* is variable */ true),
data_(std::move(data)),
grad_fn_(std::move(gradient_edge.function)),
requires_grad_(false),
is_view_(false),
output_nr_(gradient_edge.input_nr),
pyobj_(nullptr) {
// set_requires_grad also checks error conditions.
set_requires_grad(requires_grad);
AT_CHECK(
!grad_fn_ || !requires_grad_,
"requires_grad should be false if grad_fn is set");
if (!data_.defined()) {
throw std::runtime_error("data is undefined");
}
}
Variable::Impl::~Impl() = default;
int64_t Variable::Impl::numel() const {
return data_.numel();
}
IntList Variable::Impl::sizes() const {
return data_.sizes();
}
IntList Variable::Impl::strides() const {
return data_.strides();
}
bool Variable::Impl::is_contiguous() const {
AT_ERROR("variable impl does not have is_contiguous");
}
int64_t Variable::Impl::dim() const {
return data_.dim();
}
int64_t Variable::Impl::size(int64_t d) const {
return data_.size(d);
}
int64_t Variable::Impl::stride(int64_t d) const {
return data_.stride(d);
}
void Variable::Impl::resize_dim(int64_t ndim) {
AT_ERROR("variable impl does not have resize_dim");
}
void Variable::Impl::set_size(int64_t dim, int64_t new_size) {
AT_ERROR("variable impl does not have set_size");
}
void Variable::Impl::set_stride(int64_t dim, int64_t new_stride) {
AT_ERROR("variable impl does not have set_stride");
}
void Variable::Impl::set_storage_offset(int64_t storage_offset) {
AT_ERROR("variable impl does not have set_storage_offset");
}
const at::Storage& Variable::Impl::storage() const {
return data_.storage();
}
int64_t Variable::Impl::storage_offset() const {
return data_.storage_offset();
}
std::shared_ptr<Function> Variable::Impl::get_grad_accumulator() {
if (grad_fn_) {
throw std::logic_error(
"get_grad_accumulator() should be only called on leaf Variables");
}
if (!requires_grad_) {
return nullptr;
}
std::lock_guard<std::mutex> lock(mutex_);
auto result = grad_accumulator_.lock();
if (result)
return result;
c10::raw::intrusive_ptr::incref(this);
auto intrusive_from_this = c10::intrusive_ptr<Variable::Impl>::reclaim(this);
result = std::make_shared<AccumulateGrad>(Variable(std::move(intrusive_from_this)));
grad_accumulator_ = result;
return result;
}
Variable Variable::Impl::detach() const {
auto detached = make_variable(data_, /*requires_grad=*/false);
detached.set_version_counter(version_counter_);
return detached;
}
void Variable::Impl::detach_() {
if (is_view_) {
AT_ERROR("Can't detach views in-place. Use detach() instead");
}
set_requires_grad(false);
grad_fn_.reset();
output_nr_ = 0;
}
void Variable::Impl::backward(
at::optional<Tensor> gradient,
bool keep_graph,
bool create_graph) {
std::vector<Edge> edges;
edges.emplace_back(grad_fn_, output_nr_);
std::vector<Variable> inputs;
if (!gradient.has_value()) {
gradient = make_variable(at::ones_like(data_), /*requires_grad=*/false);
}
inputs.push_back(std::move(as_variable_ref(*gradient)));
Engine::get_default_engine().execute(edges, inputs, keep_graph, create_graph);
}
void Variable::Impl::set_data(Tensor new_data) {
// Resets gradient accumulator if metadata is out of date
std::lock_guard<std::mutex> lock(mutex_);
auto prior_accumulator = grad_accumulator_.lock();
if (prior_accumulator) {
const auto prior_device = prior_accumulator->input_metadata(0).device();
const auto new_device = new_data.is_cuda() ? new_data.get_device() : -1;
if (new_data.type() != data_.type() || prior_device != new_device) {
grad_accumulator_.reset();
}
}
// Updates metadata
scalar_type_ = new_data.type().scalarType();
type_id_ = new_data.type().type_id();
is_variable_ = true;
data_ = std::move(new_data);
}
void Variable::Impl::release_resources() {
data_.reset();
grad_.reset();
grad_fn_.reset();
hooks_.clear();
}
Variable::ViewImpl::ViewImpl(Variable base, at::Tensor data, Edge gradient_edge)
: Variable::Impl(std::move(data), false, std::move(gradient_edge)),
base_(std::move(base)) {
AT_CHECK(base_.defined(), "base is undefined");
if (base_.is_view()) {
base_ = base_.base();
}
is_view_ = true;
version_counter_ = base_.version_counter();
attr_version = version_counter_.current_version();
}
std::shared_ptr<Function>& Variable::ViewImpl::get_grad_fn() {
std::lock_guard<std::mutex> lock(mutex_);
if (!grad_fn_ && !base_.requires_grad()) {
return grad_fn_;
}
auto current_version = version_counter_.current_version();
if (attr_version != current_version) {
AT_ASSERT(output_nr_ == 0);
auto fn = std::make_shared<generated::AsStridedBackward>();
fn->self_geometry = at::TensorGeometry(base_);
fn->size = sizes().vec();
fn->stride = strides().vec();
fn->storage_offset = data_.storage_offset();
fn->set_next_edges(collect_next_edges(base_));
fn->add_input_metadata(
base_.type()
, sizes() // Note: sizes(), not base_.sizes(), is intentional
, base_.is_cuda() ? base_.get_device() : -1);
grad_fn_ = std::move(fn);
attr_version = current_version;
}
return grad_fn_;
}
void Variable::ViewImpl::rebase_history(Edge gradient_edge) {
AT_ASSERT(gradient_edge.input_nr == 0);
AT_ASSERT(gradient_edge.function);
AT_CHECK(
gradient_edge.function->num_inputs() == 1,
"Functions which modify views in-place must return a single Variable");
this->output_nr_ = gradient_edge.input_nr;
auto copy_slices = std::make_shared<CopySlices>(
base_, at::TensorGeometry(data_), std::move(gradient_edge.function));
base_.set_gradient_edge({std::move(copy_slices), 0});
get_grad_fn(); // trigger an update to the view's grad_fn
}
void Variable::ViewImpl::release_resources() {
Variable::Impl::release_resources();
base_.reset();
}
void Variable::rebase_history(Edge gradient_edge) {
AT_ASSERT(gradient_edge.function != nullptr);
if (is_view()) {
auto& impl = static_cast<Variable::ViewImpl&>(*get());
impl.rebase_history(std::move(gradient_edge));
} else {
set_gradient_edge(std::move(gradient_edge));
}
}
}} // namespace torch::autograd