blob: 2bb3f97e60e8b4d61d0063d523a50f6af0a619e0 [file] [log] [blame]
#ifndef TH_TENSOR_DIM_APPLY_INC
#define TH_TENSOR_DIM_APPLY_INC
// This is an example of SIZE_CHECK argument passable to TH_TENSOR_DIM_APPLY3.
// The TENSOR1, TENSOR2, TENSOR3, DIMENSION will be expanded the same way as
// TH_TENSOR_DIM_APPLY3.
// Specifically, this check ensures that TENSOR1, TENSOR2, TENSOR3 have same
// size except for DIMENSION.
#define TH_TENSOR_DIM_APPLY3_SIZE_EQ_EXCEPT_DIM(TENSOR1, TENSOR2, TENSOR3, DIMENSION) \
{ \
int shape_check_flag = 0; \
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
{ \
if (TH_TENSOR_DIM_APPLY_i == DIMENSION) \
continue; \
if (TENSOR1->size(TH_TENSOR_DIM_APPLY_i) != TENSOR2->size(TH_TENSOR_DIM_APPLY_i)) { \
shape_check_flag = 1; \
break; \
} \
if(TENSOR1->size(TH_TENSOR_DIM_APPLY_i) != TENSOR3->size(TH_TENSOR_DIM_APPLY_i)) { \
shape_check_flag = 1; \
break; \
} \
} \
if (shape_check_flag == 1) { \
AT_ERROR("Expected ", #TENSOR1, " ", TENSOR1->sizes(), ", ", #TENSOR2, " ", TENSOR2->sizes(), " and ", #TENSOR3, " ", TENSOR3->sizes(), " to have the same size apart from dimension ", DIMENSION); \
} \
}
#define TH_TENSOR_DIM_APPLY3(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, DIMENSION, SIZE_CHECK, CODE) \
{ \
TYPE1 *TENSOR1##_data = NULL; \
TH_UNUSED int64_t TENSOR1##_stride = 0, TENSOR1##_size = 0; \
TYPE2 *TENSOR2##_data = NULL; \
TH_UNUSED int64_t TENSOR2##_stride = 0, TENSOR2##_size = 0; \
TYPE3 *TENSOR3##_data = NULL; \
TH_UNUSED int64_t TENSOR3##_stride = 0, TENSOR3##_size = 0; \
int64_t *TH_TENSOR_DIM_APPLY_counter = NULL; \
int TH_TENSOR_DIM_APPLY_hasFinished = THTensor_(numel)(TENSOR1) == 0; \
int TH_TENSOR_DIM_APPLY_i; \
\
if( (DIMENSION < 0) || (DIMENSION >= THTensor_nDimensionLegacyNoScalars(TENSOR1)) ) \
THError("invalid dimension %d (expected to be 0 <= dim < %d)", DIMENSION, THTensor_nDimensionLegacyNoScalars(TENSOR1)); \
int same_dims = 1; \
if( THTensor_nDimensionLegacyNoScalars(TENSOR1) != THTensor_nDimensionLegacyNoScalars(TENSOR2) ) { \
same_dims = 0; \
} \
if( THTensor_nDimensionLegacyNoScalars(TENSOR1) != THTensor_nDimensionLegacyNoScalars(TENSOR3) ) { \
same_dims = 0; \
} \
if (same_dims == 0) { \
AT_ERROR("inconsistent tensor size, expected ", #TENSOR1, " ", TENSOR1->sizes(), ", ", #TENSOR2, " ", TENSOR2->sizes(), " and ", #TENSOR3, " ",TENSOR3->sizes() , " to have the same number of dimensions"); \
} \
SIZE_CHECK(TENSOR1, TENSOR2, TENSOR3, DIMENSION) \
\
if (TH_TENSOR_DIM_APPLY_hasFinished) { \
return; \
} \
TH_TENSOR_DIM_APPLY_counter = (int64_t*)THAlloc(sizeof(int64_t)*(THTensor_nDimensionLegacyNoScalars(TENSOR1))); \
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
\
TENSOR1##_data = THTensor_getStoragePtr(TENSOR1)->data<TYPE1>()+(TENSOR1)->storage_offset(); \
TENSOR1##_stride = THTensor_strideLegacyNoScalars((TENSOR1), DIMENSION); \
TENSOR1##_size = THTensor_sizeLegacyNoScalars((TENSOR1), DIMENSION); \
\
TENSOR2##_data = THTensor_getStoragePtr(TENSOR2)->data<TYPE2>()+(TENSOR2)->storage_offset(); \
TENSOR2##_stride = THTensor_strideLegacyNoScalars((TENSOR2), DIMENSION); \
TENSOR2##_size = THTensor_sizeLegacyNoScalars((TENSOR2), DIMENSION); \
\
TENSOR3##_data = THTensor_getStoragePtr(TENSOR3)->data<TYPE3>()+(TENSOR3)->storage_offset(); \
TENSOR3##_stride = THTensor_strideLegacyNoScalars((TENSOR3), DIMENSION); \
TENSOR3##_size = THTensor_sizeLegacyNoScalars((TENSOR3), DIMENSION); \
\
while(!TH_TENSOR_DIM_APPLY_hasFinished) \
{ \
CODE \
\
if(THTensor_nDimensionLegacyNoScalars(TENSOR1) == 1) \
break; \
\
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
{ \
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
{ \
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
{ \
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
break; \
} \
continue; \
} \
\
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]++; \
TENSOR1##_data += THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
TENSOR2##_data += THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
TENSOR3##_data += THTensor_strideLegacyNoScalars(TENSOR3, TH_TENSOR_DIM_APPLY_i); \
\
if(TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] == THTensor_sizeLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i)) \
{ \
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
{ \
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
break; \
} \
else \
{ \
TENSOR1##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
TENSOR2##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
TENSOR3##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR3, TH_TENSOR_DIM_APPLY_i); \
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
} \
} \
else \
break; \
} \
} \
THFree(TH_TENSOR_DIM_APPLY_counter); \
}
/**
* Similar to DIM_APPLY(...) but we maintain two sets of pointers: one for the first tensor
* and one for the second. The two tensors must have the same shape, other than at the
* specified DIMENSION. This function makes it easy to store the output from reducing the
* TENSOR at index. For example, in the sum example described below, we could instead do:
*
* int64_t i = 0;
* TYPE1 sum;
*
* for (i = 0; i < TENSOR1##_size; ++i) {
* sum += TENSOR1##_data[i * TENSOR1##_stride]
* }
* *TENSOR2##_data = (TYPE2) sum;
*
* In particular, we guarantee that the offset into TENSOR2 will be what you would get if
* you applied all of the index values used to generate the offset into TENSOR1.
*/
#define TH_TENSOR_DIM_APPLY2(TYPE1, TENSOR1, TYPE2, TENSOR2, DIMENSION, CODE) \
{ \
TYPE1 *TENSOR1##_data = NULL; \
TH_UNUSED int64_t TENSOR1##_stride = 0, TENSOR1##_size = 0; \
TYPE2 *TENSOR2##_data = NULL; \
TH_UNUSED int64_t TENSOR2##_stride = 0, TENSOR2##_size = 0; \
int64_t *TH_TENSOR_DIM_APPLY_counter = NULL; \
int TH_TENSOR_DIM_APPLY_hasFinished = THTensor_(numel)(TENSOR1) == 0; \
int TH_TENSOR_DIM_APPLY_i; \
\
if( (DIMENSION < 0) || (DIMENSION >= THTensor_nDimensionLegacyNoScalars(TENSOR1)) ) \
THError("invalid dimension %d (expected to be 0 <= dim < %d)", DIMENSION, THTensor_nDimensionLegacyAll(TENSOR1)); \
if( THTensor_nDimensionLegacyNoScalars(TENSOR1) != THTensor_nDimensionLegacyNoScalars(TENSOR2)) { \
AT_ERROR("inconsistent tensor size, expected ", #TENSOR1, " ", TENSOR1->sizes(), " and ", #TENSOR2, " ", TENSOR2->sizes(), " to have the same number of dimensions"); \
} \
TH_UNUSED int shape_check_flag = 0; \
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
{ \
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
continue; \
if(THTensor_sizeLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i) != THTensor_sizeLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i)) { \
AT_ERROR("Expected ", #TENSOR1, " ", TENSOR1->sizes(), " and ", #TENSOR2, " ", TENSOR2->sizes(), " to have the same size in dimension ", DIMENSION); \
} \
} \
\
if (TH_TENSOR_DIM_APPLY_hasFinished) { \
return; \
} \
TH_TENSOR_DIM_APPLY_counter = (int64_t*)THAlloc(sizeof(int64_t)*(THTensor_nDimensionLegacyNoScalars(TENSOR1))); \
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
\
TENSOR1##_data = THTensor_getStoragePtr(TENSOR1)->data<TYPE1>()+(TENSOR1)->storage_offset(); \
TENSOR1##_stride = THTensor_strideLegacyNoScalars((TENSOR1), DIMENSION); \
TENSOR1##_size = THTensor_sizeLegacyNoScalars(TENSOR1, DIMENSION); \
\
TENSOR2##_data = THTensor_getStoragePtr(TENSOR2)->data<TYPE2>()+(TENSOR2)->storage_offset(); \
TENSOR2##_stride = THTensor_strideLegacyNoScalars((TENSOR2), DIMENSION); \
TENSOR2##_size = THTensor_sizeLegacyNoScalars(TENSOR2, DIMENSION); \
\
while(!TH_TENSOR_DIM_APPLY_hasFinished) \
{ \
CODE \
\
if(THTensor_nDimensionLegacyNoScalars(TENSOR1) == 1) \
break; \
\
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
{ \
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
{ \
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
{ \
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
break; \
} \
continue; \
} \
\
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]++; \
TENSOR1##_data += THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
TENSOR2##_data += THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
\
if(TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] == THTensor_sizeLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i)) \
{ \
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
{ \
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
break; \
} \
else \
{ \
TENSOR1##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
TENSOR2##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
} \
} \
else \
break; \
} \
} \
THFree(TH_TENSOR_DIM_APPLY_counter); \
}
/**
* The basic idea for DIM_APPLY: Given a TENSOR and a DIMENSION, provide access to the data stored
* at all sets of dimension values other than DIMENSION, such that we can get all the values at those
* fixed indices for the various values at DIMENSION.
*
* Suppose we have a 2x3x4 Tensor A, and we have DIMENSION=2. Then we will hit CODE (2x3) times, and the
* pointer into storage will be at:
*
* A[0][0]
* A[0][1]
* A[0][2]
* A[1][0]
* A[1][1]
* A[1][2]
*
* And at each point, we can access the data for each of the four elements of the Tensor via
* TENSOR##_stride. So for example, if we wanted to sum the elements there, we could do:
*
* int64_t i = 0;
* TYPE sum;
* for (i = 0; i < TENSOR##_size; i++) {
* sum += TENSOR##_data[i * TENSOR##_stride]
* }
*
* Note that we don't have to have DIMENSION be the last tensor. If we have DIMENSION=1, then we will hit the
* code (2x4) times, with pointer into the storage at:
*
* offset +
* stride_0 * 0 + stride_2 * 0
* stride_0 * 1 + stride_2 * 0
* stride_0 * 0 + stride_2 * 1
* stride_0 * 1 + stride_2 * 1
* stride_0 * 0 + stride_2 * 2
* stride_0 * 1 + stride_2 * 2
* stride_0 * 0 + stride_2 * 3
* stride_0 * 1 + stride_2 * 3
*
* So we can again sum over the values at DIMENSION with the other indices fixed.
*/
#define TH_TENSOR_DIM_APPLY(TYPE, TENSOR, DIMENSION, CODE) \
{ \
TYPE *TENSOR##_data = NULL; \
int64_t TENSOR##_stride = 0, TENSOR##_size = 0; \
int64_t *TH_TENSOR_DIM_APPLY_counter = NULL; \
int TH_TENSOR_DIM_APPLY_hasFinished = 0; \
int TH_TENSOR_DIM_APPLY_i; \
\
if( (DIMENSION < 0) || (DIMENSION >= THTensor_nDimensionLegacyAll(TENSOR)) ) \
THError("invalid dimension"); \
\
TENSOR##_data = THTensor_getStoragePtr(TENSOR)->data<TYPE>()+(TENSOR)->storage_offset(); \
TENSOR##_stride = THTensor_strideLegacyNoScalars((TENSOR), DIMENSION); \
TENSOR##_size = THTensor_sizeLegacyNoScalars(TENSOR, DIMENSION); \
/* Counter stores the indices into the Tensor at any time */ \
TH_TENSOR_DIM_APPLY_counter = (int64_t*)THAlloc(sizeof(int64_t)*(THTensor_nDimensionLegacyAll(TENSOR))); \
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyAll(TENSOR); TH_TENSOR_DIM_APPLY_i++) \
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
\
while(!TH_TENSOR_DIM_APPLY_hasFinished) \
{ \
CODE \
\
if(THTensor_nDimensionLegacyAll(TENSOR) == 1) \
break; \
\
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyAll(TENSOR); TH_TENSOR_DIM_APPLY_i++) \
{ \
/* Check if the index is equal to DIMENSION. We don't need to update the */ \
/* offset if this is the case, and can consider the next index. However, */ \
/* in the case that the DIMENSION is the last index in the Tensor, then */ \
/* we have parsed the entire tensor and can exit */ \
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
{ \
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyAll(TENSOR)-1) \
{ \
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
break; \
} \
continue; \
} \
\
/* Bump the counter at this index, update the pointer */ \
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]++; \
TENSOR##_data += THTensor_strideLegacyNoScalars(TENSOR, TH_TENSOR_DIM_APPLY_i); \
\
if(TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] == THTensor_sizeLegacyNoScalars(TENSOR, TH_TENSOR_DIM_APPLY_i)) \
{ \
/* Handled TENSOR_size(dim) iterations for DIM_APPLY_i. If this is the last dimension, exit */ \
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyAll(TENSOR)-1) \
{ \
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
break; \
} \
else \
{ \
/* Reset the counter, and the pointer to the beginning of the storage for this combination of indices */ \
TENSOR##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR, TH_TENSOR_DIM_APPLY_i); \
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
} \
} \
else \
break; \
} \
} \
THFree(TH_TENSOR_DIM_APPLY_counter); \
}
#endif