| /* ---------------------------------------------------------------------------- |
| Copyright (c) 2018-2023, Microsoft Research, Daan Leijen |
| This is free software; you can redistribute it and/or modify it under the |
| terms of the MIT license. A copy of the license can be found in the file |
| "LICENSE" at the root of this distribution. |
| -----------------------------------------------------------------------------*/ |
| #include "mimalloc.h" |
| #include "mimalloc/internal.h" |
| #include "mimalloc/atomic.h" |
| #include "mimalloc/prim.h" |
| |
| |
| /* ----------------------------------------------------------- |
| Initialization. |
| On windows initializes support for aligned allocation and |
| large OS pages (if MIMALLOC_LARGE_OS_PAGES is true). |
| ----------------------------------------------------------- */ |
| |
| static mi_os_mem_config_t mi_os_mem_config = { |
| 4096, // page size |
| 0, // large page size (usually 2MiB) |
| 4096, // allocation granularity |
| true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems) |
| false, // must free whole? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span) |
| true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory) |
| }; |
| |
| bool _mi_os_has_overcommit(void) { |
| return mi_os_mem_config.has_overcommit; |
| } |
| |
| bool _mi_os_has_virtual_reserve(void) { |
| return mi_os_mem_config.has_virtual_reserve; |
| } |
| |
| |
| // OS (small) page size |
| size_t _mi_os_page_size(void) { |
| return mi_os_mem_config.page_size; |
| } |
| |
| // if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB) |
| size_t _mi_os_large_page_size(void) { |
| return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size()); |
| } |
| |
| bool _mi_os_use_large_page(size_t size, size_t alignment) { |
| // if we have access, check the size and alignment requirements |
| if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_allow_large_os_pages)) return false; |
| return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0); |
| } |
| |
| // round to a good OS allocation size (bounded by max 12.5% waste) |
| size_t _mi_os_good_alloc_size(size_t size) { |
| size_t align_size; |
| if (size < 512*MI_KiB) align_size = _mi_os_page_size(); |
| else if (size < 2*MI_MiB) align_size = 64*MI_KiB; |
| else if (size < 8*MI_MiB) align_size = 256*MI_KiB; |
| else if (size < 32*MI_MiB) align_size = 1*MI_MiB; |
| else align_size = 4*MI_MiB; |
| if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow? |
| return _mi_align_up(size, align_size); |
| } |
| |
| void _mi_os_init(void) { |
| _mi_prim_mem_init(&mi_os_mem_config); |
| } |
| |
| |
| /* ----------------------------------------------------------- |
| Util |
| -------------------------------------------------------------- */ |
| bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); |
| bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats); |
| |
| static void* mi_align_up_ptr(void* p, size_t alignment) { |
| return (void*)_mi_align_up((uintptr_t)p, alignment); |
| } |
| |
| static void* mi_align_down_ptr(void* p, size_t alignment) { |
| return (void*)_mi_align_down((uintptr_t)p, alignment); |
| } |
| |
| |
| /* ----------------------------------------------------------- |
| aligned hinting |
| -------------------------------------------------------------- */ |
| |
| // On 64-bit systems, we can do efficient aligned allocation by using |
| // the 2TiB to 30TiB area to allocate those. |
| #if (MI_INTPTR_SIZE >= 8) |
| static mi_decl_cache_align _Atomic(uintptr_t)aligned_base; |
| |
| // Return a MI_SEGMENT_SIZE aligned address that is probably available. |
| // If this returns NULL, the OS will determine the address but on some OS's that may not be |
| // properly aligned which can be more costly as it needs to be adjusted afterwards. |
| // For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization; |
| // (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses |
| // in the middle of the 2TiB - 6TiB address range (see issue #372)) |
| |
| #define MI_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start |
| #define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes) |
| #define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages) |
| |
| void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) |
| { |
| if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL; |
| size = _mi_align_up(size, MI_SEGMENT_SIZE); |
| if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096. |
| #if (MI_SECURE>0) |
| size += MI_SEGMENT_SIZE; // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas. |
| #endif |
| |
| uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size); |
| if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize |
| uintptr_t init = MI_HINT_BASE; |
| #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode |
| uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap()); |
| init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB |
| #endif |
| uintptr_t expected = hint + size; |
| mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init); |
| hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > MI_HINT_MAX but that is ok, it is a hint after all |
| } |
| if (hint%try_alignment != 0) return NULL; |
| return (void*)hint; |
| } |
| #else |
| void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) { |
| MI_UNUSED(try_alignment); MI_UNUSED(size); |
| return NULL; |
| } |
| #endif |
| |
| |
| /* ----------------------------------------------------------- |
| Free memory |
| -------------------------------------------------------------- */ |
| |
| static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats); |
| |
| static void mi_os_prim_free(void* addr, size_t size, bool still_committed, mi_stats_t* tld_stats) { |
| MI_UNUSED(tld_stats); |
| mi_assert_internal((size % _mi_os_page_size()) == 0); |
| if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr) |
| int err = _mi_prim_free(addr, size); |
| if (err != 0) { |
| _mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr); |
| } |
| mi_stats_t* stats = &_mi_stats_main; |
| if (still_committed) { _mi_stat_decrease(&stats->committed, size); } |
| _mi_stat_decrease(&stats->reserved, size); |
| } |
| |
| void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* tld_stats) { |
| if (mi_memkind_is_os(memid.memkind)) { |
| size_t csize = _mi_os_good_alloc_size(size); |
| void* base = addr; |
| // different base? (due to alignment) |
| if (memid.mem.os.base != NULL) { |
| mi_assert(memid.mem.os.base <= addr); |
| mi_assert((uint8_t*)memid.mem.os.base + memid.mem.os.alignment >= (uint8_t*)addr); |
| base = memid.mem.os.base; |
| csize += ((uint8_t*)addr - (uint8_t*)memid.mem.os.base); |
| } |
| // free it |
| if (memid.memkind == MI_MEM_OS_HUGE) { |
| mi_assert(memid.is_pinned); |
| mi_os_free_huge_os_pages(base, csize, tld_stats); |
| } |
| else { |
| mi_os_prim_free(base, csize, still_committed, tld_stats); |
| } |
| } |
| else { |
| // nothing to do |
| mi_assert(memid.memkind < MI_MEM_OS); |
| } |
| } |
| |
| void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* tld_stats) { |
| _mi_os_free_ex(p, size, true, memid, tld_stats); |
| } |
| |
| |
| /* ----------------------------------------------------------- |
| Primitive allocation from the OS. |
| -------------------------------------------------------------- */ |
| |
| // Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. |
| static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* stats) { |
| mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); |
| mi_assert_internal(is_zero != NULL); |
| mi_assert_internal(is_large != NULL); |
| if (size == 0) return NULL; |
| if (!commit) { allow_large = false; } |
| if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning |
| |
| *is_zero = false; |
| void* p = NULL; |
| int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p); |
| if (err != 0) { |
| _mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large); |
| } |
| mi_stat_counter_increase(stats->mmap_calls, 1); |
| if (p != NULL) { |
| _mi_stat_increase(&stats->reserved, size); |
| if (commit) { |
| _mi_stat_increase(&stats->committed, size); |
| // seems needed for asan (or `mimalloc-test-api` fails) |
| #ifdef MI_TRACK_ASAN |
| if (*is_zero) { mi_track_mem_defined(p,size); } |
| else { mi_track_mem_undefined(p,size); } |
| #endif |
| } |
| } |
| return p; |
| } |
| |
| |
| // Primitive aligned allocation from the OS. |
| // This function guarantees the allocated memory is aligned. |
| static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, mi_stats_t* stats) { |
| mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0)); |
| mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); |
| mi_assert_internal(is_large != NULL); |
| mi_assert_internal(is_zero != NULL); |
| mi_assert_internal(base != NULL); |
| if (!commit) allow_large = false; |
| if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL; |
| size = _mi_align_up(size, _mi_os_page_size()); |
| |
| // try first with a hint (this will be aligned directly on Win 10+ or BSD) |
| void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats); |
| if (p == NULL) return NULL; |
| |
| // aligned already? |
| if (((uintptr_t)p % alignment) == 0) { |
| *base = p; |
| } |
| else { |
| // if not aligned, free it, overallocate, and unmap around it |
| // NOTE(sgross): this warning causes issues in Python tests |
| // _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit); |
| mi_os_prim_free(p, size, commit, stats); |
| if (size >= (SIZE_MAX - alignment)) return NULL; // overflow |
| const size_t over_size = size + alignment; |
| |
| if (mi_os_mem_config.must_free_whole) { // win32 virtualAlloc cannot free parts of an allocate block |
| // over-allocate uncommitted (virtual) memory |
| p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats); |
| if (p == NULL) return NULL; |
| |
| // set p to the aligned part in the full region |
| // note: this is dangerous on Windows as VirtualFree needs the actual base pointer |
| // this is handled though by having the `base` field in the memid's |
| *base = p; // remember the base |
| p = mi_align_up_ptr(p, alignment); |
| |
| // explicitly commit only the aligned part |
| if (commit) { |
| _mi_os_commit(p, size, NULL, stats); |
| } |
| } |
| else { // mmap can free inside an allocation |
| // overallocate... |
| p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats); |
| if (p == NULL) return NULL; |
| |
| // and selectively unmap parts around the over-allocated area. (noop on sbrk) |
| void* aligned_p = mi_align_up_ptr(p, alignment); |
| size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p; |
| size_t mid_size = _mi_align_up(size, _mi_os_page_size()); |
| size_t post_size = over_size - pre_size - mid_size; |
| mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size); |
| if (pre_size > 0) { mi_os_prim_free(p, pre_size, commit, stats); } |
| if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); } |
| // we can return the aligned pointer on `mmap` (and sbrk) systems |
| p = aligned_p; |
| *base = aligned_p; // since we freed the pre part, `*base == p`. |
| } |
| } |
| |
| mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0)); |
| return p; |
| } |
| |
| |
| /* ----------------------------------------------------------- |
| OS API: alloc and alloc_aligned |
| ----------------------------------------------------------- */ |
| |
| void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* tld_stats) { |
| MI_UNUSED(tld_stats); |
| *memid = _mi_memid_none(); |
| mi_stats_t* stats = &_mi_stats_main; |
| if (size == 0) return NULL; |
| size = _mi_os_good_alloc_size(size); |
| bool os_is_large = false; |
| bool os_is_zero = false; |
| void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats); |
| if (p != NULL) { |
| *memid = _mi_memid_create_os(true, os_is_zero, os_is_large); |
| } |
| return p; |
| } |
| |
| void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) |
| { |
| MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings |
| MI_UNUSED(tld_stats); |
| *memid = _mi_memid_none(); |
| if (size == 0) return NULL; |
| size = _mi_os_good_alloc_size(size); |
| alignment = _mi_align_up(alignment, _mi_os_page_size()); |
| |
| bool os_is_large = false; |
| bool os_is_zero = false; |
| void* os_base = NULL; |
| void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, &_mi_stats_main /*tld->stats*/ ); |
| if (p != NULL) { |
| *memid = _mi_memid_create_os(commit, os_is_zero, os_is_large); |
| memid->mem.os.base = os_base; |
| memid->mem.os.alignment = alignment; |
| } |
| return p; |
| } |
| |
| /* ----------------------------------------------------------- |
| OS aligned allocation with an offset. This is used |
| for large alignments > MI_ALIGNMENT_MAX. We use a large mimalloc |
| page where the object can be aligned at an offset from the start of the segment. |
| As we may need to overallocate, we need to free such pointers using `mi_free_aligned` |
| to use the actual start of the memory region. |
| ----------------------------------------------------------- */ |
| |
| void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) { |
| mi_assert(offset <= MI_SEGMENT_SIZE); |
| mi_assert(offset <= size); |
| mi_assert((alignment % _mi_os_page_size()) == 0); |
| *memid = _mi_memid_none(); |
| if (offset > MI_SEGMENT_SIZE) return NULL; |
| if (offset == 0) { |
| // regular aligned allocation |
| return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld_stats); |
| } |
| else { |
| // overallocate to align at an offset |
| const size_t extra = _mi_align_up(offset, alignment) - offset; |
| const size_t oversize = size + extra; |
| void* const start = _mi_os_alloc_aligned(oversize, alignment, commit, allow_large, memid, tld_stats); |
| if (start == NULL) return NULL; |
| |
| void* const p = (uint8_t*)start + extra; |
| mi_assert(_mi_is_aligned((uint8_t*)p + offset, alignment)); |
| // decommit the overallocation at the start |
| if (commit && extra > _mi_os_page_size()) { |
| _mi_os_decommit(start, extra, tld_stats); |
| } |
| return p; |
| } |
| } |
| |
| /* ----------------------------------------------------------- |
| OS memory API: reset, commit, decommit, protect, unprotect. |
| ----------------------------------------------------------- */ |
| |
| // OS page align within a given area, either conservative (pages inside the area only), |
| // or not (straddling pages outside the area is possible) |
| static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) { |
| mi_assert(addr != NULL && size > 0); |
| if (newsize != NULL) *newsize = 0; |
| if (size == 0 || addr == NULL) return NULL; |
| |
| // page align conservatively within the range |
| void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size()) |
| : mi_align_down_ptr(addr, _mi_os_page_size())); |
| void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size()) |
| : mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size())); |
| ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start; |
| if (diff <= 0) return NULL; |
| |
| mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size)); |
| if (newsize != NULL) *newsize = (size_t)diff; |
| return start; |
| } |
| |
| static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) { |
| return mi_os_page_align_areax(true, addr, size, newsize); |
| } |
| |
| bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) { |
| MI_UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| if (is_zero != NULL) { *is_zero = false; } |
| _mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit |
| _mi_stat_counter_increase(&stats->commit_calls, 1); |
| |
| // page align range |
| size_t csize; |
| void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize); |
| if (csize == 0) return true; |
| |
| // commit |
| bool os_is_zero = false; |
| int err = _mi_prim_commit(start, csize, &os_is_zero); |
| if (err != 0) { |
| _mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); |
| return false; |
| } |
| if (os_is_zero && is_zero != NULL) { |
| *is_zero = true; |
| mi_assert_expensive(mi_mem_is_zero(start, csize)); |
| } |
| // note: the following seems required for asan (otherwise `mimalloc-test-stress` fails) |
| #ifdef MI_TRACK_ASAN |
| if (os_is_zero) { mi_track_mem_defined(start,csize); } |
| else { mi_track_mem_undefined(start,csize); } |
| #endif |
| return true; |
| } |
| |
| static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_stats_t* tld_stats) { |
| MI_UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| mi_assert_internal(needs_recommit!=NULL); |
| _mi_stat_decrease(&stats->committed, size); |
| |
| // page align |
| size_t csize; |
| void* start = mi_os_page_align_area_conservative(addr, size, &csize); |
| if (csize == 0) return true; |
| |
| // decommit |
| *needs_recommit = true; |
| int err = _mi_prim_decommit(start,csize,needs_recommit); |
| if (err != 0) { |
| _mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); |
| } |
| mi_assert_internal(err == 0); |
| return (err == 0); |
| } |
| |
| bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) { |
| bool needs_recommit; |
| return mi_os_decommit_ex(addr, size, &needs_recommit, tld_stats); |
| } |
| |
| |
| // Signal to the OS that the address range is no longer in use |
| // but may be used later again. This will release physical memory |
| // pages and reduce swapping while keeping the memory committed. |
| // We page align to a conservative area inside the range to reset. |
| bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) { |
| // page align conservatively within the range |
| size_t csize; |
| void* start = mi_os_page_align_area_conservative(addr, size, &csize); |
| if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr) |
| _mi_stat_increase(&stats->reset, csize); |
| _mi_stat_counter_increase(&stats->reset_calls, 1); |
| |
| #if (MI_DEBUG>1) && !MI_SECURE && !MI_TRACK_ENABLED // && !MI_TSAN |
| memset(start, 0, csize); // pretend it is eagerly reset |
| #endif |
| |
| int err = _mi_prim_reset(start, csize); |
| if (err != 0) { |
| _mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); |
| } |
| return (err == 0); |
| } |
| |
| |
| // either resets or decommits memory, returns true if the memory needs |
| // to be recommitted if it is to be re-used later on. |
| bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats) |
| { |
| if (mi_option_get(mi_option_purge_delay) < 0) return false; // is purging allowed? |
| _mi_stat_counter_increase(&stats->purge_calls, 1); |
| _mi_stat_increase(&stats->purged, size); |
| |
| if (mi_option_is_enabled(mi_option_purge_decommits) && // should decommit? |
| !_mi_preloading()) // don't decommit during preloading (unsafe) |
| { |
| bool needs_recommit = true; |
| mi_os_decommit_ex(p, size, &needs_recommit, stats); |
| return needs_recommit; |
| } |
| else { |
| if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed |
| _mi_os_reset(p, size, stats); |
| } |
| return false; // needs no recommit |
| } |
| } |
| |
| // either resets or decommits memory, returns true if the memory needs |
| // to be recommitted if it is to be re-used later on. |
| bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) { |
| return _mi_os_purge_ex(p, size, true, stats); |
| } |
| |
| // Protect a region in memory to be not accessible. |
| static bool mi_os_protectx(void* addr, size_t size, bool protect) { |
| // page align conservatively within the range |
| size_t csize = 0; |
| void* start = mi_os_page_align_area_conservative(addr, size, &csize); |
| if (csize == 0) return false; |
| /* |
| if (_mi_os_is_huge_reserved(addr)) { |
| _mi_warning_message("cannot mprotect memory allocated in huge OS pages\n"); |
| } |
| */ |
| int err = _mi_prim_protect(start,csize,protect); |
| if (err != 0) { |
| _mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize); |
| } |
| return (err == 0); |
| } |
| |
| bool _mi_os_protect(void* addr, size_t size) { |
| return mi_os_protectx(addr, size, true); |
| } |
| |
| bool _mi_os_unprotect(void* addr, size_t size) { |
| return mi_os_protectx(addr, size, false); |
| } |
| |
| |
| |
| /* ---------------------------------------------------------------------------- |
| Support for allocating huge OS pages (1Gib) that are reserved up-front |
| and possibly associated with a specific NUMA node. (use `numa_node>=0`) |
| -----------------------------------------------------------------------------*/ |
| #define MI_HUGE_OS_PAGE_SIZE (MI_GiB) |
| |
| |
| #if (MI_INTPTR_SIZE >= 8) |
| // To ensure proper alignment, use our own area for huge OS pages |
| static mi_decl_cache_align _Atomic(uintptr_t) mi_huge_start; // = 0 |
| |
| // Claim an aligned address range for huge pages |
| static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { |
| if (total_size != NULL) *total_size = 0; |
| const size_t size = pages * MI_HUGE_OS_PAGE_SIZE; |
| |
| uintptr_t start = 0; |
| uintptr_t end = 0; |
| uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start); |
| do { |
| start = huge_start; |
| if (start == 0) { |
| // Initialize the start address after the 32TiB area |
| start = ((uintptr_t)32 << 40); // 32TiB virtual start address |
| #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode |
| uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap()); |
| start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB |
| #endif |
| } |
| end = start + size; |
| mi_assert_internal(end % MI_SEGMENT_SIZE == 0); |
| } while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end)); |
| |
| if (total_size != NULL) *total_size = size; |
| return (uint8_t*)start; |
| } |
| #else |
| static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { |
| MI_UNUSED(pages); |
| if (total_size != NULL) *total_size = 0; |
| return NULL; |
| } |
| #endif |
| |
| // Allocate MI_SEGMENT_SIZE aligned huge pages |
| void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid) { |
| *memid = _mi_memid_none(); |
| if (psize != NULL) *psize = 0; |
| if (pages_reserved != NULL) *pages_reserved = 0; |
| size_t size = 0; |
| uint8_t* start = mi_os_claim_huge_pages(pages, &size); |
| if (start == NULL) return NULL; // or 32-bit systems |
| |
| // Allocate one page at the time but try to place them contiguously |
| // We allocate one page at the time to be able to abort if it takes too long |
| // or to at least allocate as many as available on the system. |
| mi_msecs_t start_t = _mi_clock_start(); |
| size_t page = 0; |
| bool all_zero = true; |
| while (page < pages) { |
| // allocate a page |
| bool is_zero = false; |
| void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE); |
| void* p = NULL; |
| int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &is_zero, &p); |
| if (!is_zero) { all_zero = false; } |
| if (err != 0) { |
| _mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE); |
| break; |
| } |
| |
| // Did we succeed at a contiguous address? |
| if (p != addr) { |
| // no success, issue a warning and break |
| if (p != NULL) { |
| _mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr); |
| mi_os_prim_free(p, MI_HUGE_OS_PAGE_SIZE, true, &_mi_stats_main); |
| } |
| break; |
| } |
| |
| // success, record it |
| page++; // increase before timeout check (see issue #711) |
| _mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE); |
| _mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE); |
| |
| // check for timeout |
| if (max_msecs > 0) { |
| mi_msecs_t elapsed = _mi_clock_end(start_t); |
| if (page >= 1) { |
| mi_msecs_t estimate = ((elapsed / (page+1)) * pages); |
| if (estimate > 2*max_msecs) { // seems like we are going to timeout, break |
| elapsed = max_msecs + 1; |
| } |
| } |
| if (elapsed > max_msecs) { |
| _mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page); |
| break; |
| } |
| } |
| } |
| mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size); |
| if (pages_reserved != NULL) { *pages_reserved = page; } |
| if (psize != NULL) { *psize = page * MI_HUGE_OS_PAGE_SIZE; } |
| if (page != 0) { |
| mi_assert(start != NULL); |
| *memid = _mi_memid_create_os(true /* is committed */, all_zero, true /* is_large */); |
| memid->memkind = MI_MEM_OS_HUGE; |
| mi_assert(memid->is_pinned); |
| #ifdef MI_TRACK_ASAN |
| if (all_zero) { mi_track_mem_defined(start,size); } |
| #endif |
| } |
| return (page == 0 ? NULL : start); |
| } |
| |
| // free every huge page in a range individually (as we allocated per page) |
| // note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems. |
| static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats) { |
| if (p==NULL || size==0) return; |
| uint8_t* base = (uint8_t*)p; |
| while (size >= MI_HUGE_OS_PAGE_SIZE) { |
| mi_os_prim_free(base, MI_HUGE_OS_PAGE_SIZE, true, stats); |
| size -= MI_HUGE_OS_PAGE_SIZE; |
| base += MI_HUGE_OS_PAGE_SIZE; |
| } |
| } |
| |
| /* ---------------------------------------------------------------------------- |
| Support NUMA aware allocation |
| -----------------------------------------------------------------------------*/ |
| |
| _Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count |
| |
| size_t _mi_os_numa_node_count_get(void) { |
| size_t count = mi_atomic_load_acquire(&_mi_numa_node_count); |
| if (count <= 0) { |
| long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly? |
| if (ncount > 0) { |
| count = (size_t)ncount; |
| } |
| else { |
| count = _mi_prim_numa_node_count(); // or detect dynamically |
| if (count == 0) count = 1; |
| } |
| mi_atomic_store_release(&_mi_numa_node_count, count); // save it |
| _mi_verbose_message("using %zd numa regions\n", count); |
| } |
| return count; |
| } |
| |
| int _mi_os_numa_node_get(mi_os_tld_t* tld) { |
| MI_UNUSED(tld); |
| size_t numa_count = _mi_os_numa_node_count(); |
| if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0 |
| // never more than the node count and >= 0 |
| size_t numa_node = _mi_prim_numa_node(); |
| if (numa_node >= numa_count) { numa_node = numa_node % numa_count; } |
| return (int)numa_node; |
| } |