blob: 059c5bb68b9d7e9ab7f9c49a0af6c493402bdf7f [file] [log] [blame]
# Owner(s): ["oncall: quantization"]
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.ao.nn.intrinsic.quantized as nniq
import torch.ao.nn.quantized as nnq
from torch.ao.quantization import default_qconfig
from torch.ao.quantization.observer import MinMaxObserver, PerChannelMinMaxObserver
from torch.ao.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx._equalize import (
_InputEqualizationObserver,
_WeightEqualizationObserver,
calculate_equalization_scale,
default_equalization_qconfig,
_convert_equalization_ref,
get_layer_sqnr_dict,
get_equalization_qconfig_dict,
)
from torch.testing._internal.common_quantization import (
NodeSpec as ns,
QuantizationTestCase,
SingleLayerLinearModel,
TwoLayerLinearModel,
LinearAddModel,
SingleLayerFunctionalLinearModel,
TwoLayerFunctionalLinearModel,
FunctionalLinearAddModel,
ConvModel,
TwoLayerConvModel,
SingleLayerFunctionalConvModel,
TwoLayerFunctionalConvModel,
skipIfNoFBGEMM,
LinearReluModel,
LinearReluLinearModel,
LinearReluAddModel,
FunctionalLinearReluModel,
FunctionalLinearReluLinearModel,
ConvReluModel,
ConvReluConvModel,
ConvReluAddModel,
FunctionalConvReluModel,
FunctionalConvReluConvModel,
)
# Standard Libraries
import copy
import numpy as np
# Testing utils
from hypothesis import given
from hypothesis import strategies as st
default_qconfig_dict = {"": default_qconfig}
specific_qconfig_dict = {
"": None,
"object_type": [(nn.Linear, default_qconfig),
(F.linear, default_qconfig),
(nn.ReLU, default_qconfig),
(F.relu, default_qconfig),
(nn.Conv2d, default_qconfig),
(F.conv2d, default_qconfig)]
}
default_equalization_qconfig_dict = {
"": None,
"object_type": [(nn.Linear, default_equalization_qconfig),
(F.linear, default_equalization_qconfig),
(nn.ReLU, default_equalization_qconfig),
(F.relu, default_equalization_qconfig),
(nn.Conv2d, default_equalization_qconfig),
(F.conv2d, default_equalization_qconfig)]
}
class TestEqualizeFx(QuantizationTestCase):
def channel_minmax(self, input, axis=1):
''' Finds the min/max of inputs associated with a specific channel
'''
size_of_tensor_dim = input.ndim
axis_list = list(range(size_of_tensor_dim))
axis_list.remove(axis)
axis_list.sort(reverse=True)
mins = input.copy()
maxs = input.copy()
for a in axis_list:
mins = mins.min(a)
maxs = maxs.max(a)
return (mins, maxs)
@given(ndim=st.sampled_from((2, 3, 4, 5)),
input_qdtype=st.sampled_from((torch.qint8, torch.quint8)),
input_qscheme=st.sampled_from((torch.per_tensor_affine, torch.per_tensor_symmetric)),
weight_qdtype=st.sampled_from((torch.qint8, torch.quint8)),
weight_qscheme=st.sampled_from((torch.per_channel_affine, torch.per_channel_symmetric,
torch.per_channel_affine_float_qparams)))
def test_input_weight_eq_observer(self, ndim, input_qdtype, input_qscheme, weight_qdtype, weight_qscheme):
sizes = []
for _ in range((ndim - 1) * 2):
sizes.append(np.random.randint(2, 10))
channel = np.random.randint(1, 10)
if ndim == 2:
x = np.random.random(size=(sizes[0], channel))
w = np.random.random(size=(sizes[1], channel))
elif ndim == 3:
x = np.random.random(size=(sizes[0], channel, sizes[1]))
w = np.random.random(size=(sizes[2], channel, sizes[3]))
elif ndim == 4:
x = np.random.random(size=(sizes[0], channel, sizes[1], sizes[2]))
w = np.random.random(size=(sizes[3], channel, sizes[4], sizes[5]))
elif ndim == 5:
x = np.random.random(size=(sizes[0], channel, sizes[1], sizes[2], sizes[3]))
w = np.random.random(size=(sizes[4], channel, sizes[5], sizes[6], sizes[7]))
x = (x * 10).round(decimals=2).astype(np.float32)
w = (w * 10).round(decimals=2).astype(np.float32)
input_eq_obs = _InputEqualizationObserver(dtype=input_qdtype, qscheme=input_qscheme)
weight_eq_obs = _WeightEqualizationObserver(dtype=weight_qdtype, qscheme=weight_qscheme)
ret_x = input_eq_obs(torch.tensor(x))
ret_w = weight_eq_obs(torch.tensor(w))
self.assertEqual((ret_x, ret_w), (x, w))
# Check the min/max input columns are correct
ref_min_inputs, ref_max_inputs = self.channel_minmax(x)
min_inputs, max_inputs = input_eq_obs.get_input_minmax()
self.assertEqual(min_inputs, torch.tensor(ref_min_inputs, dtype=torch.float32))
self.assertEqual(max_inputs, torch.tensor(ref_max_inputs, dtype=torch.float32))
# Check the min/max weight columns are correct
ref_min_weights_col, ref_max_weights_col = self.channel_minmax(w)
min_weights_col, max_weights_col = weight_eq_obs.get_weight_col_minmax()
self.assertEqual(min_weights_col, torch.tensor(ref_min_weights_col, dtype=torch.float32))
self.assertEqual(max_weights_col, torch.tensor(ref_max_weights_col, dtype=torch.float32))
# Check the equalization scale is correct
equalization_scale = calculate_equalization_scale(input_eq_obs, weight_eq_obs)
ref_equalization_scale = np.sqrt((ref_max_weights_col - ref_min_weights_col) /
(ref_max_inputs - ref_min_inputs))
self.assertEqual(equalization_scale, torch.tensor(ref_equalization_scale, dtype=torch.float32))
input_eq_obs.set_equalization_scale(equalization_scale)
weight_eq_obs.set_equalization_scale(equalization_scale)
# Check the input scale/zero-point values
min_input_scaled, max_input_scaled = input_eq_obs.calculate_scaled_minmax()
input_quant_obs = MinMaxObserver(dtype=input_qdtype, qscheme=input_qscheme)
input_quant_obs.min_val = min_input_scaled
input_quant_obs.max_val = max_input_scaled
input_qparams = input_quant_obs.calculate_qparams()
ref_min_input_scaled = np.min(ref_min_inputs * ref_equalization_scale)
ref_min_input_scaled = min(0, ref_min_input_scaled)
ref_max_input_scaled = np.max(ref_max_inputs * ref_equalization_scale)
ref_max_input_scaled = max(0, ref_max_input_scaled)
if input_qscheme == torch.per_tensor_symmetric:
ref_scale = 2 * max(abs(ref_min_input_scaled), ref_max_input_scaled) / 255
ref_zero_point = 0 if input_qdtype is torch.qint8 else 128
else:
ref_scale = (ref_max_input_scaled - ref_min_input_scaled) / 255
quant_min = -128 if input_qdtype is torch.qint8 else 0
quant_max = 127 if input_qdtype is torch.qint8 else 255
ref_zero_point = quant_min - np.round(ref_min_input_scaled / ref_scale)
np.clip(ref_zero_point, quant_min, quant_max)
self.assertEqual(input_qparams[0].item(), ref_scale, atol=1e-5, rtol=0)
self.assertEqual(input_qparams[1].item(), ref_zero_point)
# During input-weight equalization, we will scale the weights so that
# the following weight quantized observer will have the correct scaled qparams
# Check the weight scale/zero-point values of the quantized observer
weight_quant_obs = PerChannelMinMaxObserver(ch_axis=1, dtype=weight_qdtype, qscheme=weight_qscheme)
# Scale the weights for input-weight equalization
new_shape = [1] * w.ndim
new_shape[1] = w.shape[1]
ref_w_scaled = w * np.reciprocal(ref_equalization_scale.reshape(tuple(new_shape)))
w = torch.tensor(w)
new_shape[1] = w.size(1)
w_scaled = torch.mul(w, torch.reciprocal(equalization_scale.view(new_shape)))
self.assertEqual(w_scaled, ref_w_scaled)
# Call forward on the weight quantization observer
weight_quant_obs(w_scaled)
# Check the min/max weight rows are correct
ref_min_weights_scaled, ref_max_weights_scaled = self.channel_minmax(ref_w_scaled)
self.assertEqual(weight_quant_obs.min_val, torch.tensor(ref_min_weights_scaled, dtype=torch.float32))
self.assertEqual(weight_quant_obs.max_val, torch.tensor(ref_max_weights_scaled, dtype=torch.float32))
weight_qparams = weight_quant_obs.calculate_qparams()
if weight_qscheme == torch.per_channel_symmetric:
ref_min_weights_scaled = np.minimum(np.zeros(ref_min_weights_scaled.shape), ref_min_weights_scaled)
ref_max_weights_scaled = np.maximum(np.zeros(ref_max_weights_scaled.shape), ref_max_weights_scaled)
ref_scales = 2 * np.maximum(np.abs(ref_min_weights_scaled), ref_max_weights_scaled) / 255
ref_zero_points = np.zeros_like(
ref_scales) if weight_qdtype is torch.qint8 else np.ones_like(ref_scales) * 128
elif weight_qscheme == torch.per_channel_affine_float_qparams:
ref_scales = (ref_max_weights_scaled - ref_min_weights_scaled) / 255
ref_scales = np.where(ref_scales > 1e-7, ref_scales, np.ones_like(ref_scales))
ref_zero_points = -1 * ref_min_weights_scaled / ref_scales
else:
ref_min_weights_scaled = np.minimum(np.zeros_like(ref_min_weights_scaled), ref_min_weights_scaled)
ref_max_weights_scaled = np.maximum(np.zeros_like(ref_max_weights_scaled), ref_max_weights_scaled)
ref_scales = (ref_max_weights_scaled - ref_min_weights_scaled) / 255
ref_zero_points = -128 if weight_qdtype is torch.qint8 else 0
ref_zero_points = ref_zero_points - np.round(ref_min_weights_scaled / ref_scales)
self.assertEqual(weight_qparams[0], torch.tensor(
ref_scales, dtype=weight_qparams[0].dtype), rtol=1e-5, atol=0.0001)
self.assertEqual(weight_qparams[1], torch.tensor(
ref_zero_points, dtype=weight_qparams[1].dtype), rtol=1e-5, atol=1)
def test_input_weight_equalization_prepare(self):
""" Tests that graphs created after prepare_fx is as expected
"""
single_nn_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 1,
ns.call_module(MinMaxObserver): 2,
}
two_nn_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 2,
ns.call_module(MinMaxObserver): 3,
}
single_F_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 1,
ns.call_module(_WeightEqualizationObserver): 1,
ns.call_module(MinMaxObserver): 3,
}
two_F_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 2,
ns.call_module(_WeightEqualizationObserver): 2,
ns.call_module(MinMaxObserver): 5,
}
fp_F_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 2,
ns.call_module(_WeightEqualizationObserver): 2,
ns.call_module(MinMaxObserver): 6,
}
tests = [(SingleLayerLinearModel, single_nn_layer_node_occurrence),
(TwoLayerLinearModel, two_nn_layer_node_occurrence),
(TwoLayerFunctionalLinearModel, two_F_layer_node_occurrence),
(FunctionalLinearAddModel, fp_F_layer_node_occurrence),
(LinearReluModel, single_nn_layer_node_occurrence),
(LinearReluLinearModel, two_nn_layer_node_occurrence),
(FunctionalLinearReluModel, single_F_layer_node_occurrence),
(FunctionalLinearReluLinearModel, two_F_layer_node_occurrence),
(ConvModel, single_nn_layer_node_occurrence),
(TwoLayerConvModel, two_nn_layer_node_occurrence),
(TwoLayerFunctionalConvModel, two_F_layer_node_occurrence),
(ConvReluModel, single_nn_layer_node_occurrence),
(ConvReluConvModel, two_nn_layer_node_occurrence),
(FunctionalConvReluModel, single_F_layer_node_occurrence),
(FunctionalConvReluConvModel, two_F_layer_node_occurrence)]
for (M, node_occurrence) in tests:
m = M().eval()
example_inputs = m.get_example_inputs()
prepared = prepare_fx(
m,
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
self.checkGraphModuleNodes(prepared, expected_node_occurrence=node_occurrence)
def test_input_weight_equalization_branching(self):
""" Tests that graphs containing branches are prepared correctly.
Specifically, equalization observers should not be inserted in front of
branches in which both initial layers in the branches plan to be
quantized.
"""
# Tests that we do not add an equalization observer due to both initial
# nodes in the branch containing layers that need to be equalized.
# Note that this should print out 2 warning messages for not being able
# to equalize layers linear1 and linear1 because it is part of a branch
class TestBranchingWithoutEqualizationModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = nn.Linear(5, 5)
self.linear2 = nn.Linear(5, 5)
def forward(self, x):
y = self.linear1(x)
z = self.linear2(x)
return torch.add(y, z)
no_eq_branching_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 0,
ns.call_module(MinMaxObserver): 3,
}
m = TestBranchingWithoutEqualizationModel().eval()
example_inputs = (torch.rand(1, 5),)
prepared = prepare_fx(
m, specific_qconfig_dict, example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
self.checkGraphModuleNodes(prepared, expected_node_occurrence=no_eq_branching_node_occurrence)
# Tests that we will add an equalization observer because there is only
# one initial node in the branch that needs to be equalized
class TestBranchingWithEqualizationModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = nn.Linear(5, 5)
def forward(self, x):
y = self.linear1(x)
z = torch.add(x, 5)
return torch.add(y, z)
eq_branching_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 1,
ns.call_module(MinMaxObserver): 2,
}
m = TestBranchingWithEqualizationModel().eval()
example_inputs = (torch.randn(1, 5),)
prepared = prepare_fx(
m, specific_qconfig_dict, example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
self.checkGraphModuleNodes(prepared, expected_node_occurrence=eq_branching_node_occurrence)
@skipIfNoFBGEMM
def test_input_weight_equalization_convert(self):
""" Tests that the modified model for equalization (before quantization)
returns the same output as the original model
"""
tests = [(SingleLayerLinearModel, 2), (LinearAddModel, 2), (TwoLayerLinearModel, 2),
(SingleLayerFunctionalLinearModel, 2), (FunctionalLinearAddModel, 2),
(TwoLayerFunctionalLinearModel, 2),
(LinearReluModel, 2), (LinearReluLinearModel, 2), (LinearReluAddModel, 2),
(FunctionalLinearReluModel, 2), (FunctionalLinearReluLinearModel, 2),
(ConvModel, 4), (TwoLayerConvModel, 4), (SingleLayerFunctionalConvModel, 4),
(TwoLayerFunctionalConvModel, 4),
(ConvReluModel, 4), (ConvReluConvModel, 4), (ConvReluAddModel, 4),
(FunctionalConvReluModel, 4), (FunctionalConvReluConvModel, 4)]
for (M, ndim) in tests:
m = M().eval()
if ndim == 2:
x = torch.rand((5, 5))
elif ndim == 4:
x = torch.rand((16, 3, 224, 224))
example_inputs = (x,)
prepared = prepare_fx(
copy.deepcopy(m),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict
)
output = prepared(x)
convert_ref = _convert_equalization_ref(prepared)
convert_ref_output = convert_ref(x)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(x)
convert_fx(prepared) # Check if compile
self.assertEqual(output, convert_ref_output)
def calculate_equalization_scale_ref(self, x, w):
""" Calculates the equalization scale based on the input and weight
"""
min_inputs = x.min(axis=0)
max_inputs = x.max(axis=0)
min_weights_col = w.min(axis=0)
max_weights_col = w.max(axis=0)
equalization_scale = np.sqrt((max_weights_col - min_weights_col) /
(max_inputs - min_inputs))
return equalization_scale
def get_expected_eq_scales(self, model, x):
""" For each module in the graph, we want to calculate the equalization
scale at that point. This only works for models containing single or
connected linear layers.
"""
exp_eq_scales = []
for _, module in model.named_children():
weight = module.weight.detach().numpy()
bias = module.bias.detach().numpy()
eq_scale = self.calculate_equalization_scale_ref(x, weight)
exp_eq_scales.append(eq_scale)
x = x @ weight.T + bias
return exp_eq_scales
def test_input_weight_equalization_equalization_scales(self):
""" After applying the equalization functions, check if the equalization
scales are the expected values
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel,
SingleLayerFunctionalLinearModel, TwoLayerFunctionalLinearModel]
x = torch.rand((5, 5))
for M in tests:
m = M().eval()
exp_eq_scales = self.get_expected_eq_scales(m, x.detach().numpy())
example_inputs = (x,)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(*example_inputs)
convert_ref = _convert_equalization_ref(prepared)
convert_ref(x)
counter = 0
for node in convert_ref.graph.nodes:
if 'equalization_scale' in node.name and node.op == 'get_attr':
self.assertEqual(convert_ref.get_buffer(str(node.target)).reshape(-1), exp_eq_scales[counter])
counter += 1
def get_expected_weights_bias(self, model, x, exp_eq_scales):
""" For each module in the graph, we want to calculate the expected
scaled weight and bias values. This only works for models containing
single or connected linear layers.
"""
exp_weights = []
exp_bias = []
for i, (_, module) in enumerate(model.named_children()):
weight = module.weight.detach().numpy()
bias = module.bias.detach().numpy()
scaled_weight = weight * np.reciprocal(exp_eq_scales[i])
scaled_bias = bias
if i + 1 < len(exp_eq_scales):
scaled_weight = (scaled_weight.T * exp_eq_scales[i + 1]).T
scaled_bias = (scaled_bias.T * exp_eq_scales[i + 1]).T
exp_weights.append(scaled_weight)
exp_bias.append(scaled_bias)
x = x @ weight.T + bias
return exp_weights, exp_bias
def test_input_weight_equalization_weights_bias(self):
""" After applying the equalization functions check if the weights and
biases are as expected
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel,
SingleLayerFunctionalLinearModel, TwoLayerFunctionalLinearModel]
x = torch.rand((5, 5))
for M in tests:
m = M().eval()
exp_eq_scales = self.get_expected_eq_scales(m, x.detach().numpy())
exp_weights, exp_bias = self.get_expected_weights_bias(m, x.detach().numpy(), exp_eq_scales)
example_inputs = (x,)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(x)
convert_ref = _convert_equalization_ref(prepared)
convert_ref(x)
modules = dict(convert_ref.named_modules(remove_duplicate=False))
counter = 0
for node in convert_ref.graph.nodes:
if node.op == 'call_module' and isinstance(modules[str(node.target)], nn.Linear):
self.assertEqual(modules[str(node.target)].weight, exp_weights[counter])
self.assertEqual(modules[str(node.target)].bias, exp_bias[counter])
counter += 1
def get_expected_inp_act_vals(self, model, x, exp_eq_scales, exp_weights, exp_bias):
""" For each module in the graph, we want to calculate the expected
min/max values for every input activation node. This only works for
models containing only single or connected linear layers.
"""
x = x * exp_eq_scales[0]
exp_inp_activation_vals = []
for i, _ in enumerate(model.named_children()):
exp_inp_activation_vals.append((x.min(), x.max()))
x = x @ exp_weights[i].T + exp_bias[i]
exp_inp_activation_vals.append((x.min(), x.max()))
return exp_inp_activation_vals
def get_expected_weight_act_vals(self, exp_weights):
""" For each module in the graph, we want to calculate the expected
min/max values for every weight activation node. This is assuming that
the weight observers are all MinMaxObservers.
"""
exp_weight_activation_vals = []
for w in exp_weights:
exp_weight_activation_vals.append((w.min(), w.max()))
return exp_weight_activation_vals
def test_input_weight_equalization_activation_values(self):
""" After applying the equalization functions check if the input
observer's min/max values are as expected
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel, SingleLayerFunctionalLinearModel]
x = torch.rand((5, 5))
torch.manual_seed(0)
for M in tests:
m = M().eval()
exp_eq_scales = self.get_expected_eq_scales(m, x.detach().numpy())
exp_weights, exp_bias = self.get_expected_weights_bias(m, x.detach().numpy(), exp_eq_scales)
exp_inp_act_vals = self.get_expected_inp_act_vals(m, x, exp_eq_scales, exp_weights, exp_bias)
exp_weight_act_vals = self.get_expected_weight_act_vals(exp_weights)
example_inputs = (x,)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(x)
convert_ref = _convert_equalization_ref(prepared)
convert_ref(x)
modules = dict(convert_ref.named_modules(remove_duplicate=False))
inp_counter = 0
weight_counter = 0
for node in convert_ref.graph.nodes:
users = list(node.users)
if node.op == 'call_module' and isinstance(modules[str(node.target)], MinMaxObserver):
if len(users) == 1 and users[0].target == torch.nn.functional.linear and users[0].args[1] == node:
# Check min/max values of weight activation layers
exp_min_val, exp_max_val = exp_weight_act_vals[weight_counter]
self.assertEqual(modules[str(node.target)].min_val, exp_min_val)
self.assertEqual(modules[str(node.target)].max_val, exp_max_val)
weight_counter += 1
else:
# Check min/max values of input activation layers
exp_min_val, exp_max_val = exp_inp_act_vals[inp_counter]
self.assertEqual(modules[str(node.target)].min_val, exp_min_val)
self.assertEqual(modules[str(node.target)].max_val, exp_max_val)
inp_counter += 1
def check_orig_and_eq_graphs(self, orig_model, eq_model):
""" Given a non-equalized model and an equalized model, check that the
graphs are structured in the same way, except the equalized model has
additional 'equalization_scale' and 'mul' nodes.
"""
orig_idx = 0
orig_nodes = list(orig_model.graph.nodes)
orig_modules = dict(orig_model.named_modules(remove_duplicate=False))
eq_idx = 0
eq_nodes = list(eq_model.graph.nodes)
eq_modules = dict(eq_model.named_modules(remove_duplicate=False))
while orig_idx < len(orig_nodes) and eq_idx < len(eq_nodes):
if 'equalization_scale' in eq_nodes[eq_idx].name and 'mul' in eq_nodes[eq_idx + 1].name:
# Skip the equalization and mul nodes
eq_idx += 2
continue
elif orig_nodes[orig_idx].op != eq_nodes[eq_idx].op:
return False
elif orig_nodes[orig_idx].op == 'call_module':
# Check that the type of call_modules are the same (ex. nn.Linear, MinMaxObserver)
orig_node = orig_nodes[orig_idx]
eq_node = eq_nodes[eq_idx]
if type(orig_modules[orig_node.target]) is not type(eq_modules[eq_node.target]):
return False
elif orig_nodes[orig_idx].op == 'call_function':
# Check that the call_functions are the same (ex. F.linear)
orig_node = orig_nodes[orig_idx]
eq_node = eq_nodes[eq_idx]
if orig_node.target != eq_node.target:
return False
eq_idx += 1
orig_idx += 1
return True
@skipIfNoFBGEMM
def test_input_weight_equalization_graphs(self):
""" Tests that the modified model for equalization has the same graph
structure as the model without equalization (before and after
quantization).
"""
linear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
linearAdd_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize'),
ns.call_function(torch.add),
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
linear2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
functionalLinear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
functionalLinearAdd_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize'),
ns.call_function(torch.add),
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
functionalLinear2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
linearRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.LinearReLU),
ns.call_method('dequantize')
]
linearReluLinear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.LinearReLU),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
functionalLinearRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear_relu),
ns.call_method('dequantize')
]
functionalLinearReluLinear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear_relu),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
conv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Conv2d),
ns.call_method('dequantize')
]
conv2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Conv2d),
ns.call_module(nnq.Conv2d),
ns.call_method('dequantize')
]
functionalConv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_method('dequantize')
]
functionalConv2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_method('dequantize')
]
convRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.ConvReLU2d),
ns.call_method('dequantize')
]
convReluConv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.ConvReLU2d),
ns.call_module(nnq.Conv2d),
ns.call_method('dequantize')
]
functionalConvRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d_relu),
ns.call_method('dequantize')
]
functionalConvReluConv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d_relu),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_method('dequantize')
]
tests = [(SingleLayerLinearModel, linear_node_list),
(LinearAddModel, linearAdd_node_list),
(TwoLayerLinearModel, linear2_node_list),
(SingleLayerFunctionalLinearModel, functionalLinear_node_list),
(FunctionalLinearAddModel, functionalLinearAdd_node_list),
(TwoLayerFunctionalLinearModel, functionalLinear2_node_list),
(LinearReluModel, linearRelu_node_list),
(LinearReluLinearModel, linearReluLinear_node_list),
(FunctionalLinearReluModel, functionalLinearRelu_node_list),
(FunctionalLinearReluLinearModel, functionalLinearReluLinear_node_list),
(ConvModel, conv_node_list),
(TwoLayerConvModel, conv2_node_list),
(SingleLayerFunctionalConvModel, functionalConv_node_list),
(TwoLayerFunctionalConvModel, functionalConv2_node_list),
(ConvReluModel, convRelu_node_list),
(ConvReluConvModel, convReluConv_node_list),
(FunctionalConvReluModel, functionalConvRelu_node_list),
(FunctionalConvReluConvModel, functionalConvReluConv_node_list)]
for (M, node_list) in tests:
m = M().eval()
example_inputs = m.get_example_inputs()
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
equalized_quantized_model = convert_fx(prepared)
# Check the order of nodes in the graph
self.checkGraphModuleNodes(equalized_quantized_model, expected_node_list=node_list)
@skipIfNoFBGEMM
def test_input_weight_equalization_results(self):
""" Tests that for small models, the results of quantized models that
have been equalized are very close to models that have not been equalized.
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel, LinearAddModel,
SingleLayerFunctionalLinearModel, TwoLayerFunctionalLinearModel]
x = torch.rand((5, 5))
for M in tests:
m = M().eval()
# No equalization
example_inputs = (x,)
prepared = prepare_fx(
copy.deepcopy(m),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config={})
prepared(x)
quantized = convert_fx(prepared) # Check if compile
quantized_output = quantized(x)
# With equalization
prepared = prepare_fx(
copy.deepcopy(m),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict
)
prepared(x)
equalized_and_quantized = convert_fx(prepared) # Check if compile
equalized_and_quantized_output = equalized_and_quantized(x)
self.assertEqual(quantized_output, equalized_and_quantized_output, rtol=1e-5, atol=0.1)
@skipIfNoFBGEMM
def test_selective_equalization(self):
""" Tests that we are able to run numeric suite on the equalized model
and construct a valid equalization_config equalizing only the top
4 layers with the highest quantization errors.
"""
torch.manual_seed(1)
class M(nn.Module):
def __init__(self):
super().__init__()
self.bot = torch.nn.Sequential(torch.nn.Linear(5, 5))
self.top = torch.nn.Sequential(torch.nn.Linear(5, 5))
def forward(self, x):
x = self.bot(x)
x = torch.add(x, 5)
x = self.top(x)
return x
float_model = M().eval()
# Hard coded so that the top layer has a higher quantization error
x = torch.tensor([[0.0642, 0.7824, 0.4255, 0.7106, 0.5957],
[0.8373, 0.8851, 0.8229, 0.0212, 0.8987],
[0.9077, 0.7538, 0.4530, 0.5772, 0.1376],
[0.0690, 0.9002, 0.7998, 0.2768, 0.8985],
[0.0282, 0.5068, 0.6725, 0.1829, 0.5480]])
# Quantize the float model
example_inputs = (x,)
prepared_model = prepare_fx(
copy.deepcopy(float_model),
specific_qconfig_dict,
example_inputs=example_inputs
)
prepared_model(x)
quantized_model = convert_fx(copy.deepcopy(prepared_model))
# Get the SQNR between the float and quantized model
layer_to_sqnr_dict = get_layer_sqnr_dict(copy.deepcopy(prepared_model), quantized_model, x)
# Construct the equalization_qconfig_dict equalizing layers with the highest
# quantization errors
selective_equalization_qconfig_dict = get_equalization_qconfig_dict(layer_to_sqnr_dict, 1)
# Create the selectively equalized model
prepared_model = prepare_fx(
copy.deepcopy(float_model),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=selective_equalization_qconfig_dict,
)
prepared_model(x)
equalized_model = convert_fx(prepared_model)
node_list = [
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize'),
ns.call_function(torch.add),
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
# Check the order of nodes in the graph
self.checkGraphModuleNodes(equalized_model, expected_node_list=node_list)