|  | # test interactions between int, float, Decimal and Fraction | 
|  |  | 
|  | import unittest | 
|  | import random | 
|  | import math | 
|  | import sys | 
|  | import operator | 
|  |  | 
|  | from decimal import Decimal as D | 
|  | from fractions import Fraction as F | 
|  |  | 
|  | # Constants related to the hash implementation;  hash(x) is based | 
|  | # on the reduction of x modulo the prime _PyHASH_MODULUS. | 
|  | _PyHASH_MODULUS = sys.hash_info.modulus | 
|  | _PyHASH_INF = sys.hash_info.inf | 
|  |  | 
|  | class HashTest(unittest.TestCase): | 
|  | def check_equal_hash(self, x, y): | 
|  | # check both that x and y are equal and that their hashes are equal | 
|  | self.assertEqual(hash(x), hash(y), | 
|  | "got different hashes for {!r} and {!r}".format(x, y)) | 
|  | self.assertEqual(x, y) | 
|  |  | 
|  | def test_bools(self): | 
|  | self.check_equal_hash(False, 0) | 
|  | self.check_equal_hash(True, 1) | 
|  |  | 
|  | def test_integers(self): | 
|  | # check that equal values hash equal | 
|  |  | 
|  | # exact integers | 
|  | for i in range(-1000, 1000): | 
|  | self.check_equal_hash(i, float(i)) | 
|  | self.check_equal_hash(i, D(i)) | 
|  | self.check_equal_hash(i, F(i)) | 
|  |  | 
|  | # the current hash is based on reduction modulo 2**n-1 for some | 
|  | # n, so pay special attention to numbers of the form 2**n and 2**n-1. | 
|  | for i in range(100): | 
|  | n = 2**i - 1 | 
|  | if n == int(float(n)): | 
|  | self.check_equal_hash(n, float(n)) | 
|  | self.check_equal_hash(-n, -float(n)) | 
|  | self.check_equal_hash(n, D(n)) | 
|  | self.check_equal_hash(n, F(n)) | 
|  | self.check_equal_hash(-n, D(-n)) | 
|  | self.check_equal_hash(-n, F(-n)) | 
|  |  | 
|  | n = 2**i | 
|  | self.check_equal_hash(n, float(n)) | 
|  | self.check_equal_hash(-n, -float(n)) | 
|  | self.check_equal_hash(n, D(n)) | 
|  | self.check_equal_hash(n, F(n)) | 
|  | self.check_equal_hash(-n, D(-n)) | 
|  | self.check_equal_hash(-n, F(-n)) | 
|  |  | 
|  | # random values of various sizes | 
|  | for _ in range(1000): | 
|  | e = random.randrange(300) | 
|  | n = random.randrange(-10**e, 10**e) | 
|  | self.check_equal_hash(n, D(n)) | 
|  | self.check_equal_hash(n, F(n)) | 
|  | if n == int(float(n)): | 
|  | self.check_equal_hash(n, float(n)) | 
|  |  | 
|  | def test_binary_floats(self): | 
|  | # check that floats hash equal to corresponding Fractions and Decimals | 
|  |  | 
|  | # floats that are distinct but numerically equal should hash the same | 
|  | self.check_equal_hash(0.0, -0.0) | 
|  |  | 
|  | # zeros | 
|  | self.check_equal_hash(0.0, D(0)) | 
|  | self.check_equal_hash(-0.0, D(0)) | 
|  | self.check_equal_hash(-0.0, D('-0.0')) | 
|  | self.check_equal_hash(0.0, F(0)) | 
|  |  | 
|  | # infinities and nans | 
|  | self.check_equal_hash(float('inf'), D('inf')) | 
|  | self.check_equal_hash(float('-inf'), D('-inf')) | 
|  |  | 
|  | for _ in range(1000): | 
|  | x = random.random() * math.exp(random.random()*200.0 - 100.0) | 
|  | self.check_equal_hash(x, D.from_float(x)) | 
|  | self.check_equal_hash(x, F.from_float(x)) | 
|  |  | 
|  | def test_complex(self): | 
|  | # complex numbers with zero imaginary part should hash equal to | 
|  | # the corresponding float | 
|  |  | 
|  | test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5, | 
|  | float('inf'), float('-inf')] | 
|  |  | 
|  | for zero in -0.0, 0.0: | 
|  | for value in test_values: | 
|  | self.check_equal_hash(value, complex(value, zero)) | 
|  |  | 
|  | def test_decimals(self): | 
|  | # check that Decimal instances that have different representations | 
|  | # but equal values give the same hash | 
|  | zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10'] | 
|  | for zero in zeros: | 
|  | self.check_equal_hash(D(zero), D(0)) | 
|  |  | 
|  | self.check_equal_hash(D('1.00'), D(1)) | 
|  | self.check_equal_hash(D('1.00000'), D(1)) | 
|  | self.check_equal_hash(D('-1.00'), D(-1)) | 
|  | self.check_equal_hash(D('-1.00000'), D(-1)) | 
|  | self.check_equal_hash(D('123e2'), D(12300)) | 
|  | self.check_equal_hash(D('1230e1'), D(12300)) | 
|  | self.check_equal_hash(D('12300'), D(12300)) | 
|  | self.check_equal_hash(D('12300.0'), D(12300)) | 
|  | self.check_equal_hash(D('12300.00'), D(12300)) | 
|  | self.check_equal_hash(D('12300.000'), D(12300)) | 
|  |  | 
|  | def test_fractions(self): | 
|  | # check special case for fractions where either the numerator | 
|  | # or the denominator is a multiple of _PyHASH_MODULUS | 
|  | self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF) | 
|  | self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF) | 
|  | self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0) | 
|  | self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0) | 
|  |  | 
|  | def test_hash_normalization(self): | 
|  | # Test for a bug encountered while changing long_hash. | 
|  | # | 
|  | # Given objects x and y, it should be possible for y's | 
|  | # __hash__ method to return hash(x) in order to ensure that | 
|  | # hash(x) == hash(y).  But hash(x) is not exactly equal to the | 
|  | # result of x.__hash__(): there's some internal normalization | 
|  | # to make sure that the result fits in a C long, and is not | 
|  | # equal to the invalid hash value -1.  This internal | 
|  | # normalization must therefore not change the result of | 
|  | # hash(x) for any x. | 
|  |  | 
|  | class HalibutProxy: | 
|  | def __hash__(self): | 
|  | return hash('halibut') | 
|  | def __eq__(self, other): | 
|  | return other == 'halibut' | 
|  |  | 
|  | x = {'halibut', HalibutProxy()} | 
|  | self.assertEqual(len(x), 1) | 
|  |  | 
|  | class ComparisonTest(unittest.TestCase): | 
|  | def test_mixed_comparisons(self): | 
|  |  | 
|  | # ordered list of distinct test values of various types: | 
|  | # int, float, Fraction, Decimal | 
|  | test_values = [ | 
|  | float('-inf'), | 
|  | D('-1e425000000'), | 
|  | -1e308, | 
|  | F(-22, 7), | 
|  | -3.14, | 
|  | -2, | 
|  | 0.0, | 
|  | 1e-320, | 
|  | True, | 
|  | F('1.2'), | 
|  | D('1.3'), | 
|  | float('1.4'), | 
|  | F(275807, 195025), | 
|  | D('1.414213562373095048801688724'), | 
|  | F(114243, 80782), | 
|  | F(473596569, 84615), | 
|  | 7e200, | 
|  | D('infinity'), | 
|  | ] | 
|  | for i, first in enumerate(test_values): | 
|  | for second in test_values[i+1:]: | 
|  | self.assertLess(first, second) | 
|  | self.assertLessEqual(first, second) | 
|  | self.assertGreater(second, first) | 
|  | self.assertGreaterEqual(second, first) | 
|  |  | 
|  | def test_complex(self): | 
|  | # comparisons with complex are special:  equality and inequality | 
|  | # comparisons should always succeed, but order comparisons should | 
|  | # raise TypeError. | 
|  | z = 1.0 + 0j | 
|  | w = -3.14 + 2.7j | 
|  |  | 
|  | for v in 1, 1.0, F(1), D(1), complex(1): | 
|  | self.assertEqual(z, v) | 
|  | self.assertEqual(v, z) | 
|  |  | 
|  | for v in 2, 2.0, F(2), D(2), complex(2): | 
|  | self.assertNotEqual(z, v) | 
|  | self.assertNotEqual(v, z) | 
|  | self.assertNotEqual(w, v) | 
|  | self.assertNotEqual(v, w) | 
|  |  | 
|  | for v in (1, 1.0, F(1), D(1), complex(1), | 
|  | 2, 2.0, F(2), D(2), complex(2), w): | 
|  | for op in operator.le, operator.lt, operator.ge, operator.gt: | 
|  | self.assertRaises(TypeError, op, z, v) | 
|  | self.assertRaises(TypeError, op, v, z) | 
|  |  | 
|  |  | 
|  | if __name__ == '__main__': | 
|  | unittest.main() |