| #include "caffe2/core/common_gpu.h" |
| #ifdef CAFFE_HAS_CUDA_FP16 |
| |
| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/relu_op.h" |
| |
| namespace caffe2 { |
| namespace { |
| __global__ void ReluKernelHalf(const int N, const half* X, half* Y) { |
| const half kZero = __float2half(0.0); |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| #if __CUDA_ARCH__ >= 530 |
| Y[i] = __hgt(X[i], kZero) ? X[i] : kZero; |
| #else |
| Y[i] = (__half2float(X[i]) > 0) ? X[i] : kZero; |
| #endif |
| } |
| } |
| |
| __global__ void ReluKernelHalf2(const int N, const half2* X, half2* Y) { |
| const half2 kZero = __float2half2_rn(0.0); |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| #if __CUDA_ARCH__ >= 530 |
| Y[i] = __hmul2(__hgt2(X[i], kZero), X[i]); |
| #else |
| float2 xx = __half22float2(X[i]); |
| Y[i] = __floats2half2_rn(xx.x > 0 ? xx.x : 0.f, |
| xx.y > 0 ? xx.y : 0.f); |
| #endif |
| } |
| } |
| |
| __global__ void ReluGradientKernelHalf( |
| const int N, const half* Y, const half* dY, half* dX) { |
| const half kZero = __float2half(0.0); |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| #if __CUDA_ARCH__ >= 530 |
| dX[i] = __hgt(Y[i], kZero) ? dY[i] : kZero; |
| #else |
| dX[i] = (__half2float(Y[i]) > 0) ? dY[i] : kZero; |
| #endif |
| } |
| } |
| } // namespace |
| |
| template <> |
| bool ReluOp<float16, CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); |
| auto* Y = Output(0); |
| CAFFE_ENFORCE_GT(X.size(), 0); |
| Y->ResizeLike(X); |
| if (X.size() % 2 == 0) { |
| ReluKernelHalf2<<<CAFFE_GET_BLOCKS(X.size() / 2), CAFFE_CUDA_NUM_THREADS, |
| 0, context_.cuda_stream()>>>( |
| X.size() / 2, reinterpret_cast<const half2*>(X.data<float16>()), |
| reinterpret_cast<half2*>(Y->mutable_data<float16>())); |
| return true; |
| } else { |
| ReluKernelHalf<<<CAFFE_GET_BLOCKS(X.size()), CAFFE_CUDA_NUM_THREADS, |
| 0, context_.cuda_stream()>>>( |
| X.size(), reinterpret_cast<const half*>(X.data<float16>()), |
| reinterpret_cast<half*>(Y->mutable_data<float16>())); |
| return true; |
| } |
| } |
| |
| template <> |
| bool ReluGradientOp<float16, CUDAContext>::RunOnDevice() { |
| auto& Y = Input(0); |
| auto& dY = Input(1); |
| auto* dX = Output(0); |
| CAFFE_ENFORCE_GT(Y.size(), 0); |
| CAFFE_ENFORCE_EQ(dY.size(), Y.size()); |
| dX->ResizeLike(Y); |
| ReluGradientKernelHalf<<<CAFFE_GET_BLOCKS(Y.size()), CAFFE_CUDA_NUM_THREADS, |
| 0, context_.cuda_stream()>>>( |
| Y.size(), reinterpret_cast<const half*>(Y.data<float16>()), |
| reinterpret_cast<const half*>(dY.data<float16>()), |
| reinterpret_cast<half*>(dX->mutable_data<float16>())); |
| return true; |
| } |
| |
| OPERATOR_SCHEMA(ReluFp16); |
| OPERATOR_SCHEMA(ReluFp16Gradient); |
| |
| REGISTER_CUDA_OPERATOR(ReluFp16, ReluOp<float16, CUDAContext>); |
| REGISTER_CUDA_OPERATOR(ReluFp16Gradient, ReluGradientOp<float16, CUDAContext>); |
| } // namespace caffe2 |
| |
| #endif // CAFFE_HAS_CUDA_FP16 |