| # Copyright 2014 Google Inc. All rights reserved. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| from python_util.data import * |
| import numpy.random as nr |
| import numpy as n |
| import random as r |
| from time import time |
| from threading import Thread |
| from math import sqrt |
| import sys |
| #from matplotlib import pylab as pl |
| from PIL import Image |
| from StringIO import StringIO |
| from time import time |
| import itertools as it |
| |
| class JPEGBatchLoaderThread(Thread): |
| def __init__(self, dp, batch_num, label_offset, list_out): |
| Thread.__init__(self) |
| self.list_out = list_out |
| self.label_offset = label_offset |
| self.dp = dp |
| self.batch_num = batch_num |
| |
| @staticmethod |
| def load_jpeg_batch(rawdics, dp, label_offset): |
| if type(rawdics) != list: |
| rawdics = [rawdics] |
| nc_total = sum(len(r['data']) for r in rawdics) |
| |
| jpeg_strs = list(it.chain.from_iterable(rd['data'] for rd in rawdics)) |
| labels = list(it.chain.from_iterable(rd['labels'] for rd in rawdics)) |
| |
| img_mat = n.empty((nc_total * dp.data_mult, dp.inner_pixels * dp.num_colors), dtype=n.float32) |
| lab_mat = n.zeros((nc_total, dp.get_num_classes()), dtype=n.float32) |
| dp.convnet.libmodel.decodeJpeg(jpeg_strs, img_mat, dp.img_size, dp.inner_size, dp.test, dp.multiview) |
| lab_vec = n.tile(n.asarray([(l[nr.randint(len(l))] if len(l) > 0 else -1) + label_offset for l in labels], dtype=n.single).reshape((nc_total, 1)), (dp.data_mult,1)) |
| for c in xrange(nc_total): |
| lab_mat[c, [z + label_offset for z in labels[c]]] = 1 |
| lab_mat = n.tile(lab_mat, (dp.data_mult, 1)) |
| |
| |
| return {'data': img_mat[:nc_total * dp.data_mult,:], |
| 'labvec': lab_vec[:nc_total * dp.data_mult,:], |
| 'labmat': lab_mat[:nc_total * dp.data_mult,:]} |
| |
| def run(self): |
| rawdics = self.dp.get_batch(self.batch_num) |
| p = JPEGBatchLoaderThread.load_jpeg_batch(rawdics, |
| self.dp, |
| self.label_offset) |
| self.list_out.append(p) |
| |
| class ColorNoiseMakerThread(Thread): |
| def __init__(self, pca_stdevs, pca_vecs, num_noise, list_out): |
| Thread.__init__(self) |
| self.pca_stdevs, self.pca_vecs = pca_stdevs, pca_vecs |
| self.num_noise = num_noise |
| self.list_out = list_out |
| |
| def run(self): |
| noise = n.dot(nr.randn(self.num_noise, 3).astype(n.single) * self.pca_stdevs.T, self.pca_vecs.T) |
| self.list_out.append(noise) |
| |
| class ImageDataProvider(LabeledDataProvider): |
| def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False): |
| LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) |
| self.data_mean = self.batch_meta['data_mean'].astype(n.single) |
| self.color_eig = self.batch_meta['color_pca'][1].astype(n.single) |
| self.color_stdevs = n.c_[self.batch_meta['color_pca'][0].astype(n.single)] |
| self.color_noise_coeff = dp_params['color_noise'] |
| self.num_colors = 3 |
| self.img_size = int(sqrt(self.batch_meta['num_vis'] / self.num_colors)) |
| self.mini = dp_params['minibatch_size'] |
| self.inner_size = dp_params['inner_size'] if dp_params['inner_size'] > 0 else self.img_size |
| self.inner_pixels = self.inner_size **2 |
| self.border_size = (self.img_size - self.inner_size) / 2 |
| self.multiview = dp_params['multiview_test'] and test |
| self.num_views = 5*2 |
| self.data_mult = self.num_views if self.multiview else 1 |
| self.batch_size = self.batch_meta['batch_size'] |
| self.label_offset = 0 if 'label_offset' not in self.batch_meta else self.batch_meta['label_offset'] |
| self.scalar_mean = dp_params['scalar_mean'] |
| # Maintain pointers to previously-returned data matrices so they don't get garbage collected. |
| self.data = [None, None] # These are pointers to previously-returned data matrices |
| |
| self.loader_thread, self.color_noise_thread = None, None |
| self.convnet = dp_params['convnet'] |
| |
| self.num_noise = self.batch_size |
| self.batches_generated, self.loaders_started = 0, 0 |
| self.data_mean_crop = self.data_mean.reshape((self.num_colors,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((1,3*self.inner_size**2)) |
| |
| if self.scalar_mean >= 0: |
| self.data_mean_crop = self.scalar_mean |
| |
| def showimg(self, img): |
| from matplotlib import pylab as pl |
| pixels = img.shape[0] / 3 |
| size = int(sqrt(pixels)) |
| img = img.reshape((3,size,size)).swapaxes(0,2).swapaxes(0,1) |
| pl.imshow(img, interpolation='nearest') |
| pl.show() |
| |
| def get_data_dims(self, idx=0): |
| if idx == 0: |
| return self.inner_size**2 * 3 |
| if idx == 2: |
| return self.get_num_classes() |
| return 1 |
| |
| def start_loader(self, batch_idx): |
| self.load_data = [] |
| self.loader_thread = JPEGBatchLoaderThread(self, |
| self.batch_range[batch_idx], |
| self.label_offset, |
| self.load_data) |
| self.loader_thread.start() |
| |
| def start_color_noise_maker(self): |
| color_noise_list = [] |
| self.color_noise_thread = ColorNoiseMakerThread(self.color_stdevs, self.color_eig, self.num_noise, color_noise_list) |
| self.color_noise_thread.start() |
| return color_noise_list |
| |
| def set_labels(self, datadic): |
| pass |
| |
| def get_data_from_loader(self): |
| if self.loader_thread is None: |
| self.start_loader(self.batch_idx) |
| self.loader_thread.join() |
| self.data[self.d_idx] = self.load_data[0] |
| |
| self.start_loader(self.get_next_batch_idx()) |
| else: |
| # Set the argument to join to 0 to re-enable batch reuse |
| self.loader_thread.join() |
| if not self.loader_thread.is_alive(): |
| self.data[self.d_idx] = self.load_data[0] |
| self.start_loader(self.get_next_batch_idx()) |
| #else: |
| # print "Re-using batch" |
| self.advance_batch() |
| |
| def add_color_noise(self): |
| # At this point the data already has 0 mean. |
| # So I'm going to add noise to it, but I'm also going to scale down |
| # the original data. This is so that the overall scale of the training |
| # data doesn't become too different from the test data. |
| |
| s = self.data[self.d_idx]['data'].shape |
| cropped_size = self.get_data_dims(0) / 3 |
| ncases = s[0] |
| |
| if self.color_noise_thread is None: |
| self.color_noise_list = self.start_color_noise_maker() |
| self.color_noise_thread.join() |
| self.color_noise = self.color_noise_list[0] |
| self.color_noise_list = self.start_color_noise_maker() |
| else: |
| self.color_noise_thread.join(0) |
| if not self.color_noise_thread.is_alive(): |
| self.color_noise = self.color_noise_list[0] |
| self.color_noise_list = self.start_color_noise_maker() |
| |
| self.data[self.d_idx]['data'] = self.data[self.d_idx]['data'].reshape((ncases*3, cropped_size)) |
| self.color_noise = self.color_noise[:ncases,:].reshape((3*ncases, 1)) |
| self.data[self.d_idx]['data'] += self.color_noise * self.color_noise_coeff |
| self.data[self.d_idx]['data'] = self.data[self.d_idx]['data'].reshape((ncases, 3* cropped_size)) |
| self.data[self.d_idx]['data'] *= 1.0 / (1.0 + self.color_noise_coeff) # <--- NOTE: This is the slow line, 0.25sec. Down from 0.75sec when I used division. |
| |
| def get_next_batch(self): |
| self.d_idx = self.batches_generated % 2 |
| epoch, batchnum = self.curr_epoch, self.curr_batchnum |
| |
| self.get_data_from_loader() |
| |
| # Subtract mean |
| self.data[self.d_idx]['data'] -= self.data_mean_crop |
| |
| if self.color_noise_coeff > 0 and not self.test: |
| self.add_color_noise() |
| self.batches_generated += 1 |
| |
| return epoch, batchnum, [self.data[self.d_idx]['data'].T, self.data[self.d_idx]['labvec'].T, self.data[self.d_idx]['labmat'].T] |
| |
| |
| # Takes as input an array returned by get_next_batch |
| # Returns a (numCases, imgSize, imgSize, 3) array which can be |
| # fed to pylab for plotting. |
| # This is used by shownet.py to plot test case predictions. |
| def get_plottable_data(self, data, add_mean=True): |
| mean = self.data_mean_crop.reshape((data.shape[0],1)) if data.flags.f_contiguous or self.scalar_mean else self.data_mean_crop.reshape((data.shape[0],1)) |
| return n.require((data + (mean if add_mean else 0)).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) |
| |
| class CIFARDataProvider(LabeledDataProvider): |
| def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False): |
| LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test) |
| self.img_size = 32 |
| self.num_colors = 3 |
| self.inner_size = dp_params['inner_size'] if dp_params['inner_size'] > 0 else self.batch_meta['img_size'] |
| self.border_size = (self.img_size - self.inner_size) / 2 |
| self.multiview = dp_params['multiview_test'] and test |
| self.num_views = 9 |
| self.scalar_mean = dp_params['scalar_mean'] |
| self.data_mult = self.num_views if self.multiview else 1 |
| self.data_dic = [] |
| for i in batch_range: |
| self.data_dic += [unpickle(self.get_data_file_name(i))] |
| self.data_dic[-1]["labels"] = n.require(self.data_dic[-1]['labels'], dtype=n.single) |
| self.data_dic[-1]["labels"] = n.require(n.tile(self.data_dic[-1]["labels"].reshape((1, n.prod(self.data_dic[-1]["labels"].shape))), (1, self.data_mult)), requirements='C') |
| self.data_dic[-1]['data'] = n.require(self.data_dic[-1]['data'] - self.scalar_mean, dtype=n.single, requirements='C') |
| |
| self.cropped_data = [n.zeros((self.get_data_dims(), self.data_dic[0]['data'].shape[1]*self.data_mult), dtype=n.single) for x in xrange(2)] |
| |
| self.batches_generated = 0 |
| self.data_mean = self.batch_meta['data_mean'].reshape((self.num_colors,self.img_size,self.img_size))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((self.get_data_dims(), 1)) |
| |
| def get_next_batch(self): |
| epoch, batchnum = self.curr_epoch, self.curr_batchnum |
| self.advance_batch() |
| bidx = batchnum - self.batch_range[0] |
| |
| cropped = self.cropped_data[self.batches_generated % 2] |
| |
| self.__trim_borders(self.data_dic[bidx]['data'], cropped) |
| cropped -= self.data_mean |
| self.batches_generated += 1 |
| return epoch, batchnum, [cropped, self.data_dic[bidx]['labels']] |
| |
| def get_data_dims(self, idx=0): |
| return self.inner_size**2 * self.num_colors if idx == 0 else 1 |
| |
| # Takes as input an array returned by get_next_batch |
| # Returns a (numCases, imgSize, imgSize, 3) array which can be |
| # fed to pylab for plotting. |
| # This is used by shownet.py to plot test case predictions. |
| def get_plottable_data(self, data): |
| return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single) |
| |
| def __trim_borders(self, x, target): |
| y = x.reshape(self.num_colors, self.img_size, self.img_size, x.shape[1]) |
| |
| if self.test: # don't need to loop over cases |
| if self.multiview: |
| start_positions = [(0,0), (0, self.border_size), (0, self.border_size*2), |
| (self.border_size, 0), (self.border_size, self.border_size), (self.border_size, self.border_size*2), |
| (self.border_size*2, 0), (self.border_size*2, self.border_size), (self.border_size*2, self.border_size*2)] |
| end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions] |
| for i in xrange(self.num_views): |
| target[:,i * x.shape[1]:(i+1)* x.shape[1]] = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:].reshape((self.get_data_dims(),x.shape[1])) |
| else: |
| pic = y[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size, :] # just take the center for now |
| target[:,:] = pic.reshape((self.get_data_dims(), x.shape[1])) |
| else: |
| for c in xrange(x.shape[1]): # loop over cases |
| startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1) |
| endY, endX = startY + self.inner_size, startX + self.inner_size |
| pic = y[:,startY:endY,startX:endX, c] |
| if nr.randint(2) == 0: # also flip the image with 50% probability |
| pic = pic[:,:,::-1] |
| target[:,c] = pic.reshape((self.get_data_dims(),)) |
| |
| class DummyConvNetLogRegDataProvider(LabeledDummyDataProvider): |
| def __init__(self, data_dim): |
| LabeledDummyDataProvider.__init__(self, data_dim) |
| |
| self.img_size = int(sqrt(data_dim/3)) |
| |
| def get_next_batch(self): |
| epoch, batchnum, dic = LabeledDummyDataProvider.get_next_batch(self) |
| dic = {'data': dic[0], 'labels': dic[1]} |
| print dic['data'].shape, dic['labels'].shape |
| return epoch, batchnum, [dic['data'], dic['labels']] |
| |
| # Returns the dimensionality of the two data matrices returned by get_next_batch |
| def get_data_dims(self, idx=0): |
| return self.batch_meta['num_vis'] if idx == 0 else 1 |