|  | # Owner(s): ["oncall: quantization"] | 
|  |  | 
|  | import torch | 
|  |  | 
|  | from torch.testing._internal.common_quantization import ( | 
|  | QuantizationTestCase, | 
|  | ModelMultipleOps, | 
|  | ModelMultipleOpsNoAvgPool, | 
|  | ) | 
|  | from torch.testing._internal.common_quantized import ( | 
|  | override_quantized_engine, | 
|  | supported_qengines, | 
|  | ) | 
|  |  | 
|  | class TestModelNumericsEager(QuantizationTestCase): | 
|  | def test_float_quant_compare_per_tensor(self): | 
|  | for qengine in supported_qengines: | 
|  | with override_quantized_engine(qengine): | 
|  | torch.manual_seed(42) | 
|  | my_model = ModelMultipleOps().to(torch.float32) | 
|  | my_model.eval() | 
|  | calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32) | 
|  | eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32) | 
|  | out_ref = my_model(eval_data) | 
|  | qModel = torch.ao.quantization.QuantWrapper(my_model) | 
|  | qModel.eval() | 
|  | qModel.qconfig = torch.ao.quantization.default_qconfig | 
|  | torch.ao.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']], inplace=True) | 
|  | torch.ao.quantization.prepare(qModel, inplace=True) | 
|  | qModel(calib_data) | 
|  | torch.ao.quantization.convert(qModel, inplace=True) | 
|  | out_q = qModel(eval_data) | 
|  | SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) | 
|  | # Quantized model output should be close to floating point model output numerically | 
|  | # Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired | 
|  | # output | 
|  | self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB') | 
|  |  | 
|  | def test_float_quant_compare_per_channel(self): | 
|  | # Test for per-channel Quant | 
|  | torch.manual_seed(67) | 
|  | my_model = ModelMultipleOps().to(torch.float32) | 
|  | my_model.eval() | 
|  | calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) | 
|  | eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) | 
|  | out_ref = my_model(eval_data) | 
|  | q_model = torch.ao.quantization.QuantWrapper(my_model) | 
|  | q_model.eval() | 
|  | q_model.qconfig = torch.ao.quantization.default_per_channel_qconfig | 
|  | torch.ao.quantization.fuse_modules(q_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) | 
|  | torch.ao.quantization.prepare(q_model) | 
|  | q_model(calib_data) | 
|  | torch.ao.quantization.convert(q_model) | 
|  | out_q = q_model(eval_data) | 
|  | SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) | 
|  | # Quantized model output should be close to floating point model output numerically | 
|  | # Setting target SQNR to be 35 dB | 
|  | self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB') | 
|  |  | 
|  | def test_fake_quant_true_quant_compare(self): | 
|  | for qengine in supported_qengines: | 
|  | with override_quantized_engine(qengine): | 
|  | torch.manual_seed(67) | 
|  | my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) | 
|  | calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) | 
|  | eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) | 
|  | my_model.eval() | 
|  | out_ref = my_model(eval_data) | 
|  | fq_model = torch.ao.quantization.QuantWrapper(my_model) | 
|  | fq_model.train() | 
|  | fq_model.qconfig = torch.ao.quantization.default_qat_qconfig | 
|  | torch.ao.quantization.fuse_modules_qat(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) | 
|  | torch.ao.quantization.prepare_qat(fq_model) | 
|  | fq_model.eval() | 
|  | fq_model.apply(torch.ao.quantization.disable_fake_quant) | 
|  | fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats) | 
|  | fq_model(calib_data) | 
|  | fq_model.apply(torch.ao.quantization.enable_fake_quant) | 
|  | fq_model.apply(torch.ao.quantization.disable_observer) | 
|  | out_fq = fq_model(eval_data) | 
|  | SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq)) | 
|  | # Quantized model output should be close to floating point model output numerically | 
|  | # Setting target SQNR to be 35 dB | 
|  | self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB') | 
|  | torch.ao.quantization.convert(fq_model) | 
|  | out_q = fq_model(eval_data) | 
|  | SQNRdB = 20 * torch.log10(torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10)) | 
|  | self.assertGreater(SQNRdB, 60, msg='Fake quant and true quant numerics diverge, expect SQNR > 60 dB') | 
|  |  | 
|  | # Test to compare weight only quantized model numerics and | 
|  | # activation only quantized model numerics with float | 
|  | def test_weight_only_activation_only_fakequant(self): | 
|  | for qengine in supported_qengines: | 
|  | with override_quantized_engine(qengine): | 
|  | torch.manual_seed(67) | 
|  | calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) | 
|  | eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) | 
|  | qconfigset = {torch.ao.quantization.default_weight_only_qconfig, | 
|  | torch.ao.quantization.default_activation_only_qconfig} | 
|  | SQNRTarget = [35, 45] | 
|  | for idx, qconfig in enumerate(qconfigset): | 
|  | my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) | 
|  | my_model.eval() | 
|  | out_ref = my_model(eval_data) | 
|  | fq_model = torch.ao.quantization.QuantWrapper(my_model) | 
|  | fq_model.train() | 
|  | fq_model.qconfig = qconfig | 
|  | torch.ao.quantization.fuse_modules_qat(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) | 
|  | torch.ao.quantization.prepare_qat(fq_model) | 
|  | fq_model.eval() | 
|  | fq_model.apply(torch.ao.quantization.disable_fake_quant) | 
|  | fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats) | 
|  | fq_model(calib_data) | 
|  | fq_model.apply(torch.ao.quantization.enable_fake_quant) | 
|  | fq_model.apply(torch.ao.quantization.disable_observer) | 
|  | out_fq = fq_model(eval_data) | 
|  | SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq)) | 
|  | self.assertGreater(SQNRdB, SQNRTarget[idx], msg='Quantized model numerics diverge from float') | 
|  |  | 
|  |  | 
|  | if __name__ == '__main__': | 
|  | raise RuntimeError("This test file is not meant to be run directly, use:\n\n" | 
|  | "\tpython test/test_quantization.py TESTNAME\n\n" | 
|  | "instead.") |