blob: cc9b8c0e34d91ec2da6c0d105dd35e8d932bd286 [file] [log] [blame]
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import datetime
import ipaddress
import six
from cryptography import x509
from cryptography.hazmat._der import DERReader, INTEGER, NULL, SEQUENCE
from cryptography.x509.extensions import _TLS_FEATURE_TYPE_TO_ENUM
from cryptography.x509.name import _ASN1_TYPE_TO_ENUM
from cryptography.x509.oid import (
CRLEntryExtensionOID,
CertificatePoliciesOID,
ExtensionOID,
OCSPExtensionOID,
)
def _obj2txt(backend, obj):
# Set to 80 on the recommendation of
# https://www.openssl.org/docs/crypto/OBJ_nid2ln.html#return_values
#
# But OIDs longer than this occur in real life (e.g. Active
# Directory makes some very long OIDs). So we need to detect
# and properly handle the case where the default buffer is not
# big enough.
#
buf_len = 80
buf = backend._ffi.new("char[]", buf_len)
# 'res' is the number of bytes that *would* be written if the
# buffer is large enough. If 'res' > buf_len - 1, we need to
# alloc a big-enough buffer and go again.
res = backend._lib.OBJ_obj2txt(buf, buf_len, obj, 1)
if res > buf_len - 1: # account for terminating null byte
buf_len = res + 1
buf = backend._ffi.new("char[]", buf_len)
res = backend._lib.OBJ_obj2txt(buf, buf_len, obj, 1)
backend.openssl_assert(res > 0)
return backend._ffi.buffer(buf, res)[:].decode()
def _decode_x509_name_entry(backend, x509_name_entry):
obj = backend._lib.X509_NAME_ENTRY_get_object(x509_name_entry)
backend.openssl_assert(obj != backend._ffi.NULL)
data = backend._lib.X509_NAME_ENTRY_get_data(x509_name_entry)
backend.openssl_assert(data != backend._ffi.NULL)
value = _asn1_string_to_utf8(backend, data)
oid = _obj2txt(backend, obj)
type = _ASN1_TYPE_TO_ENUM[data.type]
return x509.NameAttribute(x509.ObjectIdentifier(oid), value, type)
def _decode_x509_name(backend, x509_name):
count = backend._lib.X509_NAME_entry_count(x509_name)
attributes = []
prev_set_id = -1
for x in range(count):
entry = backend._lib.X509_NAME_get_entry(x509_name, x)
attribute = _decode_x509_name_entry(backend, entry)
set_id = backend._lib.X509_NAME_ENTRY_set(entry)
if set_id != prev_set_id:
attributes.append({attribute})
else:
# is in the same RDN a previous entry
attributes[-1].add(attribute)
prev_set_id = set_id
return x509.Name(x509.RelativeDistinguishedName(rdn) for rdn in attributes)
def _decode_general_names(backend, gns):
num = backend._lib.sk_GENERAL_NAME_num(gns)
names = []
for i in range(num):
gn = backend._lib.sk_GENERAL_NAME_value(gns, i)
backend.openssl_assert(gn != backend._ffi.NULL)
names.append(_decode_general_name(backend, gn))
return names
def _decode_general_name(backend, gn):
if gn.type == backend._lib.GEN_DNS:
# Convert to bytes and then decode to utf8. We don't use
# asn1_string_to_utf8 here because it doesn't properly convert
# utf8 from ia5strings.
data = _asn1_string_to_bytes(backend, gn.d.dNSName).decode("utf8")
# We don't use the constructor for DNSName so we can bypass validation
# This allows us to create DNSName objects that have unicode chars
# when a certificate (against the RFC) contains them.
return x509.DNSName._init_without_validation(data)
elif gn.type == backend._lib.GEN_URI:
# Convert to bytes and then decode to utf8. We don't use
# asn1_string_to_utf8 here because it doesn't properly convert
# utf8 from ia5strings.
data = _asn1_string_to_bytes(
backend, gn.d.uniformResourceIdentifier
).decode("utf8")
# We don't use the constructor for URI so we can bypass validation
# This allows us to create URI objects that have unicode chars
# when a certificate (against the RFC) contains them.
return x509.UniformResourceIdentifier._init_without_validation(data)
elif gn.type == backend._lib.GEN_RID:
oid = _obj2txt(backend, gn.d.registeredID)
return x509.RegisteredID(x509.ObjectIdentifier(oid))
elif gn.type == backend._lib.GEN_IPADD:
data = _asn1_string_to_bytes(backend, gn.d.iPAddress)
data_len = len(data)
if data_len == 8 or data_len == 32:
# This is an IPv4 or IPv6 Network and not a single IP. This
# type of data appears in Name Constraints. Unfortunately,
# ipaddress doesn't support packed bytes + netmask. Additionally,
# IPv6Network can only handle CIDR rather than the full 16 byte
# netmask. To handle this we convert the netmask to integer, then
# find the first 0 bit, which will be the prefix. If another 1
# bit is present after that the netmask is invalid.
base = ipaddress.ip_address(data[: data_len // 2])
netmask = ipaddress.ip_address(data[data_len // 2 :])
bits = bin(int(netmask))[2:]
prefix = bits.find("0")
# If no 0 bits are found it is a /32 or /128
if prefix == -1:
prefix = len(bits)
if "1" in bits[prefix:]:
raise ValueError("Invalid netmask")
ip = ipaddress.ip_network(base.exploded + u"/{}".format(prefix))
else:
ip = ipaddress.ip_address(data)
return x509.IPAddress(ip)
elif gn.type == backend._lib.GEN_DIRNAME:
return x509.DirectoryName(
_decode_x509_name(backend, gn.d.directoryName)
)
elif gn.type == backend._lib.GEN_EMAIL:
# Convert to bytes and then decode to utf8. We don't use
# asn1_string_to_utf8 here because it doesn't properly convert
# utf8 from ia5strings.
data = _asn1_string_to_bytes(backend, gn.d.rfc822Name).decode("utf8")
# We don't use the constructor for RFC822Name so we can bypass
# validation. This allows us to create RFC822Name objects that have
# unicode chars when a certificate (against the RFC) contains them.
return x509.RFC822Name._init_without_validation(data)
elif gn.type == backend._lib.GEN_OTHERNAME:
type_id = _obj2txt(backend, gn.d.otherName.type_id)
value = _asn1_to_der(backend, gn.d.otherName.value)
return x509.OtherName(x509.ObjectIdentifier(type_id), value)
else:
# x400Address or ediPartyName
raise x509.UnsupportedGeneralNameType(
"{} is not a supported type".format(
x509._GENERAL_NAMES.get(gn.type, gn.type)
),
gn.type,
)
def _decode_ocsp_no_check(backend, ext):
return x509.OCSPNoCheck()
def _decode_crl_number(backend, ext):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", ext)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
return x509.CRLNumber(_asn1_integer_to_int(backend, asn1_int))
def _decode_delta_crl_indicator(backend, ext):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", ext)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
return x509.DeltaCRLIndicator(_asn1_integer_to_int(backend, asn1_int))
class _X509ExtensionParser(object):
def __init__(self, backend, ext_count, get_ext, handlers):
self.ext_count = ext_count
self.get_ext = get_ext
self.handlers = handlers
self._backend = backend
def parse(self, x509_obj):
extensions = []
seen_oids = set()
for i in range(self.ext_count(x509_obj)):
ext = self.get_ext(x509_obj, i)
self._backend.openssl_assert(ext != self._backend._ffi.NULL)
crit = self._backend._lib.X509_EXTENSION_get_critical(ext)
critical = crit == 1
oid = x509.ObjectIdentifier(
_obj2txt(
self._backend,
self._backend._lib.X509_EXTENSION_get_object(ext),
)
)
if oid in seen_oids:
raise x509.DuplicateExtension(
"Duplicate {} extension found".format(oid), oid
)
# These OIDs are only supported in OpenSSL 1.1.0+ but we want
# to support them in all versions of OpenSSL so we decode them
# ourselves.
if oid == ExtensionOID.TLS_FEATURE:
# The extension contents are a SEQUENCE OF INTEGERs.
data = self._backend._lib.X509_EXTENSION_get_data(ext)
data_bytes = _asn1_string_to_bytes(self._backend, data)
features = DERReader(data_bytes).read_single_element(SEQUENCE)
parsed = []
while not features.is_empty():
parsed.append(features.read_element(INTEGER).as_integer())
# Map the features to their enum value.
value = x509.TLSFeature(
[_TLS_FEATURE_TYPE_TO_ENUM[x] for x in parsed]
)
extensions.append(x509.Extension(oid, critical, value))
seen_oids.add(oid)
continue
elif oid == ExtensionOID.PRECERT_POISON:
data = self._backend._lib.X509_EXTENSION_get_data(ext)
# The contents of the extension must be an ASN.1 NULL.
reader = DERReader(_asn1_string_to_bytes(self._backend, data))
reader.read_single_element(NULL).check_empty()
extensions.append(
x509.Extension(oid, critical, x509.PrecertPoison())
)
seen_oids.add(oid)
continue
try:
handler = self.handlers[oid]
except KeyError:
# Dump the DER payload into an UnrecognizedExtension object
data = self._backend._lib.X509_EXTENSION_get_data(ext)
self._backend.openssl_assert(data != self._backend._ffi.NULL)
der = self._backend._ffi.buffer(data.data, data.length)[:]
unrecognized = x509.UnrecognizedExtension(oid, der)
extensions.append(x509.Extension(oid, critical, unrecognized))
else:
ext_data = self._backend._lib.X509V3_EXT_d2i(ext)
if ext_data == self._backend._ffi.NULL:
self._backend._consume_errors()
raise ValueError(
"The {} extension is invalid and can't be "
"parsed".format(oid)
)
value = handler(self._backend, ext_data)
extensions.append(x509.Extension(oid, critical, value))
seen_oids.add(oid)
return x509.Extensions(extensions)
def _decode_certificate_policies(backend, cp):
cp = backend._ffi.cast("Cryptography_STACK_OF_POLICYINFO *", cp)
cp = backend._ffi.gc(cp, backend._lib.CERTIFICATEPOLICIES_free)
num = backend._lib.sk_POLICYINFO_num(cp)
certificate_policies = []
for i in range(num):
qualifiers = None
pi = backend._lib.sk_POLICYINFO_value(cp, i)
oid = x509.ObjectIdentifier(_obj2txt(backend, pi.policyid))
if pi.qualifiers != backend._ffi.NULL:
qnum = backend._lib.sk_POLICYQUALINFO_num(pi.qualifiers)
qualifiers = []
for j in range(qnum):
pqi = backend._lib.sk_POLICYQUALINFO_value(pi.qualifiers, j)
pqualid = x509.ObjectIdentifier(_obj2txt(backend, pqi.pqualid))
if pqualid == CertificatePoliciesOID.CPS_QUALIFIER:
cpsuri = backend._ffi.buffer(
pqi.d.cpsuri.data, pqi.d.cpsuri.length
)[:].decode("ascii")
qualifiers.append(cpsuri)
else:
assert pqualid == CertificatePoliciesOID.CPS_USER_NOTICE
user_notice = _decode_user_notice(
backend, pqi.d.usernotice
)
qualifiers.append(user_notice)
certificate_policies.append(x509.PolicyInformation(oid, qualifiers))
return x509.CertificatePolicies(certificate_policies)
def _decode_user_notice(backend, un):
explicit_text = None
notice_reference = None
if un.exptext != backend._ffi.NULL:
explicit_text = _asn1_string_to_utf8(backend, un.exptext)
if un.noticeref != backend._ffi.NULL:
organization = _asn1_string_to_utf8(backend, un.noticeref.organization)
num = backend._lib.sk_ASN1_INTEGER_num(un.noticeref.noticenos)
notice_numbers = []
for i in range(num):
asn1_int = backend._lib.sk_ASN1_INTEGER_value(
un.noticeref.noticenos, i
)
notice_num = _asn1_integer_to_int(backend, asn1_int)
notice_numbers.append(notice_num)
notice_reference = x509.NoticeReference(organization, notice_numbers)
return x509.UserNotice(notice_reference, explicit_text)
def _decode_basic_constraints(backend, bc_st):
basic_constraints = backend._ffi.cast("BASIC_CONSTRAINTS *", bc_st)
basic_constraints = backend._ffi.gc(
basic_constraints, backend._lib.BASIC_CONSTRAINTS_free
)
# The byte representation of an ASN.1 boolean true is \xff. OpenSSL
# chooses to just map this to its ordinal value, so true is 255 and
# false is 0.
ca = basic_constraints.ca == 255
path_length = _asn1_integer_to_int_or_none(
backend, basic_constraints.pathlen
)
return x509.BasicConstraints(ca, path_length)
def _decode_subject_key_identifier(backend, asn1_string):
asn1_string = backend._ffi.cast("ASN1_OCTET_STRING *", asn1_string)
asn1_string = backend._ffi.gc(
asn1_string, backend._lib.ASN1_OCTET_STRING_free
)
return x509.SubjectKeyIdentifier(
backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
)
def _decode_authority_key_identifier(backend, akid):
akid = backend._ffi.cast("AUTHORITY_KEYID *", akid)
akid = backend._ffi.gc(akid, backend._lib.AUTHORITY_KEYID_free)
key_identifier = None
authority_cert_issuer = None
if akid.keyid != backend._ffi.NULL:
key_identifier = backend._ffi.buffer(
akid.keyid.data, akid.keyid.length
)[:]
if akid.issuer != backend._ffi.NULL:
authority_cert_issuer = _decode_general_names(backend, akid.issuer)
authority_cert_serial_number = _asn1_integer_to_int_or_none(
backend, akid.serial
)
return x509.AuthorityKeyIdentifier(
key_identifier, authority_cert_issuer, authority_cert_serial_number
)
def _decode_information_access(backend, ia):
ia = backend._ffi.cast("Cryptography_STACK_OF_ACCESS_DESCRIPTION *", ia)
ia = backend._ffi.gc(
ia,
lambda x: backend._lib.sk_ACCESS_DESCRIPTION_pop_free(
x,
backend._ffi.addressof(
backend._lib._original_lib, "ACCESS_DESCRIPTION_free"
),
),
)
num = backend._lib.sk_ACCESS_DESCRIPTION_num(ia)
access_descriptions = []
for i in range(num):
ad = backend._lib.sk_ACCESS_DESCRIPTION_value(ia, i)
backend.openssl_assert(ad.method != backend._ffi.NULL)
oid = x509.ObjectIdentifier(_obj2txt(backend, ad.method))
backend.openssl_assert(ad.location != backend._ffi.NULL)
gn = _decode_general_name(backend, ad.location)
access_descriptions.append(x509.AccessDescription(oid, gn))
return access_descriptions
def _decode_authority_information_access(backend, aia):
access_descriptions = _decode_information_access(backend, aia)
return x509.AuthorityInformationAccess(access_descriptions)
def _decode_subject_information_access(backend, aia):
access_descriptions = _decode_information_access(backend, aia)
return x509.SubjectInformationAccess(access_descriptions)
def _decode_key_usage(backend, bit_string):
bit_string = backend._ffi.cast("ASN1_BIT_STRING *", bit_string)
bit_string = backend._ffi.gc(bit_string, backend._lib.ASN1_BIT_STRING_free)
get_bit = backend._lib.ASN1_BIT_STRING_get_bit
digital_signature = get_bit(bit_string, 0) == 1
content_commitment = get_bit(bit_string, 1) == 1
key_encipherment = get_bit(bit_string, 2) == 1
data_encipherment = get_bit(bit_string, 3) == 1
key_agreement = get_bit(bit_string, 4) == 1
key_cert_sign = get_bit(bit_string, 5) == 1
crl_sign = get_bit(bit_string, 6) == 1
encipher_only = get_bit(bit_string, 7) == 1
decipher_only = get_bit(bit_string, 8) == 1
return x509.KeyUsage(
digital_signature,
content_commitment,
key_encipherment,
data_encipherment,
key_agreement,
key_cert_sign,
crl_sign,
encipher_only,
decipher_only,
)
def _decode_general_names_extension(backend, gns):
gns = backend._ffi.cast("GENERAL_NAMES *", gns)
gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
general_names = _decode_general_names(backend, gns)
return general_names
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_issuer_alt_name(backend, ext):
return x509.IssuerAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_name_constraints(backend, nc):
nc = backend._ffi.cast("NAME_CONSTRAINTS *", nc)
nc = backend._ffi.gc(nc, backend._lib.NAME_CONSTRAINTS_free)
permitted = _decode_general_subtrees(backend, nc.permittedSubtrees)
excluded = _decode_general_subtrees(backend, nc.excludedSubtrees)
return x509.NameConstraints(
permitted_subtrees=permitted, excluded_subtrees=excluded
)
def _decode_general_subtrees(backend, stack_subtrees):
if stack_subtrees == backend._ffi.NULL:
return None
num = backend._lib.sk_GENERAL_SUBTREE_num(stack_subtrees)
subtrees = []
for i in range(num):
obj = backend._lib.sk_GENERAL_SUBTREE_value(stack_subtrees, i)
backend.openssl_assert(obj != backend._ffi.NULL)
name = _decode_general_name(backend, obj.base)
subtrees.append(name)
return subtrees
def _decode_issuing_dist_point(backend, idp):
idp = backend._ffi.cast("ISSUING_DIST_POINT *", idp)
idp = backend._ffi.gc(idp, backend._lib.ISSUING_DIST_POINT_free)
if idp.distpoint != backend._ffi.NULL:
full_name, relative_name = _decode_distpoint(backend, idp.distpoint)
else:
full_name = None
relative_name = None
only_user = idp.onlyuser == 255
only_ca = idp.onlyCA == 255
indirect_crl = idp.indirectCRL == 255
only_attr = idp.onlyattr == 255
if idp.onlysomereasons != backend._ffi.NULL:
only_some_reasons = _decode_reasons(backend, idp.onlysomereasons)
else:
only_some_reasons = None
return x509.IssuingDistributionPoint(
full_name,
relative_name,
only_user,
only_ca,
only_some_reasons,
indirect_crl,
only_attr,
)
def _decode_policy_constraints(backend, pc):
pc = backend._ffi.cast("POLICY_CONSTRAINTS *", pc)
pc = backend._ffi.gc(pc, backend._lib.POLICY_CONSTRAINTS_free)
require_explicit_policy = _asn1_integer_to_int_or_none(
backend, pc.requireExplicitPolicy
)
inhibit_policy_mapping = _asn1_integer_to_int_or_none(
backend, pc.inhibitPolicyMapping
)
return x509.PolicyConstraints(
require_explicit_policy, inhibit_policy_mapping
)
def _decode_extended_key_usage(backend, sk):
sk = backend._ffi.cast("Cryptography_STACK_OF_ASN1_OBJECT *", sk)
sk = backend._ffi.gc(sk, backend._lib.sk_ASN1_OBJECT_free)
num = backend._lib.sk_ASN1_OBJECT_num(sk)
ekus = []
for i in range(num):
obj = backend._lib.sk_ASN1_OBJECT_value(sk, i)
backend.openssl_assert(obj != backend._ffi.NULL)
oid = x509.ObjectIdentifier(_obj2txt(backend, obj))
ekus.append(oid)
return x509.ExtendedKeyUsage(ekus)
_DISTPOINT_TYPE_FULLNAME = 0
_DISTPOINT_TYPE_RELATIVENAME = 1
def _decode_dist_points(backend, cdps):
cdps = backend._ffi.cast("Cryptography_STACK_OF_DIST_POINT *", cdps)
cdps = backend._ffi.gc(cdps, backend._lib.CRL_DIST_POINTS_free)
num = backend._lib.sk_DIST_POINT_num(cdps)
dist_points = []
for i in range(num):
full_name = None
relative_name = None
crl_issuer = None
reasons = None
cdp = backend._lib.sk_DIST_POINT_value(cdps, i)
if cdp.reasons != backend._ffi.NULL:
reasons = _decode_reasons(backend, cdp.reasons)
if cdp.CRLissuer != backend._ffi.NULL:
crl_issuer = _decode_general_names(backend, cdp.CRLissuer)
# Certificates may have a crl_issuer/reasons and no distribution
# point so make sure it's not null.
if cdp.distpoint != backend._ffi.NULL:
full_name, relative_name = _decode_distpoint(
backend, cdp.distpoint
)
dist_points.append(
x509.DistributionPoint(
full_name, relative_name, reasons, crl_issuer
)
)
return dist_points
# ReasonFlags ::= BIT STRING {
# unused (0),
# keyCompromise (1),
# cACompromise (2),
# affiliationChanged (3),
# superseded (4),
# cessationOfOperation (5),
# certificateHold (6),
# privilegeWithdrawn (7),
# aACompromise (8) }
_REASON_BIT_MAPPING = {
1: x509.ReasonFlags.key_compromise,
2: x509.ReasonFlags.ca_compromise,
3: x509.ReasonFlags.affiliation_changed,
4: x509.ReasonFlags.superseded,
5: x509.ReasonFlags.cessation_of_operation,
6: x509.ReasonFlags.certificate_hold,
7: x509.ReasonFlags.privilege_withdrawn,
8: x509.ReasonFlags.aa_compromise,
}
def _decode_reasons(backend, reasons):
# We will check each bit from RFC 5280
enum_reasons = []
for bit_position, reason in six.iteritems(_REASON_BIT_MAPPING):
if backend._lib.ASN1_BIT_STRING_get_bit(reasons, bit_position):
enum_reasons.append(reason)
return frozenset(enum_reasons)
def _decode_distpoint(backend, distpoint):
if distpoint.type == _DISTPOINT_TYPE_FULLNAME:
full_name = _decode_general_names(backend, distpoint.name.fullname)
return full_name, None
# OpenSSL code doesn't test for a specific type for
# relativename, everything that isn't fullname is considered
# relativename. Per RFC 5280:
#
# DistributionPointName ::= CHOICE {
# fullName [0] GeneralNames,
# nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
rns = distpoint.name.relativename
rnum = backend._lib.sk_X509_NAME_ENTRY_num(rns)
attributes = set()
for i in range(rnum):
rn = backend._lib.sk_X509_NAME_ENTRY_value(rns, i)
backend.openssl_assert(rn != backend._ffi.NULL)
attributes.add(_decode_x509_name_entry(backend, rn))
relative_name = x509.RelativeDistinguishedName(attributes)
return None, relative_name
def _decode_crl_distribution_points(backend, cdps):
dist_points = _decode_dist_points(backend, cdps)
return x509.CRLDistributionPoints(dist_points)
def _decode_freshest_crl(backend, cdps):
dist_points = _decode_dist_points(backend, cdps)
return x509.FreshestCRL(dist_points)
def _decode_inhibit_any_policy(backend, asn1_int):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", asn1_int)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
skip_certs = _asn1_integer_to_int(backend, asn1_int)
return x509.InhibitAnyPolicy(skip_certs)
def _decode_scts(backend, asn1_scts):
from cryptography.hazmat.backends.openssl.x509 import (
_SignedCertificateTimestamp,
)
asn1_scts = backend._ffi.cast("Cryptography_STACK_OF_SCT *", asn1_scts)
asn1_scts = backend._ffi.gc(asn1_scts, backend._lib.SCT_LIST_free)
scts = []
for i in range(backend._lib.sk_SCT_num(asn1_scts)):
sct = backend._lib.sk_SCT_value(asn1_scts, i)
scts.append(_SignedCertificateTimestamp(backend, asn1_scts, sct))
return scts
def _decode_precert_signed_certificate_timestamps(backend, asn1_scts):
return x509.PrecertificateSignedCertificateTimestamps(
_decode_scts(backend, asn1_scts)
)
def _decode_signed_certificate_timestamps(backend, asn1_scts):
return x509.SignedCertificateTimestamps(_decode_scts(backend, asn1_scts))
# CRLReason ::= ENUMERATED {
# unspecified (0),
# keyCompromise (1),
# cACompromise (2),
# affiliationChanged (3),
# superseded (4),
# cessationOfOperation (5),
# certificateHold (6),
# -- value 7 is not used
# removeFromCRL (8),
# privilegeWithdrawn (9),
# aACompromise (10) }
_CRL_ENTRY_REASON_CODE_TO_ENUM = {
0: x509.ReasonFlags.unspecified,
1: x509.ReasonFlags.key_compromise,
2: x509.ReasonFlags.ca_compromise,
3: x509.ReasonFlags.affiliation_changed,
4: x509.ReasonFlags.superseded,
5: x509.ReasonFlags.cessation_of_operation,
6: x509.ReasonFlags.certificate_hold,
8: x509.ReasonFlags.remove_from_crl,
9: x509.ReasonFlags.privilege_withdrawn,
10: x509.ReasonFlags.aa_compromise,
}
_CRL_ENTRY_REASON_ENUM_TO_CODE = {
x509.ReasonFlags.unspecified: 0,
x509.ReasonFlags.key_compromise: 1,
x509.ReasonFlags.ca_compromise: 2,
x509.ReasonFlags.affiliation_changed: 3,
x509.ReasonFlags.superseded: 4,
x509.ReasonFlags.cessation_of_operation: 5,
x509.ReasonFlags.certificate_hold: 6,
x509.ReasonFlags.remove_from_crl: 8,
x509.ReasonFlags.privilege_withdrawn: 9,
x509.ReasonFlags.aa_compromise: 10,
}
def _decode_crl_reason(backend, enum):
enum = backend._ffi.cast("ASN1_ENUMERATED *", enum)
enum = backend._ffi.gc(enum, backend._lib.ASN1_ENUMERATED_free)
code = backend._lib.ASN1_ENUMERATED_get(enum)
try:
return x509.CRLReason(_CRL_ENTRY_REASON_CODE_TO_ENUM[code])
except KeyError:
raise ValueError("Unsupported reason code: {}".format(code))
def _decode_invalidity_date(backend, inv_date):
generalized_time = backend._ffi.cast("ASN1_GENERALIZEDTIME *", inv_date)
generalized_time = backend._ffi.gc(
generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
)
return x509.InvalidityDate(
_parse_asn1_generalized_time(backend, generalized_time)
)
def _decode_cert_issuer(backend, gns):
gns = backend._ffi.cast("GENERAL_NAMES *", gns)
gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
general_names = _decode_general_names(backend, gns)
return x509.CertificateIssuer(general_names)
def _asn1_to_der(backend, asn1_type):
buf = backend._ffi.new("unsigned char **")
res = backend._lib.i2d_ASN1_TYPE(asn1_type, buf)
backend.openssl_assert(res >= 0)
backend.openssl_assert(buf[0] != backend._ffi.NULL)
buf = backend._ffi.gc(
buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
)
return backend._ffi.buffer(buf[0], res)[:]
def _asn1_integer_to_int(backend, asn1_int):
bn = backend._lib.ASN1_INTEGER_to_BN(asn1_int, backend._ffi.NULL)
backend.openssl_assert(bn != backend._ffi.NULL)
bn = backend._ffi.gc(bn, backend._lib.BN_free)
return backend._bn_to_int(bn)
def _asn1_integer_to_int_or_none(backend, asn1_int):
if asn1_int == backend._ffi.NULL:
return None
else:
return _asn1_integer_to_int(backend, asn1_int)
def _asn1_string_to_bytes(backend, asn1_string):
return backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
def _asn1_string_to_ascii(backend, asn1_string):
return _asn1_string_to_bytes(backend, asn1_string).decode("ascii")
def _asn1_string_to_utf8(backend, asn1_string):
buf = backend._ffi.new("unsigned char **")
res = backend._lib.ASN1_STRING_to_UTF8(buf, asn1_string)
if res == -1:
raise ValueError(
"Unsupported ASN1 string type. Type: {}".format(asn1_string.type)
)
backend.openssl_assert(buf[0] != backend._ffi.NULL)
buf = backend._ffi.gc(
buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
)
return backend._ffi.buffer(buf[0], res)[:].decode("utf8")
def _parse_asn1_time(backend, asn1_time):
backend.openssl_assert(asn1_time != backend._ffi.NULL)
generalized_time = backend._lib.ASN1_TIME_to_generalizedtime(
asn1_time, backend._ffi.NULL
)
if generalized_time == backend._ffi.NULL:
raise ValueError(
"Couldn't parse ASN.1 time as generalizedtime {!r}".format(
_asn1_string_to_bytes(backend, asn1_time)
)
)
generalized_time = backend._ffi.gc(
generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
)
return _parse_asn1_generalized_time(backend, generalized_time)
def _parse_asn1_generalized_time(backend, generalized_time):
time = _asn1_string_to_ascii(
backend, backend._ffi.cast("ASN1_STRING *", generalized_time)
)
return datetime.datetime.strptime(time, "%Y%m%d%H%M%SZ")
def _decode_nonce(backend, nonce):
nonce = backend._ffi.cast("ASN1_OCTET_STRING *", nonce)
nonce = backend._ffi.gc(nonce, backend._lib.ASN1_OCTET_STRING_free)
return x509.OCSPNonce(_asn1_string_to_bytes(backend, nonce))
_EXTENSION_HANDLERS_BASE = {
ExtensionOID.BASIC_CONSTRAINTS: _decode_basic_constraints,
ExtensionOID.SUBJECT_KEY_IDENTIFIER: _decode_subject_key_identifier,
ExtensionOID.KEY_USAGE: _decode_key_usage,
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: _decode_subject_alt_name,
ExtensionOID.EXTENDED_KEY_USAGE: _decode_extended_key_usage,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_decode_authority_information_access
),
ExtensionOID.SUBJECT_INFORMATION_ACCESS: (
_decode_subject_information_access
),
ExtensionOID.CERTIFICATE_POLICIES: _decode_certificate_policies,
ExtensionOID.CRL_DISTRIBUTION_POINTS: _decode_crl_distribution_points,
ExtensionOID.FRESHEST_CRL: _decode_freshest_crl,
ExtensionOID.OCSP_NO_CHECK: _decode_ocsp_no_check,
ExtensionOID.INHIBIT_ANY_POLICY: _decode_inhibit_any_policy,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
ExtensionOID.NAME_CONSTRAINTS: _decode_name_constraints,
ExtensionOID.POLICY_CONSTRAINTS: _decode_policy_constraints,
}
_EXTENSION_HANDLERS_SCT = {
ExtensionOID.PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS: (
_decode_precert_signed_certificate_timestamps
)
}
_REVOKED_EXTENSION_HANDLERS = {
CRLEntryExtensionOID.CRL_REASON: _decode_crl_reason,
CRLEntryExtensionOID.INVALIDITY_DATE: _decode_invalidity_date,
CRLEntryExtensionOID.CERTIFICATE_ISSUER: _decode_cert_issuer,
}
_CRL_EXTENSION_HANDLERS = {
ExtensionOID.CRL_NUMBER: _decode_crl_number,
ExtensionOID.DELTA_CRL_INDICATOR: _decode_delta_crl_indicator,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_decode_authority_information_access
),
ExtensionOID.ISSUING_DISTRIBUTION_POINT: _decode_issuing_dist_point,
ExtensionOID.FRESHEST_CRL: _decode_freshest_crl,
}
_OCSP_REQ_EXTENSION_HANDLERS = {
OCSPExtensionOID.NONCE: _decode_nonce,
}
_OCSP_BASICRESP_EXTENSION_HANDLERS = {
OCSPExtensionOID.NONCE: _decode_nonce,
}
_OCSP_SINGLERESP_EXTENSION_HANDLERS_SCT = {
ExtensionOID.SIGNED_CERTIFICATE_TIMESTAMPS: (
_decode_signed_certificate_timestamps
)
}