blob: 6036ec67290a468a5e969ef4c574cf6e31b12b94 [file] [log] [blame]
//----------------------------------------------------------------
// Statically-allocated memory manager
//
// by Eli Bendersky (eliben@gmail.com)
//
// This code is in the public domain.
//----------------------------------------------------------------
#include "memmgr.h"
typedef ulong Align;
union mem_header_union
{
struct
{
// Pointer to the next block in the free list
//
union mem_header_union* next;
// Size of the block (in quantas of sizeof(mem_header_t))
//
ulong size;
} s;
// Used to align headers in memory to a boundary
//
Align align_dummy;
};
typedef union mem_header_union mem_header_t;
// Initial empty list
//
static mem_header_t base;
// Start of free list
//
static mem_header_t* freep = 0;
// Static pool for new allocations
//
static byte pool[POOL_SIZE] = {0};
static ulong pool_free_pos = 0;
void memmgr_init()
{
base.s.next = 0;
base.s.size = 0;
freep = 0;
pool_free_pos = 0;
}
static mem_header_t* get_mem_from_pool(ulong nquantas)
{
ulong total_req_size;
mem_header_t* h;
if (nquantas < MIN_POOL_ALLOC_QUANTAS)
nquantas = MIN_POOL_ALLOC_QUANTAS;
total_req_size = nquantas * sizeof(mem_header_t);
if (pool_free_pos + total_req_size <= POOL_SIZE)
{
h = (mem_header_t*) (pool + pool_free_pos);
h->s.size = nquantas;
memmgr_free((void*) (h + 1));
pool_free_pos += total_req_size;
}
else
{
return 0;
}
return freep;
}
// Allocations are done in 'quantas' of header size.
// The search for a free block of adequate size begins at the point 'freep'
// where the last block was found.
// If a too-big block is found, it is split and the tail is returned (this
// way the header of the original needs only to have its size adjusted).
// The pointer returned to the user points to the free space within the block,
// which begins one quanta after the header.
//
void* memmgr_alloc(ulong nbytes)
{
mem_header_t* p;
mem_header_t* prevp;
// Calculate how many quantas are required: we need enough to house all
// the requested bytes, plus the header. The -1 and +1 are there to make sure
// that if nbytes is a multiple of nquantas, we don't allocate too much
//
ulong nquantas = (nbytes + sizeof(mem_header_t) - 1) / sizeof(mem_header_t) + 1;
// First alloc call, and no free list yet ? Use 'base' for an initial
// denegerate block of size 0, which points to itself
//
if ((prevp = freep) == 0)
{
base.s.next = freep = prevp = &base;
base.s.size = 0;
}
for (p = prevp->s.next; ; prevp = p, p = p->s.next)
{
// big enough ?
if (p->s.size >= nquantas)
{
// exactly ?
if (p->s.size == nquantas)
{
// just eliminate this block from the free list by pointing
// its prev's next to its next
//
prevp->s.next = p->s.next;
}
else // too big
{
p->s.size -= nquantas;
p += p->s.size;
p->s.size = nquantas;
}
freep = prevp;
return (void*) (p + 1);
}
// Reached end of free list ?
// Try to allocate the block from the pool. If that succeeds,
// get_mem_from_pool adds the new block to the free list and
// it will be found in the following iterations. If the call
// to get_mem_from_pool doesn't succeed, we've run out of
// memory
//
else if (p == freep)
{
if ((p = get_mem_from_pool(nquantas)) == 0)
{
#ifdef DEBUG_MEMMGR_FATAL
printf("!! Memory allocation failed !!\n");
#endif
return 0;
}
}
}
}
// Scans the free list, starting at freep, looking the the place to insert the
// free block. This is either between two existing blocks or at the end of the
// list. In any case, if the block being freed is adjacent to either neighbor,
// the adjacent blocks are combined.
//
void memmgr_free(void* ap)
{
mem_header_t* block;
mem_header_t* p;
// acquire pointer to block header
block = ((mem_header_t*) ap) - 1;
// Find the correct place to place the block in (the free list is sorted by
// address, increasing order)
//
for (p = freep; !(block > p && block < p->s.next); p = p->s.next)
{
// Since the free list is circular, there is one link where a
// higher-addressed block points to a lower-addressed block.
// This condition checks if the block should be actually
// inserted between them
//
if (p >= p->s.next && (block > p || block < p->s.next))
break;
}
// Try to combine with the higher neighbor
//
if (block + block->s.size == p->s.next)
{
block->s.size += p->s.next->s.size;
block->s.next = p->s.next->s.next;
}
else
{
block->s.next = p->s.next;
}
// Try to combine with the lower neighbor
//
if (p + p->s.size == block)
{
p->s.size += block->s.size;
p->s.next = block->s.next;
}
else
{
p->s.next = block;
}
freep = p;
}