blob: 98e7fca452b0f902b787a16c3e065c4eed7cc7b8 [file] [log] [blame]
#include <gtest/gtest.h>
#include <ATen/code_template.h>
#include <c10/util/irange.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/torch.h>
#include <cmath>
#include <sstream>
#include <stdexcept>
namespace torch {
namespace jit {
using namespace torch::indexing;
using namespace torch::jit::tensorexpr;
class Kernel : public ::testing::Test {
public:
// NOLINTNEXTLINE(modernize-use-override,cppcoreguidelines-explicit-virtual-functions)
void SetUp() {
getTEMustUseLLVMOnCPU() = false;
}
};
TEST_F(Kernel, InliningIntermediates) {
// here, each mul has only one use, so it should be completely inlined
{
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%one : int = prim::Constant[value=1]()
%4 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
%5: Float(5, 3, strides=[3, 1]) = aten::add(%4, %1, %one)
return (%5))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
torch::jit::testing::FileCheck().check_not("aten_mul")->run(oss.str());
}
{
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=${device}),
%1 : Float(5, 3, strides=[3, 1], device=${device})):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%one : int = prim::Constant[value=1]()
%3 : Float(5, 3, strides=[3, 1]) = aten::sub(%0, %2, %one)
%4 : Float(5, 3, strides=[3, 1]) = aten::add(%3, %0, %one)
%5 : Float(5, 3, strides=[3, 1]) = aten::div(%3, %0)
return (%4, %5))IR";
for (bool use_cuda : {false, true}) {
if (!torch::cuda::is_available() && use_cuda) {
continue;
}
at::jit::TemplateEnv env;
env.s("device", use_cuda ? "cuda:0" : "cpu");
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// aten_mul only has one use, inlined completely
torch::jit::testing::FileCheck().check_not("aten_mul")->run(oss.str());
// aten_sub should be removed by the CUDA backend by metavar rewriting
// and by the CPU backend by horizontal fusion.
torch::jit::testing::FileCheck().check_not("aten_sub")->run(oss.str());
}
}
}
TEST_F(Kernel, PreAllocIntermediateBufs) {
const auto graph_string = R"IR(
graph(%a.1 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu),
%b.1 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu)):
%2 : int = prim::Constant[value=1]()
%c.2 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu) = aten::matmul(%a.1, %b.1) # test_matmul.py:12:12
%3 : Float(8, 8, strides=[8, 1], requires_grad=0, device=cpu) = aten::add(%a.1, %c.2, %2) # test_matmul.py:13:15
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::matmul(a, b) + a;
TensorExprKernel k(graph, {}, {}, true);
std::vector<at::Tensor> inputs = {a, b};
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// Check whether the intermediate buffer has been added to constants
auto constants = k.getConstantDescriptors();
ASSERT_EQ(constants.size(), 1);
// Check the IR we produced
torch::jit::testing::FileCheck().check_not("Alloc")->run(oss.str());
torch::jit::testing::FileCheck().check_not("Free")->run(oss.str());
// Check correctness
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, _1) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, _2) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, _3) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[12, 2], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2), Slice(None, None, 2)});
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, Huge) {
const auto graph_string = R"IR(
graph(%x.1 : Float(4000000000, strides=[1], requires_grad=0, device=cpu)):
%1 : int = prim::Constant[value=0]()
%2 : Float(1, 4000000000, strides=[4000000000, 1], requires_grad=0, device=cpu) = aten::unsqueeze(%x.1, %1)
%3 : Float(1, 4000000000, strides=[4000000000, 1], requires_grad=0, device=cpu) = aten::relu(%2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::ostringstream oss;
oss << *k.getCodeGenStmt();
// The 4000000000 iterations loop will be split into 500000000 x 8 and the
// outer loop will be parallel. If LLVM is not present, it will not be split,
// and to cover both of these cases we're looking for 00000000ll; in the
// output.
const std::string& verification_pattern = R"IR(# CHECK: 00000000ll;)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
}
TEST_F(Kernel, ParallelStrided) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, 40005, strides=[120015, 40005, 1], device=cpu),
%1 : Float(5, 3, 40005, strides=[960120, 160020, 2], device=cpu)):
%2 : Float(5, 3, 40005, strides=[120015, 40005, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, 40005, strides=[120015, 40005, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3, 40005}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6, 80010}, TensorOptions(kCPU).dtype(at::kFloat))
.index(
{Slice(None, None, 2),
Slice(None, None, 2),
Slice(None, None, 2)});
auto ref = a * (a * b);
auto o = at::zeros_like(ref);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
TEST_F(Kernel, DISABLED_Shape_Inference) {
// disabled: doesn't do stride propagation, and isn't being used currently
// Test TensorExpr shape inference capabilities: it should only require shapes
// for the inputs
{
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[12, 2], device=cpu)):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2), Slice(None, None, 2)});
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
const auto graph_string = R"IR(
graph(%0 : Float(8, 8, strides=[8, 1], device=cpu),
%1 : Float(8, 8, strides=[8, 1], device=cpu)):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor, %4 : Tensor = prim::ConstantChunk[dim=1,chunks=2](%2)
%r : Tensor = aten::mul(%3, %4)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({8, 8}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({8, 4}, TensorOptions(kCPU).dtype(at::kFloat));
auto t = torch::chunk(a * b, 2, 1);
auto ref = t[0] * t[1];
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
CHECK_EQ(o.sizes()[0], 8);
CHECK_EQ(o.sizes()[1], 4);
for (size_t i = 0; i < 8 * 4; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
// Test that shape inference handles aten::unsqueeze
const auto graph_string = R"IR(
graph(%a : Float(4, 2, strides=[2, 1], device=cpu),
%b : Float(4, 3, 2, strides=[6, 2, 1], device=cpu),
%c : Float(3, 2, 2, strides=[4, 2, 1], device=cpu)):
%one : int = prim::Constant[value=1]()
%minus_one : int = prim::Constant[value=-1]()
%three : int = prim::Constant[value=3]()
%minus_four : int = prim::Constant[value=-4]()
%a1 : Tensor = aten::unsqueeze(%a, %one) # new size: [4,1,2]
%a2 : Tensor = aten::unsqueeze(%a1, %minus_one) # new size: [4,1,2,1]
%b1 : Tensor = aten::unsqueeze(%b, %three) # new size: [4,3,2,1]
%c1 : Tensor = aten::unsqueeze(%c, %minus_four) # new size: [1,3,2,2]
%ab : Tensor = aten::mul(%a2, %b1) # expected size: [4,3,2,1]
%abc : Tensor = aten::mul(%ab, %c1) # expected size: [4,3,2,2]
return (%abc))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({4, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({4, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({4, 3, 2, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::unsqueeze(at::unsqueeze(a, 1), -1) * at::unsqueeze(b, 3) *
at::unsqueeze(c, -4);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b, c};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_mul)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
// Check sizes
CHECK_EQ(o.sizes().size(), ref.sizes().size());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
// Test that shape inference handles aten::cat
const auto graph_string = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
%c : Float(5, 9, 2, strides=[18, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Tensor = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({5, 19, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b, c};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_cat)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
// Check sizes
CHECK_EQ(o.sizes().size(), ref.sizes().size());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
}
{
// Test that we throw an error when input list for aten::cat is empty
const auto graph_string = R"IR(
graph():
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct()
%r : Tensor = aten::cat(%inputs, %dim)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto compile = [&]() {
TensorExprKernel k(graph);
k.getCodeGenStmt();
};
ASSERT_THROWS_WITH(compile(), "Empty input list is passed to aten::cat");
}
{
// Test that we throw an error when 'dim' passed to aten::cat is invalid
const auto ir_dim_99 = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 3, 2, strides=[6, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=99]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
%r : Float(5, 3, 2, strides=[6, 2, 1], device=cpu) = aten::cat(%inputs, %dim)
return (%r))IR";
const auto ir_dim_minus_6 = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 3, 2, strides=[6, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=-6]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
%r : Float(5, 3, 2, strides=[6, 2, 1], device=cpu) = aten::cat(%inputs, %dim)
return (%r))IR";
auto compile = [](const std::string& graph_string) {
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
k.getCodeGenStmt();
};
ASSERT_THROWS_WITH(compile(ir_dim_99), "Invalid index");
ASSERT_THROWS_WITH(compile(ir_dim_minus_6), "Invalid index");
}
}
TEST_F(Kernel, CatInputTypesPromotion) {
{
// Test that we properly promote input types for aten::cat
const auto graph_string = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
%c : Double(5, 9, 2, strides=[18, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Double(5, 19, 2, strides=[38, 2, 1]) = aten::cat(%inputs, %dim)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kDouble));
auto ref = at::cat({a, b, c}, 1);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b, c};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_cat)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
// Check sizes
CHECK_EQ(o.sizes().size(), ref.sizes().size());
CHECK_EQ(o.dtype(), ref.dtype());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
CHECK_EQ(((double*)o.data_ptr())[i], ((double*)ref.data_ptr())[i]);
}
}
}
TEST_F(Kernel, CatAndInlineWithAConstantDim) {
const auto graph_string = R"IR(
graph(%0 : Float(1, 512, strides=[1024, 1], requires_grad=0, device=cpu),
%1 : Float(1, 512, strides=[1024, 1], requires_grad=0, device=cpu)):
%2 : bool = prim::Constant[value=0]()
%3 : int = prim::Constant[value=1]()
%4 : Tensor[] = prim::ListConstruct(%0, %1)
%5 : Float(1, 1024, strides=[1024, 1], requires_grad=0, device=cpu) = aten::cat(%4, %3)
%6 : Tensor[] = prim::ListConstruct(%5)
%7 : Float(1, 1024, strides=[1024, 1], requires_grad=0, device=cpu) = aten::cat(%6, %3)
%8 : Float(1, 1024, strides=[1024, 1], requires_grad=0, device=cpu) = aten::_cast_Float(%7, %2)
return (%8, %7))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto a = at::rand({1, 512}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({1, 512}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::_cast_Float(at::cat({a, b}, 1), 0);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, CatWithEmptyInputs) {
bool curr_cat_wo_conditionals = getCatWoConditionals();
for (auto cat_wo_conditionals : {true, false}) {
getCatWoConditionals() = cat_wo_conditionals;
const auto graph_string = R"IR(
graph(%0 : Float(0, 64, strides=[64, 1], requires_grad=0, device=cpu),
%1 : Float(10, 64, strides=[64, 1], requires_grad=0, device=cpu)):
%3 : int = prim::Constant[value=0]()
%6 : Float(0, 64, strides=[64, 1], requires_grad=0, device=cpu) = aten::tanh(%0)
%7 : Float(10, 64, strides=[64, 1], requires_grad=0, device=cpu) = aten::tanh(%1)
%10 : Tensor[] = prim::ListConstruct(%6, %7)
%11 : Float(10, 64, strides=[64, 1], requires_grad=0, device=cpu) = aten::cat(%10, %3)
return (%11))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
auto a = at::rand({0, 64}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({10, 64}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({at::tanh(a), at::tanh(b)}, 0);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
getCatWoConditionals() = curr_cat_wo_conditionals;
}
TEST_F(Kernel, CatWoConditionals) {
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(5, 3, 2, strides=[6, 2, 1], device=cpu),
%b : Float(5, 7, 2, strides=[14, 2, 1], device=cpu),
%c : Float(5, 9, 2, strides=[18, 2, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(5, 19, 2, strides=[38, 2, 1]) = aten::cat(%inputs, %dim)
return (%r))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK: for
# CHECK: for
# CHECK: aten_cat
# CHECK: for
# CHECK: for
# CHECK: aten_cat
# CHECK: for
# CHECK: for
# CHECK: aten_cat)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto a = at::rand({5, 3, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 7, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto c = at::rand({5, 9, 2}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
std::vector<at::Tensor> inputs = {a, b, c};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
// Check sizes
CHECK_EQ(o.sizes().size(), ref.sizes().size());
CHECK_EQ(o.dtype(), ref.dtype());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
getCatWoConditionals() = old_cat_wo_conditionals;
}
TEST_F(Kernel, OptimizeConditionals) {
bool old_cat_wo_conditionals = getCatWoConditionals();
bool old_opt_conditionals = getOptConditionals();
getCatWoConditionals() = false;
getOptConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(5, 3, strides=[3, 1], device=cpu),
%b : Float(5, 7, strides=[7, 1], device=cpu),
%c : Float(5, 9, strides=[9, 1], device=cpu)):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(5, 19, strides=[19, 1]) = aten::cat(%inputs, %dim)
%t : Float(5, 19, strides=[19, 1]) = aten::relu(%r)
return (%t))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for
# CHECK-NEXT: aten_relu
# CHECK: for
# CHECK-NEXT: aten_relu
# CHECK: for
# CHECK-NEXT: aten_relu
# CHECK-NOT: Allocate
# CHECK-NOT: Free)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto b = at::rand({5, 7}, TensorOptions(kCPU).dtype(at::kFloat));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto c = at::rand({5, 9}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::relu(at::cat({a, b, c}, 1));
std::vector<at::Tensor> inputs = {a, b, c};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
// Check sizes
CHECK_EQ(o.sizes().size(), ref.sizes().size());
CHECK_EQ(o.dtype(), ref.dtype());
size_t num_el = 1;
for (const auto idx : c10::irange(ref.sizes().size())) {
CHECK_EQ(o.sizes()[idx], ref.sizes()[idx]);
num_el *= ref.sizes()[idx];
}
// Check the contents
for (const auto i : c10::irange(num_el)) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
getOptConditionals() = old_opt_conditionals;
getCatWoConditionals() = old_cat_wo_conditionals;
}
namespace {
std::string dtypeConstant(ScalarType scalar_type) {
if (scalar_type == ScalarType::Undefined) {
return "None = prim::Constant()";
} else {
at::jit::TemplateEnv env_dtype;
env_dtype.d("scalar_type", static_cast<int>(scalar_type));
return format("int = prim::Constant[value=${scalar_type}]()", env_dtype);
}
}
at::Tensor iotaTensor(IntArrayRef sizes, const at::TensorOptions& options) {
int64_t numel = std::accumulate(
sizes.begin(),
sizes.end(),
1,
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
std::vector<float> values(numel);
std::iota(values.begin(), values.end(), 0);
auto a = at::tensor(values, options);
return a.reshape(sizes);
}
} // namespace
TEST_F(Kernel, SumAllAxes) {
// Test lowering of sum on all axes.
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
%1 : ${dtype}
%2 : ${out_dtype}(requires_grad=0, device=cpu) = aten::sum(%0, %1)
return (%2))IR";
auto a = iotaTensor({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
for (auto scalar_type : {ScalarType::Undefined, ScalarType::Double}) {
at::jit::TemplateEnv env;
env.s("dtype", dtypeConstant(scalar_type));
if (scalar_type == ScalarType::Undefined) {
env.s("out_dtype", "Float");
} else {
env.s("out_dtype", "Double");
}
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto o = at::empty({}, TensorOptions(kCPU));
c10::optional<c10::ScalarType> dtype;
if (scalar_type != ScalarType::Undefined) {
dtype = static_cast<c10::ScalarType>(scalar_type);
}
auto ref = a.sum(/*dtype=*/dtype);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for
# CHECK-NEXT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
}
std::string li_to_str(at::ArrayRef<int64_t> li) {
std::stringstream out;
bool first = true;
for (auto elem : li) {
if (!first) {
out << ", ";
}
out << elem;
first = false;
}
return out.str();
}
TEST_F(Kernel, SumOneAxis) {
// Test lowering of sum on one axis.
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
%1 : int[] = prim::Constant[value=[${dim}]]()
%2 : bool = prim::Constant[value=${keepdim}]()
%3 : ${dtype}
%4 : ${out_dtype}(${size}, strides=[${strides}], device=cpu) = aten::sum(%0, %1, %2, %3)
return (%4))IR";
auto a = iotaTensor({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
for (int dim = -a.dim(); dim < a.dim(); ++dim) {
for (bool keepdim : {false, true}) {
for (auto scalar_type : {ScalarType::Undefined, ScalarType::Double}) {
at::jit::TemplateEnv env;
env.d("dim", dim);
env.d("keepdim", keepdim);
env.s("dtype", dtypeConstant(scalar_type));
c10::optional<c10::ScalarType> dtype;
if (scalar_type != ScalarType::Undefined) {
dtype = static_cast<c10::ScalarType>(scalar_type);
}
auto ref = a.sum({dim}, /*keepdim=*/keepdim, /*dtype=*/dtype);
if (scalar_type == ScalarType::Undefined) {
env.s("out_dtype", "Float");
} else {
env.s("out_dtype", "Double");
}
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto o = at::empty({}, TensorOptions(kCPU));
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t
# CHECK-NEXT: sum
# CHECK-NEXT: for (int64_t
# CHECK-NEXT: sum)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
}
}
}
TEST_F(Kernel, SumMultipleAxes) {
// Test lowering of sum on multiple axes.
const auto graph_template = R"IR(
graph(%0 : Float(2, 3, 2, 3, strides=[18, 6, 3, 1], requires_grad=0, device=cpu)):
%1 : int = prim::Constant[value=${dim1}]()
%2 : int = prim::Constant[value=${dim2}]()
%3 : int[] = prim::ListConstruct(%1, %2)
%4 : bool = prim::Constant[value=${keepdim}]()
%5 : ${dtype}
%6 : Float(${size}, strides=[${strides}], requires_grad=0, device=cpu) = aten::sum(%0, %3, %4, %5)
return (%6))IR";
auto a = iotaTensor({2, 3, 2, 3}, TensorOptions(kCPU).dtype(at::kFloat));
// Only iterate over positive values of axes to keep the running time
// reasonable, since the number of pairs is quadratic.
for (const auto dim1 : c10::irange(a.dim())) {
for (int dim2 = dim1 + 1; dim2 < a.dim(); ++dim2) {
for (bool keepdim : {false, true}) {
at::jit::TemplateEnv env;
env.d("dim1", dim1);
env.d("dim2", dim2);
env.d("keepdim", keepdim);
env.s("dtype", dtypeConstant(ScalarType::Undefined));
auto o = at::empty({}, TensorOptions(kCPU));
auto ref = a.sum(IntArrayRef{dim1, dim2}, /*keepdim=*/keepdim);
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t
# CHECK: for (int64_t
# CHECK: for (int64_t
# CHECK: for (int64_t
# CHECK: sum)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
ASSERT_EQ(o.sizes(), ref.sizes());
ASSERT_EQ(o.dtype(), ref.dtype());
ASSERT_TRUE(at::allclose(o, ref));
}
}
}
}
// This test and the following ones testing Softmax only tests with dim set
// to one of the valid input dimensions. It does not test with dim=None
// because that is supposed to be deprecated.
TEST_F(Kernel, Softmax2D) {
const auto graph_template = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu)):
%1 : int = prim::Constant[value=${dim}]()
%dt_float : int = prim::Constant[value=7]()
%dt_none : NoneType = prim::Constant()
%4 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %${dt})
return (%4))IR";
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
const std::string& verification_template =
R"IR(
# CHECK: for (int i${other_dim} = 0; i${other_dim} < ${other_dim_size}
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_max
# CHECK: for (int i${other_dim}_1 = 0; i${other_dim}_1 < ${other_dim_size}
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_sum
# CHECK: for (int i0_2 = 0; i0_2 < 5
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 3
# CHECK-NEXT: aten_softmax)IR";
for (bool empty_dtype : {false, true}) {
for (auto log_softmax : {false, true}) {
for (const auto softmax_dim : c10::irange(a.dim())) {
auto softmax_dim_size = a.sizes()[softmax_dim];
auto other_dim = (softmax_dim + 1) % a.dim();
auto ref =
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
at::jit::TemplateEnv env;
env.d("dim", softmax_dim);
env.s("op", log_softmax ? "log_softmax" : "softmax");
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
env.s("dt", empty_dtype ? "dt_none" : "dt_float");
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
at::jit::TemplateEnv ver_env;
ver_env.d("other_dim", other_dim);
ver_env.d("other_dim_size", a.sizes()[other_dim]);
ver_env.d("softmax_dim", softmax_dim);
ver_env.d("softmax_dim_size", softmax_dim_size);
const auto verification_pattern =
format(verification_template, ver_env);
// verication sting temporarily disabled until
// inlining of exp() is benchmarked and determined
// torch::jit::testing::FileCheck().run(verification_pattern,
// oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
ASSERT_EQ(output.sizes(), ref.sizes());
ASSERT_TRUE(at::allclose(output, ref));
}
}
}
}
TEST_F(Kernel, Softmax3D) {
const auto graph_template = R"IR(
graph(%0 : Float(3, 4, 5, strides=[20, 5, 1], device=cpu)):
%1 : int = prim::Constant[value=${dim}]()
%2 : int = prim::Constant[value=7]()
%3 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %2)
return (%3))IR";
auto a = at::rand({3, 4, 5}, TensorOptions(kCPU).dtype(at::kFloat));
const std::string& verification_template =
R"IR(
# CHECK: for (int i${dim1} = 0; i${dim1} < ${dim1_size}
# CHECK-NEXT: for (int i${dim2} = 0; i${dim2} < ${dim2_size}
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_max
# CHECK: for (int i${dim1}_1 = 0; i${dim1}_1 < ${dim1_size}
# CHECK-NEXT: for (int i${dim2}_1 = 0; i${dim2}_1 < ${dim2_size}
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_sum
# CHECK: for (int i0_2 = 0; i0_2 < 3
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 4
# CHECK-NEXT: for (int i2_2 = 0; i2_2 < 5
# CHECK-NEXT: aten_softmax)IR";
for (auto log_softmax : {false, true}) {
for (const auto softmax_dim : c10::irange(a.dim())) {
auto softmax_dim_size = a.sizes()[softmax_dim];
std::vector<int> other_dims;
for (const auto i : c10::irange(a.dim())) {
if (i != softmax_dim) {
other_dims.push_back(i);
}
}
auto ref =
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
at::jit::TemplateEnv env;
env.d("dim", softmax_dim);
env.s("op", log_softmax ? "log_softmax" : "softmax");
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
at::jit::TemplateEnv ver_env;
ver_env.d("dim1", other_dims[0]);
ver_env.d("dim1_size", a.sizes()[other_dims[0]]);
ver_env.d("dim2", other_dims[1]);
ver_env.d("dim2_size", a.sizes()[other_dims[1]]);
ver_env.d("softmax_dim", softmax_dim);
ver_env.d("softmax_dim_size", softmax_dim_size);
const auto verification_pattern = format(verification_template, ver_env);
// verication sting temporarily disabled until
// inlining of exp() is benchmarked and determined
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
ASSERT_EQ(output.sizes(), ref.sizes());
ASSERT_TRUE(at::allclose(output, ref));
}
}
}
TEST_F(Kernel, Softmax4D) {
const auto graph_template = R"IR(
graph(%0 : Float(2, 3, 2, 3, strides=[18, 6, 3, 1], device=cpu)):
%1 : int = prim::Constant[value=${dim}]()
%2 : int = prim::Constant[value=7]()
%3 : Float(${size}, strides=[${strides}]) = aten::${op}(%0, %1, %2)
return (%3))IR";
auto a = at::rand({2, 3, 2, 3}, TensorOptions(kCPU).dtype(at::kFloat));
const std::string& verification_template =
R"IR(
# CHECK: for (int i${dim1} = 0; i${dim1} < ${dim1_size}
# CHECK-NEXT: for (int i${dim2} = 0; i${dim2} < ${dim2_size}
# CHECK-NEXT: for (int i${dim3} = 0; i${dim3} < ${dim3_size}
# CHECK: for (int i${softmax_dim} = 0; i${softmax_dim} < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_max
# CHECK: for (int i${dim1}_1 = 0; i${dim1}_1 < ${dim1_size}
# CHECK-NEXT: for (int i${dim2}_1 = 0; i${dim2}_1 < ${dim2_size}
# CHECK-NEXT: for (int i${dim3}_1 = 0; i${dim3}_1 < ${dim3_size}
# CHECK: for (int i${softmax_dim}_1 = 0; i${softmax_dim}_1 < ${softmax_dim_size}
# CHECK-NEXT: aten_softmax_sum
# CHECK: for (int i0_2 = 0; i0_2 < 2
# CHECK-NEXT: for (int i1_2 = 0; i1_2 < 3
# CHECK-NEXT: for (int i2_2 = 0; i2_2 < 2
# CHECK-NEXT: for (int i3_2 = 0; i3_2 < 3
# CHECK-NEXT: aten_softmax)IR";
for (auto log_softmax : {false, true}) {
for (const auto softmax_dim : c10::irange(a.dim())) {
auto softmax_dim_size = a.sizes()[softmax_dim];
std::vector<int> other_dims;
for (const auto i : c10::irange(a.dim())) {
if (i != softmax_dim) {
other_dims.push_back(i);
}
}
auto ref =
log_softmax ? a.log_softmax(softmax_dim) : a.softmax(softmax_dim);
at::jit::TemplateEnv env;
env.d("dim", softmax_dim);
env.s("op", log_softmax ? "log_softmax" : "softmax");
env.s("size", li_to_str(ref.sizes()));
env.s("strides", li_to_str(ref.strides()));
const auto graph_string = format(graph_template, env);
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
at::jit::TemplateEnv ver_env;
ver_env.d("dim1", other_dims[0]);
ver_env.d("dim1_size", a.sizes()[other_dims[0]]);
ver_env.d("dim2", other_dims[1]);
ver_env.d("dim2_size", a.sizes()[other_dims[1]]);
ver_env.d("dim3", other_dims[2]);
ver_env.d("dim3_size", a.sizes()[other_dims[2]]);
ver_env.d("softmax_dim", softmax_dim);
ver_env.d("softmax_dim_size", softmax_dim_size);
const auto verification_pattern = format(verification_template, ver_env);
// verication sting temporarily disabled until
// inlining of exp() is benchmarked and determined
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
ASSERT_EQ(output.sizes(), ref.sizes());
ASSERT_TRUE(at::allclose(output, ref));
}
}
}
TEST_F(Kernel, SignTest) {
const auto graph_template = R"IR(
graph(%0 : ${dtype}(${size}, strides=[1], device=cpu)):
%2 : ${dtype}(${size}, strides=[1]) = aten::sign(%0)
return (%2))IR";
auto run_test = [](const std::string& graph_string, const at::Tensor& input) {
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::vector<at::Tensor> inputs = {input};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto ref = at::sign(input);
ASSERT_TRUE(at::allclose(o, ref));
};
auto common_options = at::TensorOptions()
.layout(at::kStrided)
.device(at::kCPU)
.requires_grad(false);
int default_input_size = 100;
for (auto scalar_type : {ScalarType::Float, ScalarType::Double}) {
at::Tensor corner_case_inputs;
at::jit::TemplateEnv env;
auto options = common_options;
switch (scalar_type) {
case ScalarType::Float: {
env.s("dtype", "Float");
options = options.dtype(at::kFloat);
std::vector<float> input_float = {
0.0f,
-0.0f,
std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity(),
std::nanf("1"),
-std::nanf("1")};
corner_case_inputs = at::from_blob(
input_float.data(),
{static_cast<long>(input_float.size())},
options);
auto rand_input = at::rand({default_input_size}, options);
auto input = at::cat({rand_input, corner_case_inputs});
env.d("size", at::numel(input));
const auto graph_string = format(graph_template, env);
run_test(graph_string, input);
break;
}
case ScalarType::Double: {
env.s("dtype", "Double");
options = options.dtype(at::kDouble);
std::vector<double> input_double = {
0.0,
-0.0,
std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity(),
std::nan("1"),
-std::nan("1")};
corner_case_inputs = at::from_blob(
input_double.data(),
{static_cast<long>(input_double.size())},
options);
auto rand_input = at::rand({default_input_size}, options);
auto input = at::cat({rand_input, corner_case_inputs});
env.d("size", at::numel(input));
const auto graph_string = format(graph_template, env);
run_test(graph_string, input);
break;
}
default:
throw unsupported_dtype();
}
}
}
TEST_F(Kernel, InlineProducerIntoReduction) {
// Inline producer (mul) into reduction (sum).
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1], device=cpu) = aten::mul(%0, %1)
%3 : int = prim::Constant[value=7]()
%4 : Double(device=cpu) = aten::sum(%2, %3)
return (%4))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced.
// We should have only one loop in the end.
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i_1 = 0ll; i_1 < 5
# CHECK-NEXT: for (int64_t j_1 = 0ll; j_1 < 3
# CHECK-NEXT: sum
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto ref = (a * b).sum(at::kDouble);
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, InlineReductionIntoConsumer) {
// Inline producer (mul %2) into reduction (sum %4) but DO NOT
// inline the reduction into consumer (mul %4).
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[3, 1], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : int = prim::Constant[value=6]()
%4 : Float(device=cpu) = aten::sum(%2, %3)
%5 : Float(5, 3, strides=[3, 1], device=cpu) = aten::mul(%2, %4)
return (%5))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
TensorExprKernel k(graph);
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced.
// We should have two loops in the end.
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i_1 = 0ll; i_1 < 5
# CHECK-NEXT: for (int64_t j_1 = 0ll; j_1 < 3
# CHECK-NEXT: sum
# CHECK: for (int64_t i_2 = 0ll; i_2 < 5
# CHECK-NEXT: for (int64_t j_2 = 0ll; j_2 < 3
# CHECK-NEXT: aten_mul
# CHECK-NOT: for)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto ref = (a * b).sum(at::kFloat) * (a * b);
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, SanitizeNames_CUDA) {
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cuda:0),
%1 : Float(5, 3, strides=[3, 1], device=cuda:0)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%4 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%4))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
graph->inputs().at(0)->setDebugName("aten::add:");
graph->inputs().at(1)->setDebugName("aten::add_");
TensorExprKernel k(graph);
auto a = at::rand({5, 3}, TensorOptions(kCUDA).dtype(at::kFloat));
auto b = at::rand({5, 3}, TensorOptions(kCUDA).dtype(at::kFloat));
auto ref = a * (a * b);
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, SanitizeConstants_CUDA) {
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cuda:0)):
%none : NoneType = prim::Constant()
%size : int = prim::Constant[value=16]()
%sizes : int[] = prim::ListConstruct(%size, %size)
%30 : Device = prim::Constant[value="cuda"]()
%y : Float(16, 16, strides=[16, 1], device=cuda:0) = aten::ones(%sizes, %none, %none, %30, %none)
%z : Float(16, 16, strides=[16, 1], device=cuda:0) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we insert a call to
// aten::ones and then const-prop it
ConstantPropagation(graph);
// We set the name of the constant to include special characters that are
// not allowed. This should be fixed by the sanitizer in TensorExprKernel.
graph->nodes().front()->output()->setDebugName("illegal.name");
// Check if we have a constant node with illegal name in the graph.
auto const_node = graph->nodes().front();
ASSERT_EQ(const_node->kind(), prim::Constant);
ASSERT_NE(const_node->output()->debugName().find('.'), std::string::npos);
TensorExprKernel k(graph);
auto x = at::rand({16, 16}, TensorOptions(kCUDA).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {x};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto y = at::ones({16, 16}, TensorOptions(kCUDA).dtype(at::kFloat));
auto ref = x * y;
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, ConstantTensors) {
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
%none : NoneType = prim::Constant()
%size : int = prim::Constant[value=16]()
%sizes : int[] = prim::ListConstruct(%size, %size)
%y : Float(16, 16, strides=[16, 1], device=cpu) = aten::ones(%sizes, %none, %none, %none, %none)
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we insert a call to
// aten::ones and then const-prop it
ConstantPropagation(graph);
TensorExprKernel k(graph);
auto x = at::rand({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {x};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto y = at::ones({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = x * y;
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, ConstantTensorsNonContiguous) {
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
%none : NoneType = prim::Constant()
%dtype : int = prim::Constant[value=6]()
%c0 : int = prim::Constant[value=0]()
%c256 : int = prim::Constant[value=256]()
%c16 : int = prim::Constant[value=16]()
%y_flat : Tensor = aten::arange(%c0, %c256, %dtype, %none, %none, %none)
%sizes : int[] = prim::ListConstruct(%c16, %c16)
%y_t : Tensor = aten::view(%y_flat, %sizes)
%y : Tensor = aten::t(%y_t)
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we generate several aten
// calls to produce non-contiguos constant tensor and then const-prop it
ConstantPropagation(graph);
TensorExprKernel k(graph);
auto x = at::rand({16, 16}, TensorOptions(kCPU).dtype(at::kFloat));
std::vector<at::Tensor> inputs = {x};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto o = stack[0].toTensor();
auto y = at::arange(0, 256, TensorOptions(kCPU).dtype(at::kFloat))
.view({16, 16})
.t();
auto ref = x * y;
ASSERT_TRUE(at::allclose(o, ref));
}
TEST_F(Kernel, RunFast) {
#ifdef TORCH_ENABLE_LLVM
// TODO: Implement call_raw in IREval and remove the ifdef
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
k.runFast({a.data_ptr(), b.data_ptr()}, {o.data_ptr()});
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
TEST_F(Kernel, RunWithAllocatedOutputs) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%0 : Float(5, 3, strides=[3, 1], device=cpu),
%1 : Float(5, 3, strides=[1, 5], device=cpu)):
%2 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(5, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
auto o = at::zeros({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> args = {o, a, b};
std::vector<IValue> stack = fmap<IValue>(args);
k.runWithAllocatedOutputs(stack);
for (size_t i = 0; i < 5 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
TEST_F(Kernel, CodegenInspection) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%x : Float(16, 16, strides=[16, 1], device=cpu)):
%none : NoneType = prim::Constant()
%dtype : int = prim::Constant[value=6]()
%c0 : int = prim::Constant[value=0]()
%c256 : int = prim::Constant[value=256]()
%c16 : int = prim::Constant[value=16]()
%y_flat : Tensor = aten::arange(%c0, %c256, %dtype, %none, %none, %none)
%sizes : int[] = prim::ListConstruct(%c16, %c16)
%y_t : Tensor = aten::view(%y_flat, %sizes)
%y : Tensor = aten::t(%y_t)
%z : Float(16, 16, strides=[16, 1], device=cpu) = aten::mul(%x, %y)
return (%z))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
// IRParser doesn't support tensor constants, so we generate several aten
// calls to produce non-contiguos constant tensor and then const-prop it
ConstantPropagation(graph);
TensorExprKernel k(graph);
// Check that we could retrieve generated assembly
auto asm_str = k.getCodeText("asm");
const std::string& asm_verification_pattern =
R"ASM(
# CHECK: .text
# CHECK: retq)ASM";
torch::jit::testing::FileCheck().run(asm_verification_pattern, asm_str);
// Check that we could retrieve info about codegen parameters
auto constants = k.getConstantDescriptors();
auto buf_args = k.getBufferArgs();
// Expected buf args: [input0, output0, constant0]
ASSERT_EQ(buf_args.size(), 3);
ASSERT_EQ(constants.size(), 1);
ASSERT_TRUE(
!buf_args[0].isVar() && !buf_args[1].isVar() && !buf_args[2].isVar());
#endif
}
Tensor lowerNanToNum(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
auto input_buf = c10::get<BufHandle>(inputs[0]);
auto e = Compute(
"custom_nan_to_num",
outputShape,
outputStrides,
[&](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
auto load = input_buf.load(indices);
return IfThenElse::make(Cast::make(kBool, isnan(load)), 0.0f, load);
});
return e;
}
TEST_F(Kernel, CustomLowering) {
const auto graph_string = R"IR(
graph(%x : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu)):
%none : NoneType = prim::Constant()
%y : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu) = aten::nan_to_num(%x, %none, %none, %none)
return (%y)
)IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
std::unordered_map<c10::Symbol, NNCLoweringFunction> lowerings = {
{aten::nan_to_num, lowerNanToNum}};
TensorExprKernel k(graph, lowerings);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// Check that our custom lowering is actually used
torch::jit::testing::FileCheck().check("custom_nan_to_num")->run(oss.str());
torch::jit::testing::FileCheck().check("isnan")->run(oss.str());
}
TEST_F(Kernel, Vectorize) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%0 : Float(100, 16, strides=[16, 1], device=cpu),
%1 : Float(100, 16, strides=[16, 1], device=cpu)):
%2 : Float(100, 16, strides=[16, 1]) = aten::mul(%0, %1)
%3 : Float(100, 16, strides=[16, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({100, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({100, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({100, 16}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern = R"IR(# CHECK: Ramp)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 100 * 16; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
// TODO: To vectorize loopnest for 100x3 case, we need to flatten loops first.
TEST_F(Kernel, DISABLED_FlattenVectorize) {
#ifdef TORCH_ENABLE_LLVM
const auto graph_string = R"IR(
graph(%0 : Float(100, 3, strides=[3, 1], device=cpu),
%1 : Float(100, 3, strides=[3, 1], device=cpu)):
%2 : Float(100, 3, strides=[3, 1]) = aten::mul(%0, %1)
%3 : Float(100, 3, strides=[3, 1]) = aten::mul(%0, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto a = at::rand({100, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({100, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto o = at::zeros({100, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto ref = a * (a * b);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {a, b};
StmtPtr s = k.getCodeGenStmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern = R"IR(# CHECK: Ramp)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
o = stack[0].toTensor();
for (size_t i = 0; i < 100 * 3; i++) {
CHECK_EQ(((float*)o.data_ptr())[i], ((float*)ref.data_ptr())[i]);
}
#endif
}
TEST_F(Kernel, Strided1dWithinBounds) {
auto ir = R"IR(
graph(%0 : Float(3, strides=[1], device=cpu),
%1 : Float(3, strides=[2], device=cpu)):
%2 : int = prim::Constant[value=1]()
%3 : Float(3, strides=[1]) = aten::add(%0, %1, %2)
return (%3))IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(ir, graph.get(), vmap);
TensorExprKernel k(graph);
auto a = at::rand({3}, TensorOptions(kCPU).dtype(at::kFloat));
auto b = at::rand({6}, TensorOptions(kCPU).dtype(at::kFloat))
.index({Slice(None, None, 2)});
auto expect = a + b;
std::vector<at::Tensor> inputs = {a, b};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
auto output = stack[0].toTensor();
for (size_t i = 0; i < 3; ++i) {
CHECK_EQ(((float*)output.data_ptr())[i], ((float*)expect.data_ptr())[i]);
}
}
TEST_F(Kernel, InputAsOutput) {
const auto graph_string = R"IR(
graph(%x : Float(5, 3, strides=[3, 1], device=cpu),
%y : Float(5, 3, strides=[1, 5], device=cpu)):
return (%x, %y))IR";
auto graph = std::make_shared<Graph>();
parseIR(graph_string, &*graph);
auto x = at::rand({5, 3}, TensorOptions(kCPU).dtype(at::kFloat));
auto y =
at::rand({3, 5}, TensorOptions(kCPU).dtype(at::kFloat)).transpose(0, 1);
TensorExprKernel k(graph);
std::vector<at::Tensor> inputs = {x, y};
std::vector<IValue> stack = fmap<IValue>(inputs);
k.run(stack);
CHECK(at::allclose(x, stack[0].toTensor()));
CHECK(at::allclose(y, stack[1].toTensor()));
}
TEST_F(Kernel, ScalarOut) {
auto ir = R"IR(
graph(%x : int, %y : int):
%z : int = aten::mul(%x, %y)
%r : int = aten::mul(%z, %x)
return (%r, %z))IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(ir, graph.get(), vmap);
TensorExprKernel k(graph);
auto stmt = k.getCodeGenStmt();
std::ostringstream oss;
oss << *stmt;
// Verify the generated IR. We expect to see a scalar variable (Let) followed
// by a store to a 0-dim buffer.
const std::string& verification_pattern = R"IR(
# CHECK: int64_t
# CHECK-NEXT: [0ll] =
# CHECK-NEXT: int64_t
# CHECK-NEXT: [0ll] =
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
int64_t x = 2, y = 3, r = 0, z = 0;
// Verify that TEK::runFast works correctly with scalar outputs
std::vector<void*> inputs = {&x, &y};
std::vector<void*> outputs = {&r, &z};
k.runFast(inputs, outputs);
CHECK_EQ(z, x * y);
CHECK_EQ(r, z * x);
// Verify that TEK::run works correctly with scalar outputs
std::vector<IValue> stack = {x, y};
k.run(stack);
CHECK_EQ(stack[0], x * y * x);
CHECK_EQ(stack[1], x * y);
}
TEST_F(Kernel, ScalarTensorOut) {
auto ir = R"IR(
graph(%x : int,
%xt : Long(3, strides=[1], device=cpu),
%y : int,
%yt : Long(3, strides=[1], device=cpu)):
%z : int = aten::mul(%x, %y)
%r : int = aten::mul(%z, %x)
%zt : Long(3, strides=[1], device=cpu) = aten::mul(%xt, %y)
%rt : Long(3, strides=[1], device=cpu) = aten::mul(%zt, %xt)
return (%r, %rt, %z, %zt))IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(ir, graph.get(), vmap);
TensorExprKernel k(graph);
int64_t x = 2, y = 3, r = 0, z = 0;
auto xt = at::ones({3}, TensorOptions(kCPU).dtype(at::kLong)) * 2;
auto yt = at::ones({3}, TensorOptions(kCPU).dtype(at::kLong)) * 3;
auto zt = at::zeros({3}, TensorOptions(kCPU).dtype(at::kLong));
auto rt = at::zeros({3}, TensorOptions(kCPU).dtype(at::kLong));
// Verify that TEK::runFast works correctly with mixed scalar and tensor
// inputs/utputs
std::vector<void*> inputs = {&x, xt.data_ptr(), &y, yt.data_ptr()};
std::vector<void*> outputs = {&r, rt.data_ptr(), &z, zt.data_ptr()};
k.runFast(inputs, outputs);
CHECK_EQ(z, x * y);
CHECK_EQ(r, z * x);
ASSERT_TRUE(at::equal(zt, xt * yt));
ASSERT_TRUE(at::equal(rt, zt * xt));
// Verify that TEK::run works correctly with mixed scalar and tensor
// inputs/utputs
std::vector<IValue> stack = {x, xt, y, yt};
k.run(stack);
CHECK_EQ(stack[0], x * y * x);
ASSERT_TRUE(at::equal(stack[1].toTensor(), xt * yt * xt));
CHECK_EQ(stack[2], x * y);
ASSERT_TRUE(at::equal(stack[3].toTensor(), xt * yt));
}
TEST_F(Kernel, FuseLoopsWithVariableBounds) {
#ifdef TORCH_ENABLE_LLVM
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(SS(-2), 3, SS(-3), requires_grad=0, device=cpu),
%b : Float(SS(-2), 7, SS(-3), requires_grad=0, device=cpu),
%c : Float(SS(-2), 9, SS(-3), requires_grad=0, device=cpu),
%SS_2 : int,
%SS_3 : int):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(SS(-2), 19, SS(-3), requires_grad=0, device=cpu) = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
std::shared_ptr<Graph> graph = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, graph.get());
std::vector<int64_t> symbolic_shape_inputs = {-2, -3};
std::vector<torch::jit::StrideInput> input_desc = {
torch::jit::StrideInput::TENSOR_CONT};
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>>
symbolic_strides;
symbolic_strides[graph->inputs().at(0)] = input_desc;
symbolic_strides[graph->inputs().at(1)] = input_desc;
symbolic_strides[graph->inputs().at(2)] = input_desc;
symbolic_strides[graph->outputs().at(0)] = input_desc;
TensorExprKernel kernel(
graph, {}, symbolic_shape_inputs, false, symbolic_strides);
std::ostringstream oss;
oss << *kernel.getCodeGenStmt();
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i
# CHECK-NEXT: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK-NOT: for (int64_t i
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto run_kernel = [&](int dim1, int dim2) {
auto a =
at::rand({dim1, 3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({dim1, 7, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto c =
at::rand({dim1, 9, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
std::vector<IValue> stack =
fmap<IValue>(std::vector<at::Tensor>({a, b, c}));
stack.emplace_back(dim1);
stack.emplace_back(dim2);
kernel.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
};
run_kernel(10, 20);
getCatWoConditionals() = old_cat_wo_conditionals;
#endif
}
TEST_F(Kernel, FuseLoopsWithVariableConcatDim) {
#ifdef TORCH_ENABLE_LLVM
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%b : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%c : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%SS_2 : int,
%SS_3 : int,
%SS_4 : int,
%SS_5 : int):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b, %c)
%r : Float(SS(-2), SS(-5), SS(-3), requires_grad=0, device=cpu) = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
std::shared_ptr<Graph> graph = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, graph.get());
std::vector<int64_t> symbolic_shape_inputs = {-2, -3, -4, -5};
std::vector<torch::jit::StrideInput> input_desc = {
torch::jit::StrideInput::TENSOR_CONT};
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>>
symbolic_strides;
symbolic_strides[graph->inputs().at(0)] = input_desc;
symbolic_strides[graph->inputs().at(1)] = input_desc;
symbolic_strides[graph->inputs().at(2)] = input_desc;
symbolic_strides[graph->outputs().at(0)] = input_desc;
TensorExprKernel kernel(
graph, {}, symbolic_shape_inputs, false, symbolic_strides);
std::ostringstream oss;
oss << *kernel.getCodeGenStmt();
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i
# CHECK-NEXT: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK-NOT: for (int64_t i
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto run_kernel = [&](int dim1, int dim2, int dim3) {
auto a =
at::rand({dim1, dim3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({dim1, dim3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto c =
at::rand({dim1, dim3, dim2}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b, c}, 1);
std::vector<IValue> stack =
fmap<IValue>(std::vector<at::Tensor>({a, b, c}));
stack.emplace_back(dim1);
stack.emplace_back(dim2);
stack.emplace_back(dim3);
stack.emplace_back(3 * dim3);
kernel.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
};
run_kernel(10, 20, 15);
getCatWoConditionals() = old_cat_wo_conditionals;
#endif
}
TEST_F(Kernel, DoNotFuseLoopsWithMismatchingVariableDims) {
#ifdef TORCH_ENABLE_LLVM
bool old_cat_wo_conditionals = getCatWoConditionals();
getCatWoConditionals() = true;
const auto graph_string = R"IR(
graph(%a : Float(SS(-2), SS(-4), SS(-3), requires_grad=0, device=cpu),
%b : Float(SS(-2), SS(-5), SS(-3), requires_grad=0, device=cpu),
%SS_2 : int,
%SS_3 : int,
%SS_4 : int,
%SS_5 : int,
%SS_6 : int):
%dim : int = prim::Constant[value=1]()
%inputs : Tensor[] = prim::ListConstruct(%a, %b)
%r : Float(SS(-2), SS(-6), SS(-3), requires_grad=0, device=cpu) = aten::cat(%inputs, %dim) # new size: [5,19,2]
return (%r))IR";
std::shared_ptr<Graph> graph = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, graph.get());
std::vector<int64_t> symbolic_shape_inputs = {-2, -3, -4, -5, -6};
std::vector<torch::jit::StrideInput> input_desc = {
torch::jit::StrideInput::TENSOR_CONT};
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>>
symbolic_strides;
symbolic_strides[graph->inputs().at(0)] = input_desc;
symbolic_strides[graph->inputs().at(1)] = input_desc;
symbolic_strides[graph->outputs().at(0)] = input_desc;
TensorExprKernel kernel(
graph, {}, symbolic_shape_inputs, false, symbolic_strides);
std::ostringstream oss;
oss << *kernel.getCodeGenStmt();
const std::string& verification_pattern =
R"IR(
# CHECK: for (int64_t i
# CHECK-NEXT: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK: for (int64_t j
# CHECK-NEXT: for (int64_t k
# CHECK-NOT: for (int64_t j
# CHECK-NOT: for (int64_t i
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
auto run_kernel = [&](int dim2, int dim3, int dim4, int dim5) {
auto a =
at::rand({dim2, dim4, dim3}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto b =
at::rand({dim2, dim5, dim3}, at::TensorOptions(kCPU).dtype(at::kFloat));
auto ref = at::cat({a, b}, 1);
std::vector<IValue> stack = fmap<IValue>(std::vector<at::Tensor>({a, b}));
stack.emplace_back(dim2);
stack.emplace_back(dim3);
stack.emplace_back(dim4);
stack.emplace_back(dim5);
stack.emplace_back(dim4 + dim5);
kernel.run(stack);
auto o = stack[0].toTensor();
ASSERT_TRUE(at::allclose(o, ref));
};
run_kernel(10, 20, 15, 8);
getCatWoConditionals() = old_cat_wo_conditionals;
#endif
}
} // namespace jit
} // namespace torch