blob: 99459eef86917c7682da91c7ec357daebf929f87 [file] [log] [blame]
# TODO:
# - Tuple[..., t]
# - @no_type_check as class decorator
# - Look for TODO below
# - FrozenSet
# TODO nits:
# Get rid of asserts that are the caller's fault.
# Docstrings (e.g. ABCs).
import abc
from abc import abstractmethod, abstractproperty
import collections
import functools
import inspect
import re as stdlib_re # Avoid confusion with the re we export.
import sys
import types
try:
import collections.abc as collections_abc
except ImportError:
import collections as collections_abc # Fallback for PY3.2.
# Please keep __all__ alphabetized within each category.
__all__ = [
# Super-special typing primitives.
'Any',
'Callable',
'Generic',
'Optional',
'TypeVar',
'Union',
'Tuple',
# ABCs (from collections.abc).
'AbstractSet', # collections.abc.Set.
'ByteString',
'Container',
'Hashable',
'ItemsView',
'Iterable',
'Iterator',
'KeysView',
'Mapping',
'MappingView',
'MutableMapping',
'MutableSequence',
'MutableSet',
'Sequence',
'Sized',
'ValuesView',
# Structural checks, a.k.a. protocols.
'Reversible',
'SupportsAbs',
'SupportsFloat',
'SupportsInt',
'SupportsRound',
# Concrete collection types.
'Dict',
'List',
'Set',
'NamedTuple', # Not really a type.
# Compile-time constants.
'POSIX',
'PY2',
'PY3',
'WINDOWS',
# One-off things.
'AnyStr',
'Undefined',
'cast',
'get_type_hints',
'no_type_check',
'no_type_check_decorator',
'overload',
# Submodules.
'io',
're',
]
# Simple constants defined in the PEP.
PY2 = sys.version_info[0] == 2
PY3 = sys.version_info[0] >= 3
WINDOWS = sys.platform == 'win32'
POSIX = not WINDOWS
def _qualname(x):
if sys.version_info[:2] >= (3, 3):
return x.__qualname__
else:
# Fall back to just name.
return x.__name__
class TypingMeta(type):
"""Metaclass for every type defined below.
This overrides __new__() to require an extra keyword parameter
'_root', which serves as a guard against naive subclassing of the
typing classes. Any legitimate class defined using a metaclass
derived from TypingMeta (including internal subclasses created by
e.g. Union[X, Y]) must pass _root=True.
This also defines a dummy constructor (all the work is done in
__new__) and a nicer repr().
"""
_is_protocol = False
def __new__(cls, name, bases, namespace, *, _root=False):
if not _root:
raise TypeError("Cannot subclass %s" %
(', '.join(map(_type_repr, bases)) or '()'))
return super().__new__(cls, name, bases, namespace)
def __init__(self, *args, **kwds):
pass
def _eval_type(self, globalns, localns):
"""Override this in subclasses to interpret forward references.
For example, Union['C'] is internally stored as
Union[_ForwardRef('C')], which should evaluate to _Union[C],
where C is an object found in globalns or localns (searching
localns first, of course).
"""
return self
def _has_type_var(self):
return False
def __repr__(self):
return '%s.%s' % (self.__module__, _qualname(self))
class Final:
"""Mix-in class to prevent instantiation."""
def __new__(self, *args, **kwds):
raise TypeError("Cannot instantiate %r" % self.__class__)
class _ForwardRef(TypingMeta):
"""Wrapper to hold a forward reference."""
def __new__(cls, arg):
if not isinstance(arg, str):
raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
try:
code = compile(arg, '<string>', 'eval')
except SyntaxError:
raise SyntaxError('ForwardRef must be an expression -- got %r' %
(arg,))
self = super().__new__(cls, arg, (), {}, _root=True)
self.__forward_arg__ = arg
self.__forward_code__ = code
self.__forward_evaluated__ = False
self.__forward_value__ = None
return self
def _eval_type(self, globalns, localns):
if not isinstance(localns, dict):
raise TypeError('ForwardRef localns must be a dict -- got %r' %
(localns,))
if not isinstance(globalns, dict):
raise TypeError('ForwardRef globalns must be a dict -- got %r' %
(globalns,))
if not self.__forward_evaluated__:
self.__forward_value__ = eval(self.__forward_code__,
globalns, localns)
self.__forward_evaluated__ = True
return self.__forward_value__
def __repr__(self):
return '_ForwardRef(%r)' % (self.__forward_arg__,)
class _TypeAlias:
"""Internal helper class for defining generic variants of concrete types.
Note that this is not a type; let's call it a pseudo-type. It can
be used in instance and subclass checks, e.g. isinstance(m, Match)
or issubclass(type(m), Match). However, it cannot be itself the
target of an issubclass() call; e.g. issubclass(Match, C) (for
some arbitrary class C) raises TypeError rather than returning
False.
"""
def __new__(cls, *args, **kwds):
"""Constructor.
This only exists to give a better error message in case
someone tries to subclass a type alias (not a good idea).
"""
if (len(args) == 3 and
isinstance(args[0], str) and
isinstance(args[1], tuple)):
# Close enough.
raise TypeError("A type alias cannot be subclassed")
return object.__new__(cls)
def __init__(self, name, type_var, impl_type, type_checker):
"""Initializer.
Args:
name: The name, e.g. 'Pattern'.
type_var: The type parameter, e.g. AnyStr, or the
specific type, e.g. str.
impl_type: The implementation type.
type_checker: Function that takes an impl_type instance.
and returns a value that should be a type_var instance.
"""
assert isinstance(name, str), repr(name)
assert isinstance(type_var, type), repr(type_var)
assert isinstance(impl_type, type), repr(impl_type)
assert not isinstance(impl_type, TypingMeta), repr(impl_type)
self.name = name
self.type_var = type_var
self.impl_type = impl_type
self.type_checker = type_checker
def __repr__(self):
return "%s[%s]" % (self.name, _type_repr(self.type_var))
def __getitem__(self, parameter):
assert isinstance(parameter, type), repr(parameter)
if not isinstance(self.type_var, TypeVar):
raise TypeError("%s cannot be further parameterized." % self)
if not issubclass(parameter, self.type_var):
raise TypeError("%s is not a valid substitution for %s." %
(parameter, self.type_var))
return self.__class__(self.name, parameter,
self.impl_type, self.type_checker)
def __instancecheck__(self, obj):
return (isinstance(obj, self.impl_type) and
isinstance(self.type_checker(obj), self.type_var))
def __subclasscheck__(self, cls):
if cls is Any:
return True
if isinstance(cls, _TypeAlias):
# Covariance. For now, we compare by name.
return (cls.name == self.name and
issubclass(cls.type_var, self.type_var))
else:
# Note that this is too lenient, because the
# implementation type doesn't carry information about
# whether it is about bytes or str (for example).
return issubclass(cls, self.impl_type)
def _has_type_var(t):
return t is not None and isinstance(t, TypingMeta) and t._has_type_var()
def _eval_type(t, globalns, localns):
if isinstance(t, TypingMeta):
return t._eval_type(globalns, localns)
else:
return t
def _type_check(arg, msg):
"""Check that the argument is a type, and return it.
As a special case, accept None and return type(None) instead.
Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
The msg argument is a human-readable error message, e.g.
"Union[arg, ...]: arg should be a type."
We append the repr() of the actual value (truncated to 100 chars).
"""
if arg is None:
return type(None)
if isinstance(arg, str):
arg = _ForwardRef(arg)
if not isinstance(arg, (type, _TypeAlias)):
raise TypeError(msg + " Got %.100r." % (arg,))
return arg
def _type_repr(obj):
"""Return the repr() of an object, special-casing types.
If obj is a type, we return a shorter version than the default
type.__repr__, based on the module and qualified name, which is
typically enough to uniquely identify a type. For everything
else, we fall back on repr(obj).
"""
if isinstance(obj, type) and not isinstance(obj, TypingMeta):
if obj.__module__ == 'builtins':
return _qualname(obj)
else:
return '%s.%s' % (obj.__module__, _qualname(obj))
else:
return repr(obj)
class AnyMeta(TypingMeta):
"""Metaclass for Any."""
def __new__(cls, name, bases, namespace, _root=False):
self = super().__new__(cls, name, bases, namespace, _root=_root)
return self
def __instancecheck__(self, instance):
return True
def __subclasscheck__(self, cls):
if not isinstance(cls, type):
return super().__subclasscheck__(cls) # To TypeError.
return True
class Any(Final, metaclass=AnyMeta, _root=True):
"""Special type indicating an unconstrained type.
- Any object is an instance of Any.
- Any class is a subclass of Any.
- As a special case, Any and object are subclasses of each other.
"""
class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
"""Type variable.
Usage::
T1 = TypeVar('T1') # Unconstrained
T2 = TypeVar('T2', t1, t2, ...) # Constrained to any of (t1, t2, ...)
For an unconstrained type variable T, isinstance(x, T) is false
for all x, and similar for issubclass(cls, T). Example::
T = TypeVar('T')
assert not isinstance(42, T)
assert not issubclass(int, T)
For a constrained type variable T, isinstance(x, T) is true for
any x that is an instance of at least one of T's constraints,
and similar for issubclass(cls, T). Example::
AnyStr = TypeVar('AnyStr', str, bytes)
# AnyStr behaves similar to Union[str, bytes] (but not exactly!)
assert not isinstance(42, AnyStr)
assert isinstance('', AnyStr)
assert isinstance(b'', AnyStr)
assert not issubclass(int, AnyStr)
assert issubclass(str, AnyStr)
assert issubclass(bytes, AnyStr)
Type variables that are distinct objects are never equal (even if
created with the same parameters).
You can temporarily *bind* a type variable to a specific type by
calling its bind() method and using the result as a context
manager (i.e., in a with-statement). Example::
with T.bind(int):
# In this block, T is nearly an alias for int.
assert isinstance(42, T)
assert issubclass(int, T)
There is still a difference between T and int; issubclass(T, int)
is False. However, issubclass(int, T) is true.
Binding a constrained type variable will replace the binding type
with the most derived of its constraints that matches. Example::
class MyStr(str):
pass
with AnyStr.bind(MyStr):
# In this block, AnyStr is an alias for str, not for MyStr.
assert isinstance('', AnyStr)
assert issubclass(str, AnyStr)
assert not isinstance(b'', AnyStr)
assert not issubclass(bytes, AnyStr)
"""
def __new__(cls, name, *constraints):
self = super().__new__(cls, name, (Final,), {}, _root=True)
msg = "TypeVar(name, constraint, ...): constraints must be types."
self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
self.__binding__ = None
return self
def _has_type_var(self):
return True
def __repr__(self):
return '~' + self.__name__
def __instancecheck__(self, instance):
if self.__binding__ is not None:
return isinstance(instance, self.__binding__)
elif not self.__constraints__:
return False
else:
return isinstance(instance, Union[self.__constraints__])
def __subclasscheck__(self, cls):
if cls is Any:
return True
if cls is self:
return True
elif self.__binding__ is not None:
return issubclass(cls, self.__binding__)
elif not self.__constraints__:
return False
else:
return issubclass(cls, Union[self.__constraints__])
def bind(self, binding):
binding = _type_check(binding, "TypeVar.bind(t): t must be a type.")
if self.__constraints__:
best = None
for t in self.__constraints__:
if (issubclass(binding, t) and
(best is None or issubclass(t, best))):
best = t
if best is None:
raise TypeError(
"TypeVar.bind(t): t must match one of the constraints.")
binding = best
return VarBinding(self, binding)
def _bind(self, binding):
old_binding = self.__binding__
self.__binding__ = binding
return old_binding
def _unbind(self, binding, old_binding):
assert self.__binding__ is binding, (self.__binding__,
binding, old_binding)
self.__binding__ = old_binding
# Compatibility for for mypy's typevar().
def typevar(name, values=()):
return TypeVar(name, *values)
class VarBinding:
"""TypeVariable binding returned by TypeVar.bind()."""
# TODO: This is not thread-safe. We could solve this in one of
# two ways: by using a lock or by using thread-local state. But
# either of these feels overly heavy, and still doesn't work
# e.g. in an asyncio Task.
def __init__(self, var, binding):
assert isinstance(var, TypeVar), (var, binding)
assert isinstance(binding, type), (var, binding)
self._var = var
self._binding = binding
self._old_binding = None
self._entered = False
def __enter__(self):
if self._entered:
# This checks for the following scenario:
# bv = T.bind(<some_type>)
# with bv:
# with bv: # Will raise here.
# ...
# However, the following scenario is OK (if somewhat odd):
# bv = T.bind(<some_type>)
# with bv:
# ...
# with bv:
# ...
# The following scenario is also fine:
# with T.bind(<some_type>):
# with T.bind(<some_other_type>):
# ...
raise TypeError("Cannot reuse variable binding recursively.")
self._old_binding = self._var._bind(self._binding)
self._entered = True
def __exit__(self, *args):
try:
self._var._unbind(self._binding, self._old_binding)
finally:
self._entered = False
self._old_binding = None
# Some unconstrained type variables. These are used by the container types.
T = TypeVar('T') # Any type.
KT = TypeVar('KT') # Key type.
VT = TypeVar('VT') # Value type.
# A useful type variable with constraints. This represents string types.
# TODO: What about bytearray, memoryview?
AnyStr = TypeVar('AnyStr', bytes, str)
class UnionMeta(TypingMeta):
"""Metaclass for Union."""
def __new__(cls, name, bases, namespace, parameters=None, _root=False):
if parameters is None:
return super().__new__(cls, name, bases, namespace, _root=_root)
if not isinstance(parameters, tuple):
raise TypeError("Expected parameters=<tuple>")
# Flatten out Union[Union[...], ...] and type-check non-Union args.
params = []
msg = "Union[arg, ...]: each arg must be a type."
for p in parameters:
if isinstance(p, UnionMeta):
params.extend(p.__union_params__)
else:
params.append(_type_check(p, msg))
# Weed out strict duplicates, preserving the first of each occurrence.
all_params = set(params)
if len(all_params) < len(params):
new_params = []
for t in params:
if t in all_params:
new_params.append(t)
all_params.remove(t)
params = new_params
assert not all_params, all_params
# Weed out subclasses.
# E.g. Union[int, Employee, Manager] == Union[int, Employee].
# If Any or object is present it will be the sole survivor.
# If both Any and object are present, Any wins.
all_params = set(params)
for t1 in params:
if t1 is Any:
return Any
if any(issubclass(t1, t2) for t2 in all_params - {t1}):
all_params.remove(t1)
# It's not a union if there's only one type left.
if len(all_params) == 1:
return all_params.pop()
# Create a new class with these params.
self = super().__new__(cls, name, bases, {}, _root=True)
self.__union_params__ = tuple(t for t in params if t in all_params)
self.__union_set_params__ = frozenset(self.__union_params__)
return self
def _eval_type(self, globalns, localns):
p = tuple(_eval_type(t, globalns, localns)
for t in self.__union_params__)
if p == self.__union_params__:
return self
else:
return self.__class__(self.__name__, self.__bases__, {},
p, _root=True)
def _has_type_var(self):
if self.__union_params__:
for t in self.__union_params__:
if _has_type_var(t):
return True
return False
def __repr__(self):
r = super().__repr__()
if self.__union_params__:
r += '[%s]' % (', '.join(_type_repr(t)
for t in self.__union_params__))
return r
def __getitem__(self, parameters):
if self.__union_params__ is not None:
raise TypeError(
"Cannot subscript an existing Union. Use Union[u, t] instead.")
if parameters == ():
raise TypeError("Cannot take a Union of no types.")
if not isinstance(parameters, tuple):
parameters = (parameters,)
return self.__class__(self.__name__, self.__bases__,
dict(self.__dict__), parameters, _root=True)
def __eq__(self, other):
if not isinstance(other, UnionMeta):
return NotImplemented
return self.__union_set_params__ == other.__union_set_params__
def __hash__(self):
return hash(self.__union_set_params__)
def __instancecheck__(self, instance):
return (self.__union_set_params__ is not None and
any(isinstance(instance, t) for t in self.__union_params__))
def __subclasscheck__(self, cls):
if cls is Any:
return True
if self.__union_params__ is None:
return isinstance(cls, UnionMeta)
elif isinstance(cls, UnionMeta):
if cls.__union_params__ is None:
return False
return all(issubclass(c, self) for c in (cls.__union_params__))
elif isinstance(cls, TypeVar):
if cls in self.__union_params__:
return True
if cls.__constraints__:
return issubclass(Union[cls.__constraints__], self)
return False
else:
return any(issubclass(cls, t) for t in self.__union_params__)
class Union(Final, metaclass=UnionMeta, _root=True):
"""Union type; Union[X, Y] means either X or Y.
To define a union, use e.g. Union[int, str]. Details:
- The arguments must be types and there must be at least one.
- None as an argument is a special case and is replaced by
type(None).
- Unions of unions are flattened, e.g.::
Union[Union[int, str], float] == Union[int, str, float]
- Unions of a single argument vanish, e.g.::
Union[int] == int # The constructor actually returns int
- Redundant arguments are skipped, e.g.::
Union[int, str, int] == Union[int, str]
- When comparing unions, the argument order is ignored, e.g.::
Union[int, str] == Union[str, int]
- When two arguments have a subclass relationship, the least
derived argument is kept, e.g.::
class Employee: pass
class Manager(Employee): pass
Union[int, Employee, Manager] == Union[int, Employee]
Union[Manager, int, Employee] == Union[int, Employee]
Union[Employee, Manager] == Employee
- Corollary: if Any is present it is the sole survivor, e.g.::
Union[int, Any] == Any
- Similar for object::
Union[int, object] == object
- To cut a tie: Union[object, Any] == Union[Any, object] == Any.
- You cannot subclass or instantiate a union.
- You cannot write Union[X][Y] (what would it mean?).
- You can use Optional[X] as a shorthand for Union[X, None].
"""
# Unsubscripted Union type has params set to None.
__union_params__ = None
__union_set_params__ = None
class OptionalMeta(TypingMeta):
"""Metaclass for Optional."""
def __new__(cls, name, bases, namespace, _root=False):
return super().__new__(cls, name, bases, namespace, _root=_root)
def __getitem__(self, arg):
arg = _type_check(arg, "Optional[t] requires a single type.")
return Union[arg, type(None)]
class Optional(Final, metaclass=OptionalMeta, _root=True):
"""Optional type.
Optional[X] is equivalent to Union[X, type(None)].
"""
class TupleMeta(TypingMeta):
"""Metaclass for Tuple."""
def __new__(cls, name, bases, namespace, parameters=None, _root=False):
self = super().__new__(cls, name, bases, namespace, _root=_root)
self.__tuple_params__ = parameters
return self
def _has_type_var(self):
if self.__tuple_params__:
for t in self.__tuple_params__:
if _has_type_var(t):
return True
return False
def _eval_type(self, globalns, localns):
tp = self.__tuple_params__
if tp is None:
return self
p = tuple(_eval_type(t, globalns, localns) for t in tp)
if p == self.__tuple_params__:
return self
else:
return self.__class__(self.__name__, self.__bases__, {},
p, _root=True)
def __repr__(self):
r = super().__repr__()
if self.__tuple_params__ is not None:
r += '[%s]' % (
', '.join(_type_repr(p) for p in self.__tuple_params__))
return r
def __getitem__(self, parameters):
if self.__tuple_params__ is not None:
raise TypeError("Cannot re-parameterize %r" % (self,))
if not isinstance(parameters, tuple):
parameters = (parameters,)
msg = "Class[arg, ...]: each arg must be a type."
parameters = tuple(_type_check(p, msg) for p in parameters)
return self.__class__(self.__name__, self.__bases__,
dict(self.__dict__), parameters, _root=True)
def __eq__(self, other):
if not isinstance(other, TupleMeta):
return NotImplemented
return self.__tuple_params__ == other.__tuple_params__
def __hash__(self):
return hash(self.__tuple_params__)
def __instancecheck__(self, t):
if not isinstance(t, tuple):
return False
if self.__tuple_params__ is None:
return True
return (len(t) == len(self.__tuple_params__) and
all(isinstance(x, p)
for x, p in zip(t, self.__tuple_params__)))
def __subclasscheck__(self, cls):
if cls is Any:
return True
if not isinstance(cls, type):
return super().__subclasscheck__(cls) # To TypeError.
if issubclass(cls, tuple):
return True # Special case.
if not isinstance(cls, TupleMeta):
return super().__subclasscheck__(cls) # False.
if self.__tuple_params__ is None:
return True
if cls.__tuple_params__ is None:
return False # ???
# Covariance.
return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
all(issubclass(x, p)
for x, p in zip(cls.__tuple_params__,
self.__tuple_params__)))
class Tuple(Final, metaclass=TupleMeta, _root=True):
"""Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
Example: Tuple[T1, T2] is a tuple of two elements corresponding
to type variables T1 and T2. Tuple[int, float, str] is a tuple
of an int, a float and a string.
To specify a variable-length tuple of homogeneous type, use Sequence[T].
"""
class CallableMeta(TypingMeta):
"""Metaclass for Callable."""
def __new__(cls, name, bases, namespace, _root=False,
args=None, result=None):
if args is None and result is None:
pass # Must be 'class Callable'.
else:
if args is not Ellipsis:
if not isinstance(args, list):
raise TypeError("Callable[args, result]: "
"args must be a list."
" Got %.100r." % (args,))
msg = "Callable[[arg, ...], result]: each arg must be a type."
args = tuple(_type_check(arg, msg) for arg in args)
msg = "Callable[args, result]: result must be a type."
result = _type_check(result, msg)
self = super().__new__(cls, name, bases, namespace, _root=_root)
self.__args__ = args
self.__result__ = result
return self
def _has_type_var(self):
if self.__args__:
for t in self.__args__:
if _has_type_var(t):
return True
return _has_type_var(self.__result__)
def _eval_type(self, globalns, localns):
if self.__args__ is None and self.__result__ is None:
return self
args = [_eval_type(t, globalns, localns) for t in self.__args__]
result = _eval_type(self.__result__, globalns, localns)
if args == self.__args__ and result == self.__result__:
return self
else:
return self.__class__(self.__name__, self.__bases__, {},
args=args, result=result, _root=True)
def __repr__(self):
r = super().__repr__()
if self.__args__ is not None or self.__result__ is not None:
r += '%s[[%s], %s]' % (_qualname(self),
', '.join(_type_repr(t)
for t in self.__args__),
_type_repr(self.__result__))
return r
def __getitem__(self, parameters):
if self.__args__ is not None or self.__result__ is not None:
raise TypeError("This Callable type is already parameterized.")
if not isinstance(parameters, tuple) or len(parameters) != 2:
raise TypeError(
"Callable must be used as Callable[[arg, ...], result].")
args, result = parameters
return self.__class__(self.__name__, self.__bases__,
dict(self.__dict__), _root=True,
args=args, result=result)
def __eq__(self, other):
if not isinstance(other, CallableMeta):
return NotImplemented
return (self.__args__ == other.__args__ and
self.__result__ == other.__result__)
def __hash__(self):
return hash(self.__args__) ^ hash(self.__result__)
def __instancecheck__(self, instance):
if not callable(instance):
return False
if self.__args__ is None and self.__result__ is None:
return True
assert self.__args__ is not None
assert self.__result__ is not None
my_args, my_result = self.__args__, self.__result__
# Would it be better to use Signature objects?
try:
(args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults,
annotations) = inspect.getfullargspec(instance)
except TypeError:
return False # We can't find the signature. Give up.
msg = ("When testing isinstance(<callable>, Callable[...], "
"<calleble>'s annotations must be types.")
if my_args is not Ellipsis:
if kwonlyargs and (not kwonlydefaults or
len(kwonlydefaults) < len(kwonlyargs)):
return False
if isinstance(instance, types.MethodType):
# For methods, getfullargspec() includes self/cls,
# but it's not part of the call signature, so drop it.
del args[0]
min_call_args = len(args)
if defaults:
min_call_args -= len(defaults)
if varargs:
max_call_args = 999999999
if len(args) < len(my_args):
args += [varargs] * (len(my_args) - len(args))
else:
max_call_args = len(args)
if not min_call_args <= len(my_args) <= max_call_args:
return False
for my_arg_type, name in zip(my_args, args):
if name in annotations:
annot_type = _type_check(annotations[name], msg)
else:
annot_type = Any
if not issubclass(my_arg_type, annot_type):
return False
# TODO: If mutable type, check invariance?
if 'return' in annotations:
annot_return_type = _type_check(annotations['return'], msg)
# Note contravariance here!
if not issubclass(annot_return_type, my_result):
return False
# Can't find anything wrong...
return True
def __subclasscheck__(self, cls):
if cls is Any:
return True
if not isinstance(cls, CallableMeta):
return super().__subclasscheck__(cls)
if self.__args__ is None and self.__result__ is None:
return True
# We're not doing covariance or contravariance -- this is *invariance*.
return self == cls
class Callable(Final, metaclass=CallableMeta, _root=True):
"""Callable type; Callable[[int], str] is a function of (int) -> str.
The subscription syntax must always be used with exactly two
values: the argument list and the return type. The argument list
must be a list of types; the return type must be a single type.
There is no syntax to indicate optional or keyword arguments,
such function types are rarely used as callback types.
"""
class GenericMeta(TypingMeta, abc.ABCMeta):
"""Metaclass for generic types."""
# TODO: Constrain more how Generic is used; only a few
# standard patterns should be allowed.
__extra__ = None
def __new__(cls, name, bases, namespace, parameters=None, extra=None):
if parameters is None:
# Extract parameters from direct base classes. Only
# direct bases are considered and only those that are
# themselves generic, and parameterized with type
# variables. Don't use bases like Any, Union, Tuple,
# Callable or type variables.
params = None
for base in bases:
if isinstance(base, TypingMeta):
if not isinstance(base, GenericMeta):
raise TypeError(
"You cannot inherit from magic class %s" %
repr(base))
if base.__parameters__ is None:
continue # The base is unparameterized.
for bp in base.__parameters__:
if _has_type_var(bp) and not isinstance(bp, TypeVar):
raise TypeError(
"Cannot inherit from a generic class "
"parameterized with "
"non-type-variable %s" % bp)
if params is None:
params = []
if bp not in params:
params.append(bp)
if params is not None:
parameters = tuple(params)
self = super().__new__(cls, name, bases, namespace, _root=True)
self.__parameters__ = parameters
if extra is not None:
self.__extra__ = extra
# Else __extra__ is inherited, eventually from the
# (meta-)class default above.
return self
def _has_type_var(self):
if self.__parameters__:
for t in self.__parameters__:
if _has_type_var(t):
return True
return False
def __repr__(self):
r = super().__repr__()
if self.__parameters__ is not None:
r += '[%s]' % (
', '.join(_type_repr(p) for p in self.__parameters__))
return r
def __eq__(self, other):
if not isinstance(other, GenericMeta):
return NotImplemented
return (self.__name__ == other.__name__ and
self.__parameters__ == other.__parameters__)
def __hash__(self):
return hash((self.__name__, self.__parameters__))
def __getitem__(self, params):
if not isinstance(params, tuple):
params = (params,)
if not params:
raise TypeError("Cannot have empty parameter list")
msg = "Parameters to generic types must be types."
params = tuple(_type_check(p, msg) for p in params)
if self.__parameters__ is None:
for p in params:
if not isinstance(p, TypeVar):
raise TypeError("Initial parameters must be "
"type variables; got %s" % p)
else:
if len(params) != len(self.__parameters__):
raise TypeError("Cannot change parameter count from %d to %d" %
(len(self.__parameters__), len(params)))
for new, old in zip(params, self.__parameters__):
if isinstance(old, TypeVar) and not old.__constraints__:
# Substituting for an unconstrained TypeVar is always OK.
continue
if not issubclass(new, old):
raise TypeError(
"Cannot substitute %s for %s in %s" %
(_type_repr(new), _type_repr(old), self))
return self.__class__(self.__name__, self.__bases__,
dict(self.__dict__),
parameters=params, extra=self.__extra__)
def __subclasscheck__(self, cls):
if cls is Any:
return True
if super().__subclasscheck__(cls):
return True
if self.__extra__ is None:
return False
return issubclass(cls, self.__extra__)
def __instancecheck__(self, obj):
if super().__instancecheck__(obj):
return True
if self.__extra__ is None:
return False
return isinstance(obj, self.__extra__)
class Generic(metaclass=GenericMeta):
"""Abstract base class for generic types.
A generic type is typically declared by inheriting from an
instantiation of this class with one or more type variables.
For example, a generic mapping type might be defined as::
class Mapping(Generic[KT, VT]):
def __getitem__(self, key: KT) -> VT:
...
# Etc.
This class can then be used as follows::
def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
try:
return mapping[key]
except KeyError:
return default
For clarity the type variables may be redefined, e.g.::
X = TypeVar('X')
Y = TypeVar('Y')
def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
# Same body as above.
"""
class Undefined:
"""An undefined value.
Example::
x = Undefined(typ)
This tells the type checker that x has the given type but its
value should be considered undefined. At runtime x is an instance
of Undefined. The actual type can be introspected by looking at
x.__type__ and its str() and repr() are defined, but any other
operations or attributes will raise an exception.
An alternative syntax is also supported:
x = Undefined # type: typ
This has the same meaning to the static type checker but uses less
overhead at run-time, at the cost of not being introspectible.
NOTE: Do not under any circumstances check for Undefined. We
don't want this to become something developers rely upon, like
JavaScript's undefined. Code that returns or uses an Undefined
value in any way should be considered broken. Static type
checkers should warn about using potentially Undefined values.
"""
__slots__ = ['__type__']
def __new__(cls, typ):
typ = _type_check(typ, "Undefined(t): t must be a type.")
self = super().__new__(cls)
self.__type__ = typ
return self
__hash__ = None
def __repr__(self):
return '%s(%s)' % (_type_repr(self.__class__),
_type_repr(self.__type__))
def cast(typ, val):
"""Cast a value to a type.
This returns the value unchanged. To the type checker this
signals that the return value has the designated type, but at
runtime we intentionally don't check anything (we want this
to be as fast as possible).
"""
return val
def _get_defaults(func):
"""Internal helper to extract the default arguments, by name."""
code = func.__code__
pos_count = code.co_argcount
kw_count = code.co_kwonlyargcount
arg_names = code.co_varnames
kwarg_names = arg_names[pos_count:pos_count+kw_count]
arg_names = arg_names[:pos_count]
defaults = func.__defaults__ or ()
kwdefaults = func.__kwdefaults__
res = dict(kwdefaults) if kwdefaults else {}
pos_offset = pos_count - len(defaults)
for name, value in zip(arg_names[pos_offset:], defaults):
assert name not in res
res[name] = value
return res
def get_type_hints(obj, globalns=None, localns=None):
"""Return type hints for a function or method object.
This is often the same as obj.__annotations__, but it handles
forward references encoded as string literals, and if necessary
adds Optional[t] if a default value equal to None is set.
BEWARE -- the behavior of globalns and localns is counterintuitive
(unless you are familiar with how eval() and exec() work). The
search order is locals first, then globals.
- If no dict arguments are passed, the defaults are taken from the
globals and locals of the caller, respectively.
- If one dict argument is passed, it is used for both globals and
locals.
- If two dict arguments are passed, they specify globals and
locals, respectively.
"""
if getattr(obj, '__no_type_check__', None):
return {}
if globalns is None:
globalns = sys._getframe(1).f_globals
if localns is None:
localns = sys._getframe(1).f_locals
elif localns is None:
localns = globalns
defaults = _get_defaults(obj)
hints = dict(obj.__annotations__)
for name, value in hints.items():
if isinstance(value, str):
value = _ForwardRef(value)
value = _eval_type(value, globalns, localns)
if name in defaults and defaults[name] is None:
value = Optional[value]
hints[name] = value
return hints
# TODO: Also support this as a class decorator.
def no_type_check(func):
"""Decorator to indicate that annotations are not type hints.
This mutates the function in place.
"""
func.__no_type_check__ = True
return func
def no_type_check_decorator(decorator):
"""Decorator to give another decorator the @no_type_check effect.
This wraps the decorator with something that wraps the decorated
function in @no_type_check.
"""
@functools.wraps(decorator)
def wrapped_decorator(*args, **kwds):
func = decorator(*args, **kwds)
func = no_type_check(func)
return func
return wrapped_decorator
def overload(func):
raise RuntimeError("Overloading is only supported in library stubs")
class _Protocol(Generic):
"""Internal base class for protocol classes.
This implements a simple-minded structural isinstance check
(similar but more general than the one-offs in collections.abc
such as Hashable).
"""
_is_protocol = True
@classmethod
def __subclasshook__(self, cls):
if not self._is_protocol:
# No structural checks since this isn't a protocol.
return NotImplemented
if self is _Protocol:
# Every class is a subclass of the empty protocol.
return True
# Find all attributes defined in the protocol.
attrs = self._get_protocol_attrs()
for attr in attrs:
if not any(attr in d.__dict__ for d in cls.__mro__):
return NotImplemented
return True
@classmethod
def _get_protocol_attrs(self):
# Get all Protocol base classes.
protocol_bases = []
for c in self.__mro__:
if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
protocol_bases.append(c)
# Get attributes included in protocol.
attrs = set()
for base in protocol_bases:
for attr in base.__dict__.keys():
# Include attributes not defined in any non-protocol bases.
for c in self.__mro__:
if (c is not base and attr in c.__dict__ and
not getattr(c, '_is_protocol', False)):
break
else:
if (not attr.startswith('_abc_') and
attr != '__abstractmethods__' and
attr != '_is_protocol' and
attr != '__dict__' and
attr != '_get_protocol_attrs' and
attr != '__module__'):
attrs.add(attr)
return attrs
# Various ABCs mimicking those in collections.abc.
# A few are simply re-exported for completeness.
Hashable = collections_abc.Hashable # Not generic.
class Iterable(Generic[T], extra=collections_abc.Iterable):
pass
class Iterator(Iterable, extra=collections_abc.Iterator):
pass
class SupportsInt(_Protocol):
@abstractmethod
def __int__(self) -> int:
pass
class SupportsFloat(_Protocol):
@abstractmethod
def __float__(self) -> float:
pass
class SupportsAbs(_Protocol[T]):
@abstractmethod
def __abs__(self) -> T:
pass
class SupportsRound(_Protocol[T]):
@abstractmethod
def __round__(self, ndigits: int = 0) -> T:
pass
class Reversible(_Protocol[T]):
@abstractmethod
def __reversed__(self) -> 'Iterator[T]':
pass
Sized = collections_abc.Sized # Not generic.
class Container(Generic[T], extra=collections_abc.Container):
pass
# Callable was defined earlier.
class AbstractSet(Sized, Iterable, Container, extra=collections_abc.Set):
pass
class MutableSet(AbstractSet, extra=collections_abc.MutableSet):
pass
class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT],
extra=collections_abc.Mapping):
pass
class MutableMapping(Mapping, extra=collections_abc.MutableMapping):
pass
class Sequence(Sized, Iterable, Container, extra=collections_abc.Sequence):
pass
class MutableSequence(Sequence, extra=collections_abc.MutableSequence):
pass
class ByteString(Sequence[int], extra=collections_abc.ByteString):
pass
ByteString.register(type(memoryview(b'')))
class _ListMeta(GenericMeta):
def __instancecheck__(self, obj):
if not super().__instancecheck__(obj):
return False
itemtype = self.__parameters__[0]
for x in obj:
if not isinstance(x, itemtype):
return False
return True
class List(list, MutableSequence, metaclass=_ListMeta):
pass
class _SetMeta(GenericMeta):
def __instancecheck__(self, obj):
if not super().__instancecheck__(obj):
return False
itemtype = self.__parameters__[0]
for x in obj:
if not isinstance(x, itemtype):
return False
return True
class Set(set, MutableSet, metaclass=_SetMeta):
pass
class MappingView(Sized, Iterable, extra=collections_abc.MappingView):
pass
class KeysView(MappingView, Set[KT], extra=collections_abc.KeysView):
pass
# TODO: Enable Set[Tuple[KT, VT]] instead of Generic[KT, VT].
class ItemsView(MappingView, Generic[KT, VT], extra=collections_abc.ItemsView):
pass
class ValuesView(MappingView, extra=collections_abc.ValuesView):
pass
class _DictMeta(GenericMeta):
def __instancecheck__(self, obj):
if not super().__instancecheck__(obj):
return False
keytype, valuetype = self.__parameters__
for key, value in obj.items():
if not (isinstance(key, keytype) and
isinstance(value, valuetype)):
return False
return True
class Dict(dict, MutableMapping, metaclass=_DictMeta):
pass
def NamedTuple(typename, fields):
"""Typed version of namedtuple.
Usage::
Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])
This is equivalent to::
Employee = collections.namedtuple('Employee', ['name', 'id'])
The resulting class has one extra attribute: _field_types,
giving a dict mapping field names to types. (The field names
are in the _fields attribute, which is part of the namedtuple
API.)
"""
fields = [(n, t) for n, t in fields]
cls = collections.namedtuple(typename, [n for n, t in fields])
cls._field_types = dict(fields)
return cls
class IO(Generic[AnyStr]):
"""Generic base class for TextIO and BinaryIO.
This is an abstract, generic version of the return of open().
NOTE: This does not distinguish between the different possible
classes (text vs. binary, read vs. write vs. read/write,
append-only, unbuffered). The TextIO and BinaryIO subclasses
below capture the distinctions between text vs. binary, which is
pervasive in the interface; however we currently do not offer a
way to track the other distinctions in the type system.
"""
@abstractproperty
def mode(self) -> str:
pass
@abstractproperty
def name(self) -> str:
pass
@abstractmethod
def close(self) -> None:
pass
@abstractmethod
def closed(self) -> bool:
pass
@abstractmethod
def fileno(self) -> int:
pass
@abstractmethod
def flush(self) -> None:
pass
@abstractmethod
def isatty(self) -> bool:
pass
@abstractmethod
def read(self, n: int = -1) -> AnyStr:
pass
@abstractmethod
def readable(self) -> bool:
pass
@abstractmethod
def readline(self, limit: int = -1) -> AnyStr:
pass
@abstractmethod
def readlines(self, hint: int = -1) -> List[AnyStr]:
pass
@abstractmethod
def seek(self, offset: int, whence: int = 0) -> int:
pass
@abstractmethod
def seekable(self) -> bool:
pass
@abstractmethod
def tell(self) -> int:
pass
@abstractmethod
def truncate(self, size: int = None) -> int:
pass
@abstractmethod
def writable(self) -> bool:
pass
@abstractmethod
def write(self, s: AnyStr) -> int:
pass
@abstractmethod
def writelines(self, lines: List[AnyStr]) -> None:
pass
@abstractmethod
def __enter__(self) -> 'IO[AnyStr]':
pass
@abstractmethod
def __exit__(self, type, value, traceback) -> None:
pass
class BinaryIO(IO[bytes]):
"""Typed version of the return of open() in binary mode."""
@abstractmethod
def write(self, s: Union[bytes, bytearray]) -> int:
pass
@abstractmethod
def __enter__(self) -> 'BinaryIO':
pass
class TextIO(IO[str]):
"""Typed version of the return of open() in text mode."""
@abstractproperty
def buffer(self) -> BinaryIO:
pass
@abstractproperty
def encoding(self) -> str:
pass
@abstractproperty
def errors(self) -> str:
pass
@abstractproperty
def line_buffering(self) -> bool:
pass
@abstractproperty
def newlines(self) -> Any:
pass
@abstractmethod
def __enter__(self) -> 'TextIO':
pass
class io:
"""Wrapper namespace for IO generic classes."""
__all__ = ['IO', 'TextIO', 'BinaryIO']
IO = IO
TextIO = TextIO
BinaryIO = BinaryIO
io.__name__ = __name__ + '.io'
sys.modules[io.__name__] = io
Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
lambda p: p.pattern)
Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
lambda m: m.re.pattern)
class re:
"""Wrapper namespace for re type aliases."""
__all__ = ['Pattern', 'Match']
Pattern = Pattern
Match = Match
re.__name__ = __name__ + '.re'
sys.modules[re.__name__] = re