blob: ec8231128ac9e80a3180814f17bda7140ccb7c69 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import collections
import logging
import math
import numpy as np
import time
import argparse
from itertools import izip
from caffe2.python import core, workspace, recurrent
from caffe2.python.examples import seq2seq_util
logger = logging.getLogger(__name__)
Batch = collections.namedtuple('Batch', [
'encoder_inputs',
'encoder_lengths',
'decoder_inputs',
'decoder_lengths',
'targets',
'target_weights',
])
_PAD_ID = 0
_GO_ID = 1
_EOS_ID = 2
EOS = '<EOS>'
UNK = '<UNK>'
GO = '<GO>'
PAD = '<PAD>'
def prepare_batch(batch):
encoder_lengths = [len(entry[0]) for entry in batch]
max_encoder_length = max(encoder_lengths)
decoder_lengths = []
max_decoder_length = max([len(entry[1]) for entry in batch])
batch_encoder_inputs = []
batch_decoder_inputs = []
batch_targets = []
batch_target_weights = []
for source_seq, target_seq in batch:
encoder_pads = (
[_PAD_ID] * (max_encoder_length - len(source_seq))
)
batch_encoder_inputs.append(
list(reversed(source_seq)) + encoder_pads
)
decoder_pads = (
[_PAD_ID] * (max_decoder_length - len(target_seq))
)
target_seq_with_go_token = [_GO_ID] + target_seq
decoder_lengths.append(len(target_seq_with_go_token))
batch_decoder_inputs.append(target_seq_with_go_token + decoder_pads)
target_seq_with_eos = target_seq + [_EOS_ID]
targets = target_seq_with_eos + decoder_pads
batch_targets.append(targets)
if len(source_seq) + len(target_seq) == 0:
target_weights = [0] * len(targets)
else:
target_weights = [
1 if target != _PAD_ID else 0
for target in targets
]
batch_target_weights.append(target_weights)
return Batch(
encoder_inputs=np.array(
batch_encoder_inputs,
dtype=np.int32,
).transpose(),
encoder_lengths=np.array(encoder_lengths, dtype=np.int32),
decoder_inputs=np.array(
batch_decoder_inputs,
dtype=np.int32,
).transpose(),
decoder_lengths=np.array(decoder_lengths, dtype=np.int32),
targets=np.array(
batch_targets,
dtype=np.int32,
).transpose(),
target_weights=np.array(
batch_target_weights,
dtype=np.float32,
).transpose(),
)
class Seq2SeqModelCaffe2:
def _embedding_encoder(
self,
model,
encoder_type,
encoder_params,
inputs,
input_lengths,
vocab_size,
embedding_size,
use_attention,
):
# Initialize the word embeddings that will be learned during training.
sqrt3 = math.sqrt(3)
encoder_embeddings = model.param_init_net.UniformFill(
[],
'encoder_embeddings',
shape=[vocab_size, embedding_size],
min=-sqrt3,
max=sqrt3,
)
model.params.append(encoder_embeddings)
# Convert inputs to embedded inputs by the embeddings above.
embedded_encoder_inputs = model.net.Gather(
[encoder_embeddings, inputs],
['embedded_encoder_inputs'],
)
if encoder_type == 'rnn':
encoder_num_units = (
encoder_params['encoder_layer_configs'][0]['num_units']
)
encoder_initial_cell_state = model.param_init_net.ConstantFill(
[],
['encoder_initial_cell_state'],
shape=[encoder_num_units],
value=0.0,
)
encoder_initial_hidden_state = model.param_init_net.ConstantFill(
[],
'encoder_initial_hidden_state',
shape=[encoder_num_units],
value=0.0,
)
# Choose corresponding rnn encoder function
if encoder_params['use_bidirectional_encoder']:
rnn_encoder_func = seq2seq_util.rnn_bidirectional_encoder
else:
rnn_encoder_func = seq2seq_util.rnn_unidirectional_encoder
(
encoder_outputs,
final_encoder_hidden_state,
final_encoder_cell_state,
) = rnn_encoder_func(
model,
embedded_encoder_inputs,
input_lengths,
encoder_initial_hidden_state,
encoder_initial_cell_state,
embedding_size,
encoder_num_units,
use_attention
)
else:
raise ValueError('Unsupported encoder type {}'.format(encoder_type))
return (
encoder_outputs,
final_encoder_hidden_state,
final_encoder_cell_state,
)
def output_projection(
self,
model,
decoder_outputs,
decoder_output_size,
target_vocab_size,
decoder_softmax_size,
):
if decoder_softmax_size is not None:
decoder_outputs = model.FC(
decoder_outputs,
'decoder_outputs_scaled',
dim_in=decoder_output_size,
dim_out=decoder_softmax_size,
)
decoder_output_size = decoder_softmax_size
output_projection_w = model.param_init_net.XavierFill(
[],
'output_projection_w',
shape=[self.target_vocab_size, decoder_output_size],
)
output_projection_b = model.param_init_net.XavierFill(
[],
'output_projection_b',
shape=[self.target_vocab_size],
)
model.params.extend([
output_projection_w,
output_projection_b,
])
output_logits = model.net.FC(
[
decoder_outputs,
output_projection_w,
output_projection_b,
],
['output_logits'],
)
return output_logits
def _build_model(
self,
init_params,
):
model = seq2seq_util.ModelHelper(
init_params=init_params,
)
self.encoder_inputs = model.net.AddExternalInput('encoder_inputs')
self.encoder_lengths = model.net.AddExternalInput('encoder_lengths')
self.decoder_inputs = model.net.AddExternalInput('decoder_inputs')
self.decoder_lengths = model.net.AddExternalInput('decoder_lengths')
self.targets = model.net.AddExternalInput('targets')
self.target_weights = model.net.AddExternalInput('target_weights')
optimizer_params = self.model_params['optimizer_params']
attention_type = self.model_params['attention']
assert attention_type in ['none', 'regular']
self.learning_rate = model.AddParam(
name='learning_rate',
init_value=float(optimizer_params['learning_rate']),
trainable=False,
)
self.global_step = model.AddParam(
name='global_step',
init_value=0,
trainable=False,
)
self.start_time = model.AddParam(
name='start_time',
init_value=time.time(),
trainable=False,
)
assert self.num_gpus < 2
assert len(self.encoder_params['encoder_layer_configs']) == 1
assert len(self.model_params['decoder_layer_configs']) == 1
encoder_num_units = (
self.encoder_params['encoder_layer_configs'][0]['num_units']
)
decoder_num_units = (
self.model_params['decoder_layer_configs'][0]['num_units']
)
(
encoder_outputs,
final_encoder_hidden_state,
final_encoder_cell_state,
) = self._embedding_encoder(
model=model,
encoder_type=self.encoder_type,
encoder_params=self.encoder_params,
inputs=self.encoder_inputs,
input_lengths=self.encoder_lengths,
vocab_size=self.source_vocab_size,
embedding_size=self.model_params['encoder_embedding_size'],
use_attention=(attention_type != 'none'),
)
# For bidirectional RNN, the num of units doubles after encodeing
if (
self.encoder_type == 'rnn' and
self.encoder_params['use_bidirectional_encoder']
):
encoder_num_units *= 2
if attention_type == 'none':
decoder_initial_hidden_state = model.FC(
final_encoder_hidden_state,
'decoder_initial_hidden_state',
encoder_num_units,
decoder_num_units,
axis=2,
)
decoder_initial_cell_state = model.FC(
final_encoder_cell_state,
'decoder_initial_cell_state',
encoder_num_units,
decoder_num_units,
axis=2,
)
else:
decoder_initial_hidden_state = model.param_init_net.ConstantFill(
[],
'decoder_initial_hidden_state',
shape=[decoder_num_units],
value=0.0,
)
decoder_initial_cell_state = model.param_init_net.ConstantFill(
[],
'decoder_initial_cell_state',
shape=[decoder_num_units],
value=0.0,
)
initial_attention_weighted_encoder_context = (
model.param_init_net.ConstantFill(
[],
'initial_attention_weighted_encoder_context',
shape=[encoder_num_units],
value=0.0,
)
)
sqrt3 = math.sqrt(3)
decoder_embeddings = model.AddParam(
name='decoder_embeddings',
init=('UniformFill', dict(
shape=[
self.target_vocab_size,
self.model_params['decoder_embedding_size'],
],
min=-sqrt3,
max=sqrt3,
)),
)
embedded_decoder_inputs = model.net.Gather(
[decoder_embeddings, self.decoder_inputs],
['embedded_decoder_inputs'],
)
# seq_len x batch_size x decoder_embedding_size
with core.NameScope('', reset=True):
if attention_type == 'none':
decoder_outputs, _, _, _ = recurrent.LSTM(
model=model,
input_blob=embedded_decoder_inputs,
seq_lengths=self.decoder_lengths,
initial_states=(
decoder_initial_hidden_state,
decoder_initial_cell_state,
),
dim_in=self.model_params['decoder_embedding_size'],
dim_out=decoder_num_units,
scope='decoder',
outputs_with_grads=[0],
)
decoder_output_size = decoder_num_units
else:
(
decoder_outputs, _, _, _,
attention_weighted_encoder_contexts, _
) = recurrent.LSTMWithAttention(
model=model,
decoder_inputs=embedded_decoder_inputs,
decoder_input_lengths=self.decoder_lengths,
initial_decoder_hidden_state=decoder_initial_hidden_state,
initial_decoder_cell_state=decoder_initial_cell_state,
initial_attention_weighted_encoder_context=(
initial_attention_weighted_encoder_context
),
encoder_output_dim=encoder_num_units,
encoder_outputs=encoder_outputs,
decoder_input_dim=self.model_params['decoder_embedding_size'],
decoder_state_dim=decoder_num_units,
# TODO: remove that later
batch_size=self.batch_size,
scope='decoder',
outputs_with_grads=[0, 4],
)
decoder_outputs, _ = model.net.Concat(
[decoder_outputs, attention_weighted_encoder_contexts],
[
'states_and_context_combination',
'_states_and_context_combination_concat_dims',
],
axis=2,
)
decoder_output_size = decoder_num_units + encoder_num_units
# we do softmax over the whole sequence
# (max_length in the batch * batch_size) x decoder embedding size
# -1 because we don't know max_length yet
decoder_outputs_flattened, _ = model.net.Reshape(
[decoder_outputs],
[
'decoder_outputs_flattened',
'decoder_outputs_and_contexts_combination_old_shape',
],
shape=[-1, decoder_output_size],
)
output_logits = self.output_projection(
model=model,
decoder_outputs=decoder_outputs_flattened,
decoder_output_size=decoder_output_size,
target_vocab_size=self.target_vocab_size,
decoder_softmax_size=self.model_params['decoder_softmax_size'],
)
targets, _ = model.net.Reshape(
[self.targets],
['targets', 'targets_old_shape'],
shape=[-1],
)
target_weights, _ = model.net.Reshape(
[self.target_weights],
['target_weights', 'target_weights_old_shape'],
shape=[-1],
)
output_probs, loss_per_word = model.net.SoftmaxWithLoss(
[output_logits, targets, target_weights],
['OutputProbs', 'loss_per_word'],
)
num_words = model.net.ReduceFrontSum(
target_weights,
'num_words',
)
self.total_loss_scalar = model.net.Mul(
[loss_per_word, num_words],
'total_loss_scalar',
)
self.forward_net = model.net.Clone(
name=model.net.Name() + '_forward_only',
)
# print loss only in the forward net which evaluates loss after every
# epoch
self.forward_net.Print([self.total_loss_scalar], [])
# Note: average over batch.
# It is tricky because of two problems:
# 1. ReduceFrontSum from 1-D tensor returns 0-D tensor
# 2. If you want to multiply 0-D by 1-D tensor
# (by scalar batch_size_inverse_tensor),
# you need to use broadcasting. But gradient propogation
# is broken for op with broadcasting.
# total_loss_scalar, _ = model.net.Reshape(
# [total_loss_scalar],
# [total_loss_scalar, 'total_loss_scalar_old_shape'],
# shape=[1],
# )
batch_size_inverse_tensor = (
model.param_init_net.ConstantFill(
[],
'batch_size_tensor',
shape=[],
value=1.0 / self.batch_size,
)
)
total_loss_scalar_average = model.net.Mul(
[self.total_loss_scalar, batch_size_inverse_tensor],
['total_loss_scalar_average'],
)
model.AddGradientOperators([
total_loss_scalar_average,
])
ONE = model.param_init_net.ConstantFill(
[],
'ONE',
shape=[1],
value=1.0,
)
logger.info('All trainable variables: ')
for param in model.params:
param_grad = model.param_to_grad[param]
if param in model.param_to_grad:
if isinstance(param_grad, core.GradientSlice):
param_grad_values = param_grad.values
param_grad_values = model.net.Clip(
[param_grad_values],
[param_grad_values],
min=0.0,
max=float(self.model_params['max_grad_value']),
)
model.net.ScatterWeightedSum(
[
param,
ONE,
param_grad.indices,
param_grad_values,
model.net.Negative(
[self.learning_rate],
'negative_learning_rate',
),
],
param,
)
else:
param_grad = model.net.Clip(
[param_grad],
[param_grad],
min=0.0,
max=float(self.model_params['max_grad_value']),
)
model.net.WeightedSum(
[
param,
ONE,
param_grad,
model.net.Negative(
[self.learning_rate],
'negative_learning_rate',
),
],
param,
)
self.model = model
def _init_model(self):
workspace.RunNetOnce(self.model.param_init_net)
def create_net(net):
workspace.CreateNet(
net,
input_blobs=map(str, net.external_inputs),
)
create_net(self.model.net)
create_net(self.forward_net)
def __init__(
self,
model_params,
source_vocab_size,
target_vocab_size,
num_gpus=1,
num_cpus=1,
):
self.model_params = model_params
self.encoder_type = 'rnn'
self.encoder_params = model_params['encoder_type']
self.source_vocab_size = source_vocab_size
self.target_vocab_size = target_vocab_size
self.num_gpus = num_gpus
self.num_cpus = num_cpus
self.batch_size = model_params['batch_size']
workspace.GlobalInit([
'caffe2',
# NOTE: modify log level for debugging purposes
'--caffe2_log_level=0',
# NOTE: modify log level for debugging purposes
'--v=0',
# Fail gracefully if one of the threads fails
'--caffe2_handle_executor_threads_exceptions=1',
'--caffe2_mkl_num_threads=' + str(self.num_cpus),
])
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
workspace.ResetWorkspace()
def initialize_from_scratch(self):
logger.info('Initializing Seq2SeqModelCaffe2 from scratch: Start')
self._build_model(init_params=True)
self._init_model()
logger.info('Initializing Seq2SeqModelCaffe2 from scratch: Finish')
def get_current_step(self):
return workspace.FetchBlob(self.global_step)[0]
def inc_current_step(self):
workspace.FeedBlob(
self.global_step,
np.array([self.get_current_step() + 1]),
)
def step(
self,
batch,
forward_only
):
batch_obj = prepare_batch(batch)
for batch_obj_name, batch_obj_value in izip(Batch._fields, batch_obj):
workspace.FeedBlob(batch_obj_name, batch_obj_value)
if forward_only:
workspace.RunNet(self.forward_net)
else:
workspace.RunNet(self.model.net)
self.inc_current_step()
return workspace.FetchBlob(self.total_loss_scalar)
def gen_vocab(corpus, unk_threshold):
vocab = collections.defaultdict(lambda: len(vocab))
freqs = collections.defaultdict(lambda: 0)
# Adding padding tokens to the vocabulary to maintain consistency with IDs
vocab[PAD]
vocab[GO]
vocab[EOS]
with open(corpus) as f:
for sentence in f:
tokens = sentence.strip().split()
for token in tokens:
freqs[token] += 1
for token, freq in freqs.items():
if freq > unk_threshold:
# TODO: Add reverse lookup dict when it becomes necessary
vocab[token]
return vocab
def gen_batches(source_corpus, target_corpus, source_vocab, target_vocab,
batch_size):
batches = []
with open(source_corpus) as source, open(target_corpus) as target:
elems = 0
batch = []
for source_sentence, target_sentence in zip(source, target):
# Convert sentence into list of vocabulary indices
def get_numberized_sentence(sentence, vocab):
sentence_with_id = []
for token in sentence.strip().split():
if token in vocab:
sentence_with_id.append(vocab[token])
else:
sentence_with_id.append(vocab[UNK])
sentence_with_id.append(vocab[EOS])
return sentence_with_id
batch.append(tuple([get_numberized_sentence(sentence, vocab)
for vocab, sentence in
zip([source_vocab, target_vocab],
[source_sentence, target_sentence])
]))
elems += 1
if elems >= batch_size:
batches.append(batch)
batch = []
elems = 0
if len(batch) > 0:
while len(batch) < batch_size:
batch.append(batch[-1])
assert len(batch) == batch_size
batches.append(batch)
return batches
def run_seq2seq_model(args, model_params=None):
source_vocab = gen_vocab(args.source_corpus, args.unk_threshold)
target_vocab = gen_vocab(args.target_corpus, args.unk_threshold)
batches = gen_batches(args.source_corpus, args.target_corpus, source_vocab,
target_vocab, model_params['batch_size'])
logger.info('Source vocab size', len(source_vocab))
logger.info('Target vocab size', len(target_vocab))
batches_eval = gen_batches(args.source_corpus_eval, args.target_corpus_eval,
source_vocab, target_vocab,
model_params['batch_size'])
with Seq2SeqModelCaffe2(
model_params=model_params,
source_vocab_size=len(source_vocab),
target_vocab_size=len(target_vocab),
num_gpus=0,
) as model_obj:
model_obj.initialize_from_scratch()
for _ in range(args.epochs):
for batch in batches:
model_obj.step(
batch=batch,
forward_only=False,
)
model_obj.step(
# merge all eval batches for scalar loss computation
batch=[entry for batch in batches_eval for entry in batch],
forward_only=True,
)
def run_seq2seq_rnn_unidirection_with_no_attention(args):
run_seq2seq_model(args, model_params=dict(
attention='none',
decoder_layer_configs=[
dict(
num_units=args.decoder_cell_num_units,
),
],
encoder_type=dict(
encoder_layer_configs=[
dict(
num_units=args.encoder_cell_num_units,
),
],
use_bidirectional_encoder=args.use_bidirectional_encoder,
),
batch_size=args.batch_size,
optimizer_params=dict(
learning_rate=args.learning_rate,
),
encoder_embedding_size=args.encoder_embedding_size,
decoder_embedding_size=args.decoder_embedding_size,
decoder_softmax_size=args.decoder_softmax_size,
max_grad_value=args.max_grad_value,
))
def main():
parser = argparse.ArgumentParser(
description='Caffe2: Seq2Seq Training'
)
parser.add_argument('--source-corpus', type=str, default=None,
help='Path to source corpus in a text file format. Each '
'line in the file should contain a single sentence',
required=True)
parser.add_argument('--target-corpus', type=str, default=None,
help='Path to target corpus in a text file format',
required=True)
parser.add_argument('--batch-size', type=int, default=500,
help='Training batch size')
parser.add_argument('--epochs', type=int, default=10,
help='Number of iterations over training data')
parser.add_argument('--learning-rate', type=float, default=0.1,
help='Learning rate')
parser.add_argument('--unk-threshold', type=int, default=5,
help='Threshold frequency under which token becomes '
'labelled unknown token')
parser.add_argument('--max-grad-value', type=float, default=5.0,
help='Max clip value of gradients at the end of each '
'backward pass')
parser.add_argument('--use-bidirectional-encoder', action='store_true',
help='Set flag to use bidirectional recurrent network '
'in encoder')
parser.add_argument('--source-corpus-eval', type=str, default=None,
help='Path to source corpus for evaluation in a text '
'file format', required=True)
parser.add_argument('--target-corpus-eval', type=str, default=None,
help='Path to target corpus for evaluation in a text '
'file format', required=True)
parser.add_argument('--encoder-cell-num-units', type=int, default=25,
help='Number of cell units in the encoder layer')
parser.add_argument('--decoder-cell-num-units', type=int, default=50,
help='Number of cell units in the decoder layer')
parser.add_argument('--encoder-embedding-size', type=int, default=25,
help='Size of embedding in the encoder layer')
parser.add_argument('--decoder-embedding-size', type=int, default=25,
help='Size of embedding in the decoder layer')
parser.add_argument('--decoder-softmax-size', type=int, default=25,
help='Size of softmax layer in the decoder')
args = parser.parse_args()
run_seq2seq_rnn_unidirection_with_no_attention(args)
if __name__ == '__main__':
main()