blob: 3e2c781caa11acbf25dc436b1e6a044d2b8f9536 [file] [log] [blame]
import collections
import copyreg
import dbm
import io
import functools
import os
import math
import pickle
import pickletools
import shutil
import struct
import sys
import threading
import unittest
import weakref
from textwrap import dedent
from http.cookies import SimpleCookie
try:
import _testbuffer
except ImportError:
_testbuffer = None
from test import support
from test.support import os_helper
from test.support import (
TestFailed, run_with_locale, no_tracing,
_2G, _4G, bigmemtest
)
from test.support.import_helper import forget
from test.support.os_helper import TESTFN
from test.support import threading_helper
from test.support.warnings_helper import save_restore_warnings_filters
from pickle import bytes_types
# bpo-41003: Save/restore warnings filters to leave them unchanged.
# Ignore filters installed by numpy.
try:
with save_restore_warnings_filters():
import numpy as np
except ImportError:
np = None
requires_32b = unittest.skipUnless(sys.maxsize < 2**32,
"test is only meaningful on 32-bit builds")
# Tests that try a number of pickle protocols should have a
# for proto in protocols:
# kind of outer loop.
protocols = range(pickle.HIGHEST_PROTOCOL + 1)
# Return True if opcode code appears in the pickle, else False.
def opcode_in_pickle(code, pickle):
for op, dummy, dummy in pickletools.genops(pickle):
if op.code == code.decode("latin-1"):
return True
return False
# Return the number of times opcode code appears in pickle.
def count_opcode(code, pickle):
n = 0
for op, dummy, dummy in pickletools.genops(pickle):
if op.code == code.decode("latin-1"):
n += 1
return n
def identity(x):
return x
class UnseekableIO(io.BytesIO):
def peek(self, *args):
raise NotImplementedError
def seekable(self):
return False
def seek(self, *args):
raise io.UnsupportedOperation
def tell(self):
raise io.UnsupportedOperation
class MinimalIO(object):
"""
A file-like object that doesn't support readinto().
"""
def __init__(self, *args):
self._bio = io.BytesIO(*args)
self.getvalue = self._bio.getvalue
self.read = self._bio.read
self.readline = self._bio.readline
self.write = self._bio.write
# We can't very well test the extension registry without putting known stuff
# in it, but we have to be careful to restore its original state. Code
# should do this:
#
# e = ExtensionSaver(extension_code)
# try:
# fiddle w/ the extension registry's stuff for extension_code
# finally:
# e.restore()
class ExtensionSaver:
# Remember current registration for code (if any), and remove it (if
# there is one).
def __init__(self, code):
self.code = code
if code in copyreg._inverted_registry:
self.pair = copyreg._inverted_registry[code]
copyreg.remove_extension(self.pair[0], self.pair[1], code)
else:
self.pair = None
# Restore previous registration for code.
def restore(self):
code = self.code
curpair = copyreg._inverted_registry.get(code)
if curpair is not None:
copyreg.remove_extension(curpair[0], curpair[1], code)
pair = self.pair
if pair is not None:
copyreg.add_extension(pair[0], pair[1], code)
class C:
def __eq__(self, other):
return self.__dict__ == other.__dict__
class D(C):
def __init__(self, arg):
pass
class E(C):
def __getinitargs__(self):
return ()
# Simple mutable object.
class Object:
pass
# Hashable immutable key object containing unheshable mutable data.
class K:
def __init__(self, value):
self.value = value
def __reduce__(self):
# Shouldn't support the recursion itself
return K, (self.value,)
import __main__
__main__.C = C
C.__module__ = "__main__"
__main__.D = D
D.__module__ = "__main__"
__main__.E = E
E.__module__ = "__main__"
class myint(int):
def __init__(self, x):
self.str = str(x)
class initarg(C):
def __init__(self, a, b):
self.a = a
self.b = b
def __getinitargs__(self):
return self.a, self.b
class metaclass(type):
pass
class use_metaclass(object, metaclass=metaclass):
pass
class pickling_metaclass(type):
def __eq__(self, other):
return (type(self) == type(other) and
self.reduce_args == other.reduce_args)
def __reduce__(self):
return (create_dynamic_class, self.reduce_args)
def create_dynamic_class(name, bases):
result = pickling_metaclass(name, bases, dict())
result.reduce_args = (name, bases)
return result
class ZeroCopyBytes(bytes):
readonly = True
c_contiguous = True
f_contiguous = True
zero_copy_reconstruct = True
def __reduce_ex__(self, protocol):
if protocol >= 5:
return type(self)._reconstruct, (pickle.PickleBuffer(self),), None
else:
return type(self)._reconstruct, (bytes(self),)
def __repr__(self):
return "{}({!r})".format(self.__class__.__name__, bytes(self))
__str__ = __repr__
@classmethod
def _reconstruct(cls, obj):
with memoryview(obj) as m:
obj = m.obj
if type(obj) is cls:
# Zero-copy
return obj
else:
return cls(obj)
class ZeroCopyBytearray(bytearray):
readonly = False
c_contiguous = True
f_contiguous = True
zero_copy_reconstruct = True
def __reduce_ex__(self, protocol):
if protocol >= 5:
return type(self)._reconstruct, (pickle.PickleBuffer(self),), None
else:
return type(self)._reconstruct, (bytes(self),)
def __repr__(self):
return "{}({!r})".format(self.__class__.__name__, bytes(self))
__str__ = __repr__
@classmethod
def _reconstruct(cls, obj):
with memoryview(obj) as m:
obj = m.obj
if type(obj) is cls:
# Zero-copy
return obj
else:
return cls(obj)
if _testbuffer is not None:
class PicklableNDArray:
# A not-really-zero-copy picklable ndarray, as the ndarray()
# constructor doesn't allow for it
zero_copy_reconstruct = False
def __init__(self, *args, **kwargs):
self.array = _testbuffer.ndarray(*args, **kwargs)
def __getitem__(self, idx):
cls = type(self)
new = cls.__new__(cls)
new.array = self.array[idx]
return new
@property
def readonly(self):
return self.array.readonly
@property
def c_contiguous(self):
return self.array.c_contiguous
@property
def f_contiguous(self):
return self.array.f_contiguous
def __eq__(self, other):
if not isinstance(other, PicklableNDArray):
return NotImplemented
return (other.array.format == self.array.format and
other.array.shape == self.array.shape and
other.array.strides == self.array.strides and
other.array.readonly == self.array.readonly and
other.array.tobytes() == self.array.tobytes())
def __ne__(self, other):
if not isinstance(other, PicklableNDArray):
return NotImplemented
return not (self == other)
def __repr__(self):
return (f"{type(self)}(shape={self.array.shape},"
f"strides={self.array.strides}, "
f"bytes={self.array.tobytes()})")
def __reduce_ex__(self, protocol):
if not self.array.contiguous:
raise NotImplementedError("Reconstructing a non-contiguous "
"ndarray does not seem possible")
ndarray_kwargs = {"shape": self.array.shape,
"strides": self.array.strides,
"format": self.array.format,
"flags": (0 if self.readonly
else _testbuffer.ND_WRITABLE)}
pb = pickle.PickleBuffer(self.array)
if protocol >= 5:
return (type(self)._reconstruct,
(pb, ndarray_kwargs))
else:
# Need to serialize the bytes in physical order
with pb.raw() as m:
return (type(self)._reconstruct,
(m.tobytes(), ndarray_kwargs))
@classmethod
def _reconstruct(cls, obj, kwargs):
with memoryview(obj) as m:
# For some reason, ndarray() wants a list of integers...
# XXX This only works if format == 'B'
items = list(m.tobytes())
return cls(items, **kwargs)
# DATA0 .. DATA4 are the pickles we expect under the various protocols, for
# the object returned by create_data().
DATA0 = (
b'(lp0\nL0L\naL1L\naF2.0\n'
b'ac__builtin__\ncomple'
b'x\np1\n(F3.0\nF0.0\ntp2\n'
b'Rp3\naL1L\naL-1L\naL255'
b'L\naL-255L\naL-256L\naL'
b'65535L\naL-65535L\naL-'
b'65536L\naL2147483647L'
b'\naL-2147483647L\naL-2'
b'147483648L\na(Vabc\np4'
b'\ng4\nccopy_reg\n_recon'
b'structor\np5\n(c__main'
b'__\nC\np6\nc__builtin__'
b'\nobject\np7\nNtp8\nRp9\n'
b'(dp10\nVfoo\np11\nL1L\ns'
b'Vbar\np12\nL2L\nsbg9\ntp'
b'13\nag13\naL5L\na.'
)
# Disassembly of DATA0
DATA0_DIS = """\
0: ( MARK
1: l LIST (MARK at 0)
2: p PUT 0
5: L LONG 0
9: a APPEND
10: L LONG 1
14: a APPEND
15: F FLOAT 2.0
20: a APPEND
21: c GLOBAL '__builtin__ complex'
42: p PUT 1
45: ( MARK
46: F FLOAT 3.0
51: F FLOAT 0.0
56: t TUPLE (MARK at 45)
57: p PUT 2
60: R REDUCE
61: p PUT 3
64: a APPEND
65: L LONG 1
69: a APPEND
70: L LONG -1
75: a APPEND
76: L LONG 255
82: a APPEND
83: L LONG -255
90: a APPEND
91: L LONG -256
98: a APPEND
99: L LONG 65535
107: a APPEND
108: L LONG -65535
117: a APPEND
118: L LONG -65536
127: a APPEND
128: L LONG 2147483647
141: a APPEND
142: L LONG -2147483647
156: a APPEND
157: L LONG -2147483648
171: a APPEND
172: ( MARK
173: V UNICODE 'abc'
178: p PUT 4
181: g GET 4
184: c GLOBAL 'copy_reg _reconstructor'
209: p PUT 5
212: ( MARK
213: c GLOBAL '__main__ C'
225: p PUT 6
228: c GLOBAL '__builtin__ object'
248: p PUT 7
251: N NONE
252: t TUPLE (MARK at 212)
253: p PUT 8
256: R REDUCE
257: p PUT 9
260: ( MARK
261: d DICT (MARK at 260)
262: p PUT 10
266: V UNICODE 'foo'
271: p PUT 11
275: L LONG 1
279: s SETITEM
280: V UNICODE 'bar'
285: p PUT 12
289: L LONG 2
293: s SETITEM
294: b BUILD
295: g GET 9
298: t TUPLE (MARK at 172)
299: p PUT 13
303: a APPEND
304: g GET 13
308: a APPEND
309: L LONG 5
313: a APPEND
314: . STOP
highest protocol among opcodes = 0
"""
DATA1 = (
b']q\x00(K\x00K\x01G@\x00\x00\x00\x00\x00\x00\x00c__'
b'builtin__\ncomplex\nq\x01'
b'(G@\x08\x00\x00\x00\x00\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00t'
b'q\x02Rq\x03K\x01J\xff\xff\xff\xffK\xffJ\x01\xff\xff\xffJ'
b'\x00\xff\xff\xffM\xff\xffJ\x01\x00\xff\xffJ\x00\x00\xff\xffJ\xff\xff'
b'\xff\x7fJ\x01\x00\x00\x80J\x00\x00\x00\x80(X\x03\x00\x00\x00ab'
b'cq\x04h\x04ccopy_reg\n_reco'
b'nstructor\nq\x05(c__main'
b'__\nC\nq\x06c__builtin__\n'
b'object\nq\x07Ntq\x08Rq\t}q\n('
b'X\x03\x00\x00\x00fooq\x0bK\x01X\x03\x00\x00\x00bar'
b'q\x0cK\x02ubh\ttq\rh\rK\x05e.'
)
# Disassembly of DATA1
DATA1_DIS = """\
0: ] EMPTY_LIST
1: q BINPUT 0
3: ( MARK
4: K BININT1 0
6: K BININT1 1
8: G BINFLOAT 2.0
17: c GLOBAL '__builtin__ complex'
38: q BINPUT 1
40: ( MARK
41: G BINFLOAT 3.0
50: G BINFLOAT 0.0
59: t TUPLE (MARK at 40)
60: q BINPUT 2
62: R REDUCE
63: q BINPUT 3
65: K BININT1 1
67: J BININT -1
72: K BININT1 255
74: J BININT -255
79: J BININT -256
84: M BININT2 65535
87: J BININT -65535
92: J BININT -65536
97: J BININT 2147483647
102: J BININT -2147483647
107: J BININT -2147483648
112: ( MARK
113: X BINUNICODE 'abc'
121: q BINPUT 4
123: h BINGET 4
125: c GLOBAL 'copy_reg _reconstructor'
150: q BINPUT 5
152: ( MARK
153: c GLOBAL '__main__ C'
165: q BINPUT 6
167: c GLOBAL '__builtin__ object'
187: q BINPUT 7
189: N NONE
190: t TUPLE (MARK at 152)
191: q BINPUT 8
193: R REDUCE
194: q BINPUT 9
196: } EMPTY_DICT
197: q BINPUT 10
199: ( MARK
200: X BINUNICODE 'foo'
208: q BINPUT 11
210: K BININT1 1
212: X BINUNICODE 'bar'
220: q BINPUT 12
222: K BININT1 2
224: u SETITEMS (MARK at 199)
225: b BUILD
226: h BINGET 9
228: t TUPLE (MARK at 112)
229: q BINPUT 13
231: h BINGET 13
233: K BININT1 5
235: e APPENDS (MARK at 3)
236: . STOP
highest protocol among opcodes = 1
"""
DATA2 = (
b'\x80\x02]q\x00(K\x00K\x01G@\x00\x00\x00\x00\x00\x00\x00c'
b'__builtin__\ncomplex\n'
b'q\x01G@\x08\x00\x00\x00\x00\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00'
b'\x86q\x02Rq\x03K\x01J\xff\xff\xff\xffK\xffJ\x01\xff\xff\xff'
b'J\x00\xff\xff\xffM\xff\xffJ\x01\x00\xff\xffJ\x00\x00\xff\xffJ\xff'
b'\xff\xff\x7fJ\x01\x00\x00\x80J\x00\x00\x00\x80(X\x03\x00\x00\x00a'
b'bcq\x04h\x04c__main__\nC\nq\x05'
b')\x81q\x06}q\x07(X\x03\x00\x00\x00fooq\x08K\x01'
b'X\x03\x00\x00\x00barq\tK\x02ubh\x06tq\nh'
b'\nK\x05e.'
)
# Disassembly of DATA2
DATA2_DIS = """\
0: \x80 PROTO 2
2: ] EMPTY_LIST
3: q BINPUT 0
5: ( MARK
6: K BININT1 0
8: K BININT1 1
10: G BINFLOAT 2.0
19: c GLOBAL '__builtin__ complex'
40: q BINPUT 1
42: G BINFLOAT 3.0
51: G BINFLOAT 0.0
60: \x86 TUPLE2
61: q BINPUT 2
63: R REDUCE
64: q BINPUT 3
66: K BININT1 1
68: J BININT -1
73: K BININT1 255
75: J BININT -255
80: J BININT -256
85: M BININT2 65535
88: J BININT -65535
93: J BININT -65536
98: J BININT 2147483647
103: J BININT -2147483647
108: J BININT -2147483648
113: ( MARK
114: X BINUNICODE 'abc'
122: q BINPUT 4
124: h BINGET 4
126: c GLOBAL '__main__ C'
138: q BINPUT 5
140: ) EMPTY_TUPLE
141: \x81 NEWOBJ
142: q BINPUT 6
144: } EMPTY_DICT
145: q BINPUT 7
147: ( MARK
148: X BINUNICODE 'foo'
156: q BINPUT 8
158: K BININT1 1
160: X BINUNICODE 'bar'
168: q BINPUT 9
170: K BININT1 2
172: u SETITEMS (MARK at 147)
173: b BUILD
174: h BINGET 6
176: t TUPLE (MARK at 113)
177: q BINPUT 10
179: h BINGET 10
181: K BININT1 5
183: e APPENDS (MARK at 5)
184: . STOP
highest protocol among opcodes = 2
"""
DATA3 = (
b'\x80\x03]q\x00(K\x00K\x01G@\x00\x00\x00\x00\x00\x00\x00c'
b'builtins\ncomplex\nq\x01G'
b'@\x08\x00\x00\x00\x00\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00\x86q\x02'
b'Rq\x03K\x01J\xff\xff\xff\xffK\xffJ\x01\xff\xff\xffJ\x00\xff'
b'\xff\xffM\xff\xffJ\x01\x00\xff\xffJ\x00\x00\xff\xffJ\xff\xff\xff\x7f'
b'J\x01\x00\x00\x80J\x00\x00\x00\x80(X\x03\x00\x00\x00abcq'
b'\x04h\x04c__main__\nC\nq\x05)\x81q'
b'\x06}q\x07(X\x03\x00\x00\x00barq\x08K\x02X\x03\x00'
b'\x00\x00fooq\tK\x01ubh\x06tq\nh\nK\x05'
b'e.'
)
# Disassembly of DATA3
DATA3_DIS = """\
0: \x80 PROTO 3
2: ] EMPTY_LIST
3: q BINPUT 0
5: ( MARK
6: K BININT1 0
8: K BININT1 1
10: G BINFLOAT 2.0
19: c GLOBAL 'builtins complex'
37: q BINPUT 1
39: G BINFLOAT 3.0
48: G BINFLOAT 0.0
57: \x86 TUPLE2
58: q BINPUT 2
60: R REDUCE
61: q BINPUT 3
63: K BININT1 1
65: J BININT -1
70: K BININT1 255
72: J BININT -255
77: J BININT -256
82: M BININT2 65535
85: J BININT -65535
90: J BININT -65536
95: J BININT 2147483647
100: J BININT -2147483647
105: J BININT -2147483648
110: ( MARK
111: X BINUNICODE 'abc'
119: q BINPUT 4
121: h BINGET 4
123: c GLOBAL '__main__ C'
135: q BINPUT 5
137: ) EMPTY_TUPLE
138: \x81 NEWOBJ
139: q BINPUT 6
141: } EMPTY_DICT
142: q BINPUT 7
144: ( MARK
145: X BINUNICODE 'bar'
153: q BINPUT 8
155: K BININT1 2
157: X BINUNICODE 'foo'
165: q BINPUT 9
167: K BININT1 1
169: u SETITEMS (MARK at 144)
170: b BUILD
171: h BINGET 6
173: t TUPLE (MARK at 110)
174: q BINPUT 10
176: h BINGET 10
178: K BININT1 5
180: e APPENDS (MARK at 5)
181: . STOP
highest protocol among opcodes = 2
"""
DATA4 = (
b'\x80\x04\x95\xa8\x00\x00\x00\x00\x00\x00\x00]\x94(K\x00K\x01G@'
b'\x00\x00\x00\x00\x00\x00\x00\x8c\x08builtins\x94\x8c\x07'
b'complex\x94\x93\x94G@\x08\x00\x00\x00\x00\x00\x00G'
b'\x00\x00\x00\x00\x00\x00\x00\x00\x86\x94R\x94K\x01J\xff\xff\xff\xffK'
b'\xffJ\x01\xff\xff\xffJ\x00\xff\xff\xffM\xff\xffJ\x01\x00\xff\xffJ'
b'\x00\x00\xff\xffJ\xff\xff\xff\x7fJ\x01\x00\x00\x80J\x00\x00\x00\x80('
b'\x8c\x03abc\x94h\x06\x8c\x08__main__\x94\x8c'
b'\x01C\x94\x93\x94)\x81\x94}\x94(\x8c\x03bar\x94K\x02\x8c'
b'\x03foo\x94K\x01ubh\nt\x94h\x0eK\x05e.'
)
# Disassembly of DATA4
DATA4_DIS = """\
0: \x80 PROTO 4
2: \x95 FRAME 168
11: ] EMPTY_LIST
12: \x94 MEMOIZE
13: ( MARK
14: K BININT1 0
16: K BININT1 1
18: G BINFLOAT 2.0
27: \x8c SHORT_BINUNICODE 'builtins'
37: \x94 MEMOIZE
38: \x8c SHORT_BINUNICODE 'complex'
47: \x94 MEMOIZE
48: \x93 STACK_GLOBAL
49: \x94 MEMOIZE
50: G BINFLOAT 3.0
59: G BINFLOAT 0.0
68: \x86 TUPLE2
69: \x94 MEMOIZE
70: R REDUCE
71: \x94 MEMOIZE
72: K BININT1 1
74: J BININT -1
79: K BININT1 255
81: J BININT -255
86: J BININT -256
91: M BININT2 65535
94: J BININT -65535
99: J BININT -65536
104: J BININT 2147483647
109: J BININT -2147483647
114: J BININT -2147483648
119: ( MARK
120: \x8c SHORT_BINUNICODE 'abc'
125: \x94 MEMOIZE
126: h BINGET 6
128: \x8c SHORT_BINUNICODE '__main__'
138: \x94 MEMOIZE
139: \x8c SHORT_BINUNICODE 'C'
142: \x94 MEMOIZE
143: \x93 STACK_GLOBAL
144: \x94 MEMOIZE
145: ) EMPTY_TUPLE
146: \x81 NEWOBJ
147: \x94 MEMOIZE
148: } EMPTY_DICT
149: \x94 MEMOIZE
150: ( MARK
151: \x8c SHORT_BINUNICODE 'bar'
156: \x94 MEMOIZE
157: K BININT1 2
159: \x8c SHORT_BINUNICODE 'foo'
164: \x94 MEMOIZE
165: K BININT1 1
167: u SETITEMS (MARK at 150)
168: b BUILD
169: h BINGET 10
171: t TUPLE (MARK at 119)
172: \x94 MEMOIZE
173: h BINGET 14
175: K BININT1 5
177: e APPENDS (MARK at 13)
178: . STOP
highest protocol among opcodes = 4
"""
# set([1,2]) pickled from 2.x with protocol 2
DATA_SET = b'\x80\x02c__builtin__\nset\nq\x00]q\x01(K\x01K\x02e\x85q\x02Rq\x03.'
# xrange(5) pickled from 2.x with protocol 2
DATA_XRANGE = b'\x80\x02c__builtin__\nxrange\nq\x00K\x00K\x05K\x01\x87q\x01Rq\x02.'
# a SimpleCookie() object pickled from 2.x with protocol 2
DATA_COOKIE = (b'\x80\x02cCookie\nSimpleCookie\nq\x00)\x81q\x01U\x03key'
b'q\x02cCookie\nMorsel\nq\x03)\x81q\x04(U\x07commentq\x05U'
b'\x00q\x06U\x06domainq\x07h\x06U\x06secureq\x08h\x06U\x07'
b'expiresq\th\x06U\x07max-ageq\nh\x06U\x07versionq\x0bh\x06U'
b'\x04pathq\x0ch\x06U\x08httponlyq\rh\x06u}q\x0e(U\x0b'
b'coded_valueq\x0fU\x05valueq\x10h\x10h\x10h\x02h\x02ubs}q\x11b.')
# set([3]) pickled from 2.x with protocol 2
DATA_SET2 = b'\x80\x02c__builtin__\nset\nq\x00]q\x01K\x03a\x85q\x02Rq\x03.'
python2_exceptions_without_args = (
ArithmeticError,
AssertionError,
AttributeError,
BaseException,
BufferError,
BytesWarning,
DeprecationWarning,
EOFError,
EnvironmentError,
Exception,
FloatingPointError,
FutureWarning,
GeneratorExit,
IOError,
ImportError,
ImportWarning,
IndentationError,
IndexError,
KeyError,
KeyboardInterrupt,
LookupError,
MemoryError,
NameError,
NotImplementedError,
OSError,
OverflowError,
PendingDeprecationWarning,
ReferenceError,
RuntimeError,
RuntimeWarning,
# StandardError is gone in Python 3, we map it to Exception
StopIteration,
SyntaxError,
SyntaxWarning,
SystemError,
SystemExit,
TabError,
TypeError,
UnboundLocalError,
UnicodeError,
UnicodeWarning,
UserWarning,
ValueError,
Warning,
ZeroDivisionError,
)
exception_pickle = b'\x80\x02cexceptions\n?\nq\x00)Rq\x01.'
# UnicodeEncodeError object pickled from 2.x with protocol 2
DATA_UEERR = (b'\x80\x02cexceptions\nUnicodeEncodeError\n'
b'q\x00(U\x05asciiq\x01X\x03\x00\x00\x00fooq\x02K\x00K\x01'
b'U\x03badq\x03tq\x04Rq\x05.')
def create_data():
c = C()
c.foo = 1
c.bar = 2
x = [0, 1, 2.0, 3.0+0j]
# Append some integer test cases at cPickle.c's internal size
# cutoffs.
uint1max = 0xff
uint2max = 0xffff
int4max = 0x7fffffff
x.extend([1, -1,
uint1max, -uint1max, -uint1max-1,
uint2max, -uint2max, -uint2max-1,
int4max, -int4max, -int4max-1])
y = ('abc', 'abc', c, c)
x.append(y)
x.append(y)
x.append(5)
return x
class AbstractUnpickleTests:
# Subclass must define self.loads.
_testdata = create_data()
def assert_is_copy(self, obj, objcopy, msg=None):
"""Utility method to verify if two objects are copies of each others.
"""
if msg is None:
msg = "{!r} is not a copy of {!r}".format(obj, objcopy)
self.assertEqual(obj, objcopy, msg=msg)
self.assertIs(type(obj), type(objcopy), msg=msg)
if hasattr(obj, '__dict__'):
self.assertDictEqual(obj.__dict__, objcopy.__dict__, msg=msg)
self.assertIsNot(obj.__dict__, objcopy.__dict__, msg=msg)
if hasattr(obj, '__slots__'):
self.assertListEqual(obj.__slots__, objcopy.__slots__, msg=msg)
for slot in obj.__slots__:
self.assertEqual(
hasattr(obj, slot), hasattr(objcopy, slot), msg=msg)
self.assertEqual(getattr(obj, slot, None),
getattr(objcopy, slot, None), msg=msg)
def check_unpickling_error(self, errors, data):
with self.subTest(data=data), \
self.assertRaises(errors):
try:
self.loads(data)
except BaseException as exc:
if support.verbose > 1:
print('%-32r - %s: %s' %
(data, exc.__class__.__name__, exc))
raise
def test_load_from_data0(self):
self.assert_is_copy(self._testdata, self.loads(DATA0))
def test_load_from_data1(self):
self.assert_is_copy(self._testdata, self.loads(DATA1))
def test_load_from_data2(self):
self.assert_is_copy(self._testdata, self.loads(DATA2))
def test_load_from_data3(self):
self.assert_is_copy(self._testdata, self.loads(DATA3))
def test_load_from_data4(self):
self.assert_is_copy(self._testdata, self.loads(DATA4))
def test_load_classic_instance(self):
# See issue5180. Test loading 2.x pickles that
# contain an instance of old style class.
for X, args in [(C, ()), (D, ('x',)), (E, ())]:
xname = X.__name__.encode('ascii')
# Protocol 0 (text mode pickle):
"""
0: ( MARK
1: i INST '__main__ X' (MARK at 0)
13: p PUT 0
16: ( MARK
17: d DICT (MARK at 16)
18: p PUT 1
21: b BUILD
22: . STOP
"""
pickle0 = (b"(i__main__\n"
b"X\n"
b"p0\n"
b"(dp1\nb.").replace(b'X', xname)
self.assert_is_copy(X(*args), self.loads(pickle0))
# Protocol 1 (binary mode pickle)
"""
0: ( MARK
1: c GLOBAL '__main__ X'
13: q BINPUT 0
15: o OBJ (MARK at 0)
16: q BINPUT 1
18: } EMPTY_DICT
19: q BINPUT 2
21: b BUILD
22: . STOP
"""
pickle1 = (b'(c__main__\n'
b'X\n'
b'q\x00oq\x01}q\x02b.').replace(b'X', xname)
self.assert_is_copy(X(*args), self.loads(pickle1))
# Protocol 2 (pickle2 = b'\x80\x02' + pickle1)
"""
0: \x80 PROTO 2
2: ( MARK
3: c GLOBAL '__main__ X'
15: q BINPUT 0
17: o OBJ (MARK at 2)
18: q BINPUT 1
20: } EMPTY_DICT
21: q BINPUT 2
23: b BUILD
24: . STOP
"""
pickle2 = (b'\x80\x02(c__main__\n'
b'X\n'
b'q\x00oq\x01}q\x02b.').replace(b'X', xname)
self.assert_is_copy(X(*args), self.loads(pickle2))
def test_maxint64(self):
maxint64 = (1 << 63) - 1
data = b'I' + str(maxint64).encode("ascii") + b'\n.'
got = self.loads(data)
self.assert_is_copy(maxint64, got)
# Try too with a bogus literal.
data = b'I' + str(maxint64).encode("ascii") + b'JUNK\n.'
self.check_unpickling_error(ValueError, data)
def test_unpickle_from_2x(self):
# Unpickle non-trivial data from Python 2.x.
loaded = self.loads(DATA_SET)
self.assertEqual(loaded, set([1, 2]))
loaded = self.loads(DATA_XRANGE)
self.assertEqual(type(loaded), type(range(0)))
self.assertEqual(list(loaded), list(range(5)))
loaded = self.loads(DATA_COOKIE)
self.assertEqual(type(loaded), SimpleCookie)
self.assertEqual(list(loaded.keys()), ["key"])
self.assertEqual(loaded["key"].value, "value")
# Exception objects without arguments pickled from 2.x with protocol 2
for exc in python2_exceptions_without_args:
data = exception_pickle.replace(b'?', exc.__name__.encode("ascii"))
loaded = self.loads(data)
self.assertIs(type(loaded), exc)
# StandardError is mapped to Exception, test that separately
loaded = self.loads(exception_pickle.replace(b'?', b'StandardError'))
self.assertIs(type(loaded), Exception)
loaded = self.loads(DATA_UEERR)
self.assertIs(type(loaded), UnicodeEncodeError)
self.assertEqual(loaded.object, "foo")
self.assertEqual(loaded.encoding, "ascii")
self.assertEqual(loaded.start, 0)
self.assertEqual(loaded.end, 1)
self.assertEqual(loaded.reason, "bad")
def test_load_python2_str_as_bytes(self):
# From Python 2: pickle.dumps('a\x00\xa0', protocol=0)
self.assertEqual(self.loads(b"S'a\\x00\\xa0'\n.",
encoding="bytes"), b'a\x00\xa0')
# From Python 2: pickle.dumps('a\x00\xa0', protocol=1)
self.assertEqual(self.loads(b'U\x03a\x00\xa0.',
encoding="bytes"), b'a\x00\xa0')
# From Python 2: pickle.dumps('a\x00\xa0', protocol=2)
self.assertEqual(self.loads(b'\x80\x02U\x03a\x00\xa0.',
encoding="bytes"), b'a\x00\xa0')
def test_load_python2_unicode_as_str(self):
# From Python 2: pickle.dumps(u'Ï€', protocol=0)
self.assertEqual(self.loads(b'V\\u03c0\n.',
encoding='bytes'), 'Ï€')
# From Python 2: pickle.dumps(u'Ï€', protocol=1)
self.assertEqual(self.loads(b'X\x02\x00\x00\x00\xcf\x80.',
encoding="bytes"), 'Ï€')
# From Python 2: pickle.dumps(u'Ï€', protocol=2)
self.assertEqual(self.loads(b'\x80\x02X\x02\x00\x00\x00\xcf\x80.',
encoding="bytes"), 'Ï€')
def test_load_long_python2_str_as_bytes(self):
# From Python 2: pickle.dumps('x' * 300, protocol=1)
self.assertEqual(self.loads(pickle.BINSTRING +
struct.pack("<I", 300) +
b'x' * 300 + pickle.STOP,
encoding='bytes'), b'x' * 300)
def test_constants(self):
self.assertIsNone(self.loads(b'N.'))
self.assertIs(self.loads(b'\x88.'), True)
self.assertIs(self.loads(b'\x89.'), False)
self.assertIs(self.loads(b'I01\n.'), True)
self.assertIs(self.loads(b'I00\n.'), False)
def test_empty_bytestring(self):
# issue 11286
empty = self.loads(b'\x80\x03U\x00q\x00.', encoding='koi8-r')
self.assertEqual(empty, '')
def test_short_binbytes(self):
dumped = b'\x80\x03C\x04\xe2\x82\xac\x00.'
self.assertEqual(self.loads(dumped), b'\xe2\x82\xac\x00')
def test_binbytes(self):
dumped = b'\x80\x03B\x04\x00\x00\x00\xe2\x82\xac\x00.'
self.assertEqual(self.loads(dumped), b'\xe2\x82\xac\x00')
@requires_32b
def test_negative_32b_binbytes(self):
# On 32-bit builds, a BINBYTES of 2**31 or more is refused
dumped = b'\x80\x03B\xff\xff\xff\xffxyzq\x00.'
self.check_unpickling_error((pickle.UnpicklingError, OverflowError),
dumped)
@requires_32b
def test_negative_32b_binunicode(self):
# On 32-bit builds, a BINUNICODE of 2**31 or more is refused
dumped = b'\x80\x03X\xff\xff\xff\xffxyzq\x00.'
self.check_unpickling_error((pickle.UnpicklingError, OverflowError),
dumped)
def test_short_binunicode(self):
dumped = b'\x80\x04\x8c\x04\xe2\x82\xac\x00.'
self.assertEqual(self.loads(dumped), '\u20ac\x00')
def test_misc_get(self):
self.check_unpickling_error(pickle.UnpicklingError, b'g0\np0')
self.check_unpickling_error(pickle.UnpicklingError, b'jens:')
self.check_unpickling_error(pickle.UnpicklingError, b'hens:')
self.assert_is_copy([(100,), (100,)],
self.loads(b'((Kdtp0\nh\x00l.))'))
def test_binbytes8(self):
dumped = b'\x80\x04\x8e\4\0\0\0\0\0\0\0\xe2\x82\xac\x00.'
self.assertEqual(self.loads(dumped), b'\xe2\x82\xac\x00')
def test_binunicode8(self):
dumped = b'\x80\x04\x8d\4\0\0\0\0\0\0\0\xe2\x82\xac\x00.'
self.assertEqual(self.loads(dumped), '\u20ac\x00')
def test_bytearray8(self):
dumped = b'\x80\x05\x96\x03\x00\x00\x00\x00\x00\x00\x00xxx.'
self.assertEqual(self.loads(dumped), bytearray(b'xxx'))
@requires_32b
def test_large_32b_binbytes8(self):
dumped = b'\x80\x04\x8e\4\0\0\0\1\0\0\0\xe2\x82\xac\x00.'
self.check_unpickling_error((pickle.UnpicklingError, OverflowError),
dumped)
@requires_32b
def test_large_32b_bytearray8(self):
dumped = b'\x80\x05\x96\4\0\0\0\1\0\0\0\xe2\x82\xac\x00.'
self.check_unpickling_error((pickle.UnpicklingError, OverflowError),
dumped)
@requires_32b
def test_large_32b_binunicode8(self):
dumped = b'\x80\x04\x8d\4\0\0\0\1\0\0\0\xe2\x82\xac\x00.'
self.check_unpickling_error((pickle.UnpicklingError, OverflowError),
dumped)
def test_get(self):
pickled = b'((lp100000\ng100000\nt.'
unpickled = self.loads(pickled)
self.assertEqual(unpickled, ([],)*2)
self.assertIs(unpickled[0], unpickled[1])
def test_binget(self):
pickled = b'(]q\xffh\xfft.'
unpickled = self.loads(pickled)
self.assertEqual(unpickled, ([],)*2)
self.assertIs(unpickled[0], unpickled[1])
def test_long_binget(self):
pickled = b'(]r\x00\x00\x01\x00j\x00\x00\x01\x00t.'
unpickled = self.loads(pickled)
self.assertEqual(unpickled, ([],)*2)
self.assertIs(unpickled[0], unpickled[1])
def test_dup(self):
pickled = b'((l2t.'
unpickled = self.loads(pickled)
self.assertEqual(unpickled, ([],)*2)
self.assertIs(unpickled[0], unpickled[1])
def test_negative_put(self):
# Issue #12847
dumped = b'Va\np-1\n.'
self.check_unpickling_error(ValueError, dumped)
@requires_32b
def test_negative_32b_binput(self):
# Issue #12847
dumped = b'\x80\x03X\x01\x00\x00\x00ar\xff\xff\xff\xff.'
self.check_unpickling_error(ValueError, dumped)
def test_badly_escaped_string(self):
self.check_unpickling_error(ValueError, b"S'\\'\n.")
def test_badly_quoted_string(self):
# Issue #17710
badpickles = [b"S'\n.",
b'S"\n.',
b'S\' \n.',
b'S" \n.',
b'S\'"\n.',
b'S"\'\n.',
b"S' ' \n.",
b'S" " \n.',
b"S ''\n.",
b'S ""\n.',
b'S \n.',
b'S\n.',
b'S.']
for p in badpickles:
self.check_unpickling_error(pickle.UnpicklingError, p)
def test_correctly_quoted_string(self):
goodpickles = [(b"S''\n.", ''),
(b'S""\n.', ''),
(b'S"\\n"\n.', '\n'),
(b"S'\\n'\n.", '\n')]
for p, expected in goodpickles:
self.assertEqual(self.loads(p), expected)
def test_frame_readline(self):
pickled = b'\x80\x04\x95\x05\x00\x00\x00\x00\x00\x00\x00I42\n.'
# 0: \x80 PROTO 4
# 2: \x95 FRAME 5
# 11: I INT 42
# 15: . STOP
self.assertEqual(self.loads(pickled), 42)
def test_compat_unpickle(self):
# xrange(1, 7)
pickled = b'\x80\x02c__builtin__\nxrange\nK\x01K\x07K\x01\x87R.'
unpickled = self.loads(pickled)
self.assertIs(type(unpickled), range)
self.assertEqual(unpickled, range(1, 7))
self.assertEqual(list(unpickled), [1, 2, 3, 4, 5, 6])
# reduce
pickled = b'\x80\x02c__builtin__\nreduce\n.'
self.assertIs(self.loads(pickled), functools.reduce)
# whichdb.whichdb
pickled = b'\x80\x02cwhichdb\nwhichdb\n.'
self.assertIs(self.loads(pickled), dbm.whichdb)
# Exception(), StandardError()
for name in (b'Exception', b'StandardError'):
pickled = (b'\x80\x02cexceptions\n' + name + b'\nU\x03ugh\x85R.')
unpickled = self.loads(pickled)
self.assertIs(type(unpickled), Exception)
self.assertEqual(str(unpickled), 'ugh')
# UserDict.UserDict({1: 2}), UserDict.IterableUserDict({1: 2})
for name in (b'UserDict', b'IterableUserDict'):
pickled = (b'\x80\x02(cUserDict\n' + name +
b'\no}U\x04data}K\x01K\x02ssb.')
unpickled = self.loads(pickled)
self.assertIs(type(unpickled), collections.UserDict)
self.assertEqual(unpickled, collections.UserDict({1: 2}))
def test_bad_reduce(self):
self.assertEqual(self.loads(b'cbuiltins\nint\n)R.'), 0)
self.check_unpickling_error(TypeError, b'N)R.')
self.check_unpickling_error(TypeError, b'cbuiltins\nint\nNR.')
def test_bad_newobj(self):
error = (pickle.UnpicklingError, TypeError)
self.assertEqual(self.loads(b'cbuiltins\nint\n)\x81.'), 0)
self.check_unpickling_error(error, b'cbuiltins\nlen\n)\x81.')
self.check_unpickling_error(error, b'cbuiltins\nint\nN\x81.')
def test_bad_newobj_ex(self):
error = (pickle.UnpicklingError, TypeError)
self.assertEqual(self.loads(b'cbuiltins\nint\n)}\x92.'), 0)
self.check_unpickling_error(error, b'cbuiltins\nlen\n)}\x92.')
self.check_unpickling_error(error, b'cbuiltins\nint\nN}\x92.')
self.check_unpickling_error(error, b'cbuiltins\nint\n)N\x92.')
def test_bad_stack(self):
badpickles = [
b'.', # STOP
b'0', # POP
b'1', # POP_MARK
b'2', # DUP
b'(2',
b'R', # REDUCE
b')R',
b'a', # APPEND
b'Na',
b'b', # BUILD
b'Nb',
b'd', # DICT
b'e', # APPENDS
b'(e',
b'ibuiltins\nlist\n', # INST
b'l', # LIST
b'o', # OBJ
b'(o',
b'p1\n', # PUT
b'q\x00', # BINPUT
b'r\x00\x00\x00\x00', # LONG_BINPUT
b's', # SETITEM
b'Ns',
b'NNs',
b't', # TUPLE
b'u', # SETITEMS
b'(u',
b'}(Nu',
b'\x81', # NEWOBJ
b')\x81',
b'\x85', # TUPLE1
b'\x86', # TUPLE2
b'N\x86',
b'\x87', # TUPLE3
b'N\x87',
b'NN\x87',
b'\x90', # ADDITEMS
b'(\x90',
b'\x91', # FROZENSET
b'\x92', # NEWOBJ_EX
b')}\x92',
b'\x93', # STACK_GLOBAL
b'Vlist\n\x93',
b'\x94', # MEMOIZE
]
for p in badpickles:
self.check_unpickling_error(self.bad_stack_errors, p)
def test_bad_mark(self):
badpickles = [
b'N(.', # STOP
b'N(2', # DUP
b'cbuiltins\nlist\n)(R', # REDUCE
b'cbuiltins\nlist\n()R',
b']N(a', # APPEND
# BUILD
b'cbuiltins\nValueError\n)R}(b',
b'cbuiltins\nValueError\n)R(}b',
b'(Nd', # DICT
b'N(p1\n', # PUT
b'N(q\x00', # BINPUT
b'N(r\x00\x00\x00\x00', # LONG_BINPUT
b'}NN(s', # SETITEM
b'}N(Ns',
b'}(NNs',
b'}((u', # SETITEMS
b'cbuiltins\nlist\n)(\x81', # NEWOBJ
b'cbuiltins\nlist\n()\x81',
b'N(\x85', # TUPLE1
b'NN(\x86', # TUPLE2
b'N(N\x86',
b'NNN(\x87', # TUPLE3
b'NN(N\x87',
b'N(NN\x87',
b']((\x90', # ADDITEMS
# NEWOBJ_EX
b'cbuiltins\nlist\n)}(\x92',
b'cbuiltins\nlist\n)(}\x92',
b'cbuiltins\nlist\n()}\x92',
# STACK_GLOBAL
b'Vbuiltins\n(Vlist\n\x93',
b'Vbuiltins\nVlist\n(\x93',
b'N(\x94', # MEMOIZE
]
for p in badpickles:
self.check_unpickling_error(self.bad_stack_errors, p)
def test_truncated_data(self):
self.check_unpickling_error(EOFError, b'')
self.check_unpickling_error(EOFError, b'N')
badpickles = [
b'B', # BINBYTES
b'B\x03\x00\x00',
b'B\x03\x00\x00\x00',
b'B\x03\x00\x00\x00ab',
b'C', # SHORT_BINBYTES
b'C\x03',
b'C\x03ab',
b'F', # FLOAT
b'F0.0',
b'F0.00',
b'G', # BINFLOAT
b'G\x00\x00\x00\x00\x00\x00\x00',
b'I', # INT
b'I0',
b'J', # BININT
b'J\x00\x00\x00',
b'K', # BININT1
b'L', # LONG
b'L0',
b'L10',
b'L0L',
b'L10L',
b'M', # BININT2
b'M\x00',
# b'P', # PERSID
# b'Pabc',
b'S', # STRING
b"S'abc'",
b'T', # BINSTRING
b'T\x03\x00\x00',
b'T\x03\x00\x00\x00',
b'T\x03\x00\x00\x00ab',
b'U', # SHORT_BINSTRING
b'U\x03',
b'U\x03ab',
b'V', # UNICODE
b'Vabc',
b'X', # BINUNICODE
b'X\x03\x00\x00',
b'X\x03\x00\x00\x00',
b'X\x03\x00\x00\x00ab',
b'(c', # GLOBAL
b'(cbuiltins',
b'(cbuiltins\n',
b'(cbuiltins\nlist',
b'Ng', # GET
b'Ng0',
b'(i', # INST
b'(ibuiltins',
b'(ibuiltins\n',
b'(ibuiltins\nlist',
b'Nh', # BINGET
b'Nj', # LONG_BINGET
b'Nj\x00\x00\x00',
b'Np', # PUT
b'Np0',
b'Nq', # BINPUT
b'Nr', # LONG_BINPUT
b'Nr\x00\x00\x00',
b'\x80', # PROTO
b'\x82', # EXT1
b'\x83', # EXT2
b'\x84\x01',
b'\x84', # EXT4
b'\x84\x01\x00\x00',
b'\x8a', # LONG1
b'\x8b', # LONG4
b'\x8b\x00\x00\x00',
b'\x8c', # SHORT_BINUNICODE
b'\x8c\x03',
b'\x8c\x03ab',
b'\x8d', # BINUNICODE8
b'\x8d\x03\x00\x00\x00\x00\x00\x00',
b'\x8d\x03\x00\x00\x00\x00\x00\x00\x00',
b'\x8d\x03\x00\x00\x00\x00\x00\x00\x00ab',
b'\x8e', # BINBYTES8
b'\x8e\x03\x00\x00\x00\x00\x00\x00',
b'\x8e\x03\x00\x00\x00\x00\x00\x00\x00',
b'\x8e\x03\x00\x00\x00\x00\x00\x00\x00ab',
b'\x96', # BYTEARRAY8
b'\x96\x03\x00\x00\x00\x00\x00\x00',
b'\x96\x03\x00\x00\x00\x00\x00\x00\x00',
b'\x96\x03\x00\x00\x00\x00\x00\x00\x00ab',
b'\x95', # FRAME
b'\x95\x02\x00\x00\x00\x00\x00\x00',
b'\x95\x02\x00\x00\x00\x00\x00\x00\x00',
b'\x95\x02\x00\x00\x00\x00\x00\x00\x00N',
]
for p in badpickles:
self.check_unpickling_error(self.truncated_errors, p)
@threading_helper.reap_threads
def test_unpickle_module_race(self):
# https://bugs.python.org/issue34572
locker_module = dedent("""
import threading
barrier = threading.Barrier(2)
""")
locking_import_module = dedent("""
import locker
locker.barrier.wait()
class ToBeUnpickled(object):
pass
""")
os.mkdir(TESTFN)
self.addCleanup(shutil.rmtree, TESTFN)
sys.path.insert(0, TESTFN)
self.addCleanup(sys.path.remove, TESTFN)
with open(os.path.join(TESTFN, "locker.py"), "wb") as f:
f.write(locker_module.encode('utf-8'))
with open(os.path.join(TESTFN, "locking_import.py"), "wb") as f:
f.write(locking_import_module.encode('utf-8'))
self.addCleanup(forget, "locker")
self.addCleanup(forget, "locking_import")
import locker
pickle_bytes = (
b'\x80\x03clocking_import\nToBeUnpickled\nq\x00)\x81q\x01.')
# Then try to unpickle two of these simultaneously
# One of them will cause the module import, and we want it to block
# until the other one either:
# - fails (before the patch for this issue)
# - blocks on the import lock for the module, as it should
results = []
barrier = threading.Barrier(3)
def t():
# This ensures the threads have all started
# presumably barrier release is faster than thread startup
barrier.wait()
results.append(pickle.loads(pickle_bytes))
t1 = threading.Thread(target=t)
t2 = threading.Thread(target=t)
t1.start()
t2.start()
barrier.wait()
# could have delay here
locker.barrier.wait()
t1.join()
t2.join()
from locking_import import ToBeUnpickled
self.assertEqual(
[type(x) for x in results],
[ToBeUnpickled] * 2)
class AbstractPickleTests:
# Subclass must define self.dumps, self.loads.
optimized = False
_testdata = AbstractUnpickleTests._testdata
def setUp(self):
pass
assert_is_copy = AbstractUnpickleTests.assert_is_copy
def test_misc(self):
# test various datatypes not tested by testdata
for proto in protocols:
x = myint(4)
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
x = (1, ())
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
x = initarg(1, x)
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
# XXX test __reduce__ protocol?
def test_roundtrip_equality(self):
expected = self._testdata
for proto in protocols:
s = self.dumps(expected, proto)
got = self.loads(s)
self.assert_is_copy(expected, got)
# There are gratuitous differences between pickles produced by
# pickle and cPickle, largely because cPickle starts PUT indices at
# 1 and pickle starts them at 0. See XXX comment in cPickle's put2() --
# there's a comment with an exclamation point there whose meaning
# is a mystery. cPickle also suppresses PUT for objects with a refcount
# of 1.
def dont_test_disassembly(self):
from io import StringIO
from pickletools import dis
for proto, expected in (0, DATA0_DIS), (1, DATA1_DIS):
s = self.dumps(self._testdata, proto)
filelike = StringIO()
dis(s, out=filelike)
got = filelike.getvalue()
self.assertEqual(expected, got)
def _test_recursive_list(self, cls, aslist=identity, minprotocol=0):
# List containing itself.
l = cls()
l.append(l)
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(l, proto)
x = self.loads(s)
self.assertIsInstance(x, cls)
y = aslist(x)
self.assertEqual(len(y), 1)
self.assertIs(y[0], x)
def test_recursive_list(self):
self._test_recursive_list(list)
def test_recursive_list_subclass(self):
self._test_recursive_list(MyList, minprotocol=2)
def test_recursive_list_like(self):
self._test_recursive_list(REX_six, aslist=lambda x: x.items)
def _test_recursive_tuple_and_list(self, cls, aslist=identity, minprotocol=0):
# Tuple containing a list containing the original tuple.
t = (cls(),)
t[0].append(t)
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, tuple)
self.assertEqual(len(x), 1)
self.assertIsInstance(x[0], cls)
y = aslist(x[0])
self.assertEqual(len(y), 1)
self.assertIs(y[0], x)
# List containing a tuple containing the original list.
t, = t
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, cls)
y = aslist(x)
self.assertEqual(len(y), 1)
self.assertIsInstance(y[0], tuple)
self.assertEqual(len(y[0]), 1)
self.assertIs(y[0][0], x)
def test_recursive_tuple_and_list(self):
self._test_recursive_tuple_and_list(list)
def test_recursive_tuple_and_list_subclass(self):
self._test_recursive_tuple_and_list(MyList, minprotocol=2)
def test_recursive_tuple_and_list_like(self):
self._test_recursive_tuple_and_list(REX_six, aslist=lambda x: x.items)
def _test_recursive_dict(self, cls, asdict=identity, minprotocol=0):
# Dict containing itself.
d = cls()
d[1] = d
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(d, proto)
x = self.loads(s)
self.assertIsInstance(x, cls)
y = asdict(x)
self.assertEqual(list(y.keys()), [1])
self.assertIs(y[1], x)
def test_recursive_dict(self):
self._test_recursive_dict(dict)
def test_recursive_dict_subclass(self):
self._test_recursive_dict(MyDict, minprotocol=2)
def test_recursive_dict_like(self):
self._test_recursive_dict(REX_seven, asdict=lambda x: x.table)
def _test_recursive_tuple_and_dict(self, cls, asdict=identity, minprotocol=0):
# Tuple containing a dict containing the original tuple.
t = (cls(),)
t[0][1] = t
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, tuple)
self.assertEqual(len(x), 1)
self.assertIsInstance(x[0], cls)
y = asdict(x[0])
self.assertEqual(list(y), [1])
self.assertIs(y[1], x)
# Dict containing a tuple containing the original dict.
t, = t
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, cls)
y = asdict(x)
self.assertEqual(list(y), [1])
self.assertIsInstance(y[1], tuple)
self.assertEqual(len(y[1]), 1)
self.assertIs(y[1][0], x)
def test_recursive_tuple_and_dict(self):
self._test_recursive_tuple_and_dict(dict)
def test_recursive_tuple_and_dict_subclass(self):
self._test_recursive_tuple_and_dict(MyDict, minprotocol=2)
def test_recursive_tuple_and_dict_like(self):
self._test_recursive_tuple_and_dict(REX_seven, asdict=lambda x: x.table)
def _test_recursive_dict_key(self, cls, asdict=identity, minprotocol=0):
# Dict containing an immutable object (as key) containing the original
# dict.
d = cls()
d[K(d)] = 1
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(d, proto)
x = self.loads(s)
self.assertIsInstance(x, cls)
y = asdict(x)
self.assertEqual(len(y.keys()), 1)
self.assertIsInstance(list(y.keys())[0], K)
self.assertIs(list(y.keys())[0].value, x)
def test_recursive_dict_key(self):
self._test_recursive_dict_key(dict)
def test_recursive_dict_subclass_key(self):
self._test_recursive_dict_key(MyDict, minprotocol=2)
def test_recursive_dict_like_key(self):
self._test_recursive_dict_key(REX_seven, asdict=lambda x: x.table)
def _test_recursive_tuple_and_dict_key(self, cls, asdict=identity, minprotocol=0):
# Tuple containing a dict containing an immutable object (as key)
# containing the original tuple.
t = (cls(),)
t[0][K(t)] = 1
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, tuple)
self.assertEqual(len(x), 1)
self.assertIsInstance(x[0], cls)
y = asdict(x[0])
self.assertEqual(len(y), 1)
self.assertIsInstance(list(y.keys())[0], K)
self.assertIs(list(y.keys())[0].value, x)
# Dict containing an immutable object (as key) containing a tuple
# containing the original dict.
t, = t
for proto in range(minprotocol, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, cls)
y = asdict(x)
self.assertEqual(len(y), 1)
self.assertIsInstance(list(y.keys())[0], K)
self.assertIs(list(y.keys())[0].value[0], x)
def test_recursive_tuple_and_dict_key(self):
self._test_recursive_tuple_and_dict_key(dict)
def test_recursive_tuple_and_dict_subclass_key(self):
self._test_recursive_tuple_and_dict_key(MyDict, minprotocol=2)
def test_recursive_tuple_and_dict_like_key(self):
self._test_recursive_tuple_and_dict_key(REX_seven, asdict=lambda x: x.table)
def test_recursive_set(self):
# Set containing an immutable object containing the original set.
y = set()
y.add(K(y))
for proto in range(4, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(y, proto)
x = self.loads(s)
self.assertIsInstance(x, set)
self.assertEqual(len(x), 1)
self.assertIsInstance(list(x)[0], K)
self.assertIs(list(x)[0].value, x)
# Immutable object containing a set containing the original object.
y, = y
for proto in range(4, pickle.HIGHEST_PROTOCOL + 1):
s = self.dumps(y, proto)
x = self.loads(s)
self.assertIsInstance(x, K)
self.assertIsInstance(x.value, set)
self.assertEqual(len(x.value), 1)
self.assertIs(list(x.value)[0], x)
def test_recursive_inst(self):
# Mutable object containing itself.
i = Object()
i.attr = i
for proto in protocols:
s = self.dumps(i, proto)
x = self.loads(s)
self.assertIsInstance(x, Object)
self.assertEqual(dir(x), dir(i))
self.assertIs(x.attr, x)
def test_recursive_multi(self):
l = []
d = {1:l}
i = Object()
i.attr = d
l.append(i)
for proto in protocols:
s = self.dumps(l, proto)
x = self.loads(s)
self.assertIsInstance(x, list)
self.assertEqual(len(x), 1)
self.assertEqual(dir(x[0]), dir(i))
self.assertEqual(list(x[0].attr.keys()), [1])
self.assertIs(x[0].attr[1], x)
def _test_recursive_collection_and_inst(self, factory):
# Mutable object containing a collection containing the original
# object.
o = Object()
o.attr = factory([o])
t = type(o.attr)
for proto in protocols:
s = self.dumps(o, proto)
x = self.loads(s)
self.assertIsInstance(x.attr, t)
self.assertEqual(len(x.attr), 1)
self.assertIsInstance(list(x.attr)[0], Object)
self.assertIs(list(x.attr)[0], x)
# Collection containing a mutable object containing the original
# collection.
o = o.attr
for proto in protocols:
s = self.dumps(o, proto)
x = self.loads(s)
self.assertIsInstance(x, t)
self.assertEqual(len(x), 1)
self.assertIsInstance(list(x)[0], Object)
self.assertIs(list(x)[0].attr, x)
def test_recursive_list_and_inst(self):
self._test_recursive_collection_and_inst(list)
def test_recursive_tuple_and_inst(self):
self._test_recursive_collection_and_inst(tuple)
def test_recursive_dict_and_inst(self):
self._test_recursive_collection_and_inst(dict.fromkeys)
def test_recursive_set_and_inst(self):
self._test_recursive_collection_and_inst(set)
def test_recursive_frozenset_and_inst(self):
self._test_recursive_collection_and_inst(frozenset)
def test_recursive_list_subclass_and_inst(self):
self._test_recursive_collection_and_inst(MyList)
def test_recursive_tuple_subclass_and_inst(self):
self._test_recursive_collection_and_inst(MyTuple)
def test_recursive_dict_subclass_and_inst(self):
self._test_recursive_collection_and_inst(MyDict.fromkeys)
def test_recursive_set_subclass_and_inst(self):
self._test_recursive_collection_and_inst(MySet)
def test_recursive_frozenset_subclass_and_inst(self):
self._test_recursive_collection_and_inst(MyFrozenSet)
def test_recursive_inst_state(self):
# Mutable object containing itself.
y = REX_state()
y.state = y
for proto in protocols:
s = self.dumps(y, proto)
x = self.loads(s)
self.assertIsInstance(x, REX_state)
self.assertIs(x.state, x)
def test_recursive_tuple_and_inst_state(self):
# Tuple containing a mutable object containing the original tuple.
t = (REX_state(),)
t[0].state = t
for proto in protocols:
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, tuple)
self.assertEqual(len(x), 1)
self.assertIsInstance(x[0], REX_state)
self.assertIs(x[0].state, x)
# Mutable object containing a tuple containing the object.
t, = t
for proto in protocols:
s = self.dumps(t, proto)
x = self.loads(s)
self.assertIsInstance(x, REX_state)
self.assertIsInstance(x.state, tuple)
self.assertEqual(len(x.state), 1)
self.assertIs(x.state[0], x)
def test_unicode(self):
endcases = ['', '<\\u>', '<\\\u1234>', '<\n>',
'<\\>', '<\\\U00012345>',
# surrogates
'<\udc80>']
for proto in protocols:
for u in endcases:
p = self.dumps(u, proto)
u2 = self.loads(p)
self.assert_is_copy(u, u2)
def test_unicode_high_plane(self):
t = '\U00012345'
for proto in protocols:
p = self.dumps(t, proto)
t2 = self.loads(p)
self.assert_is_copy(t, t2)
def test_bytes(self):
for proto in protocols:
for s in b'', b'xyz', b'xyz'*100:
p = self.dumps(s, proto)
self.assert_is_copy(s, self.loads(p))
for s in [bytes([i]) for i in range(256)]:
p = self.dumps(s, proto)
self.assert_is_copy(s, self.loads(p))
for s in [bytes([i, i]) for i in range(256)]:
p = self.dumps(s, proto)
self.assert_is_copy(s, self.loads(p))
def test_bytearray(self):
for proto in protocols:
for s in b'', b'xyz', b'xyz'*100:
b = bytearray(s)
p = self.dumps(b, proto)
bb = self.loads(p)
self.assertIsNot(bb, b)
self.assert_is_copy(b, bb)
if proto <= 3:
# bytearray is serialized using a global reference
self.assertIn(b'bytearray', p)
self.assertTrue(opcode_in_pickle(pickle.GLOBAL, p))
elif proto == 4:
self.assertIn(b'bytearray', p)
self.assertTrue(opcode_in_pickle(pickle.STACK_GLOBAL, p))
elif proto == 5:
self.assertNotIn(b'bytearray', p)
self.assertTrue(opcode_in_pickle(pickle.BYTEARRAY8, p))
def test_bytearray_memoization_bug(self):
for proto in protocols:
for s in b'', b'xyz', b'xyz'*100:
b = bytearray(s)
p = self.dumps((b, b), proto)
b1, b2 = self.loads(p)
self.assertIs(b1, b2)
def test_ints(self):
for proto in protocols:
n = sys.maxsize
while n:
for expected in (-n, n):
s = self.dumps(expected, proto)
n2 = self.loads(s)
self.assert_is_copy(expected, n2)
n = n >> 1
def test_long(self):
for proto in protocols:
# 256 bytes is where LONG4 begins.
for nbits in 1, 8, 8*254, 8*255, 8*256, 8*257:
nbase = 1 << nbits
for npos in nbase-1, nbase, nbase+1:
for n in npos, -npos:
pickle = self.dumps(n, proto)
got = self.loads(pickle)
self.assert_is_copy(n, got)
# Try a monster. This is quadratic-time in protos 0 & 1, so don't
# bother with those.
nbase = int("deadbeeffeedface", 16)
nbase += nbase << 1000000
for n in nbase, -nbase:
p = self.dumps(n, 2)
got = self.loads(p)
# assert_is_copy is very expensive here as it precomputes
# a failure message by computing the repr() of n and got,
# we just do the check ourselves.
self.assertIs(type(got), int)
self.assertEqual(n, got)
def test_float(self):
test_values = [0.0, 4.94e-324, 1e-310, 7e-308, 6.626e-34, 0.1, 0.5,
3.14, 263.44582062374053, 6.022e23, 1e30]
test_values = test_values + [-x for x in test_values]
for proto in protocols:
for value in test_values:
pickle = self.dumps(value, proto)
got = self.loads(pickle)
self.assert_is_copy(value, got)
@run_with_locale('LC_ALL', 'de_DE', 'fr_FR')
def test_float_format(self):
# make sure that floats are formatted locale independent with proto 0
self.assertEqual(self.dumps(1.2, 0)[0:3], b'F1.')
def test_reduce(self):
for proto in protocols:
inst = AAA()
dumped = self.dumps(inst, proto)
loaded = self.loads(dumped)
self.assertEqual(loaded, REDUCE_A)
def test_getinitargs(self):
for proto in protocols:
inst = initarg(1, 2)
dumped = self.dumps(inst, proto)
loaded = self.loads(dumped)
self.assert_is_copy(inst, loaded)
def test_metaclass(self):
a = use_metaclass()
for proto in protocols:
s = self.dumps(a, proto)
b = self.loads(s)
self.assertEqual(a.__class__, b.__class__)
def test_dynamic_class(self):
a = create_dynamic_class("my_dynamic_class", (object,))
copyreg.pickle(pickling_metaclass, pickling_metaclass.__reduce__)
for proto in protocols:
s = self.dumps(a, proto)
b = self.loads(s)
self.assertEqual(a, b)
self.assertIs(type(a), type(b))
def test_structseq(self):
import time
import os
t = time.localtime()
for proto in protocols:
s = self.dumps(t, proto)
u = self.loads(s)
self.assert_is_copy(t, u)
t = os.stat(os.curdir)
s = self.dumps(t, proto)
u = self.loads(s)
self.assert_is_copy(t, u)
if hasattr(os, "statvfs"):
t = os.statvfs(os.curdir)
s = self.dumps(t, proto)
u = self.loads(s)
self.assert_is_copy(t, u)
def test_ellipsis(self):
for proto in protocols:
s = self.dumps(..., proto)
u = self.loads(s)
self.assertIs(..., u)
def test_notimplemented(self):
for proto in protocols:
s = self.dumps(NotImplemented, proto)
u = self.loads(s)
self.assertIs(NotImplemented, u)
def test_singleton_types(self):
# Issue #6477: Test that types of built-in singletons can be pickled.
singletons = [None, ..., NotImplemented]
for singleton in singletons:
for proto in protocols:
s = self.dumps(type(singleton), proto)
u = self.loads(s)
self.assertIs(type(singleton), u)
# Tests for protocol 2
def test_proto(self):
for proto in protocols:
pickled = self.dumps(None, proto)
if proto >= 2:
proto_header = pickle.PROTO + bytes([proto])
self.assertTrue(pickled.startswith(proto_header))
else:
self.assertEqual(count_opcode(pickle.PROTO, pickled), 0)
oob = protocols[-1] + 1 # a future protocol
build_none = pickle.NONE + pickle.STOP
badpickle = pickle.PROTO + bytes([oob]) + build_none
try:
self.loads(badpickle)
except ValueError as err:
self.assertIn("unsupported pickle protocol", str(err))
else:
self.fail("expected bad protocol number to raise ValueError")
def test_long1(self):
x = 12345678910111213141516178920
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
self.assertEqual(opcode_in_pickle(pickle.LONG1, s), proto >= 2)
def test_long4(self):
x = 12345678910111213141516178920 << (256*8)
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
self.assertEqual(opcode_in_pickle(pickle.LONG4, s), proto >= 2)
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
(3, 0): pickle.EMPTY_TUPLE,
(3, 1): pickle.TUPLE1,
(3, 2): pickle.TUPLE2,
(3, 3): pickle.TUPLE3,
(3, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
expected = expected_opcode[min(proto, 3), len(x)]
self.assertTrue(opcode_in_pickle(expected, s))
def test_singletons(self):
# Map (proto, singleton) to expected opcode.
expected_opcode = {(0, None): pickle.NONE,
(1, None): pickle.NONE,
(2, None): pickle.NONE,
(3, None): pickle.NONE,
(0, True): pickle.INT,
(1, True): pickle.INT,
(2, True): pickle.NEWTRUE,
(3, True): pickle.NEWTRUE,
(0, False): pickle.INT,
(1, False): pickle.INT,
(2, False): pickle.NEWFALSE,
(3, False): pickle.NEWFALSE,
}
for proto in protocols:
for x in None, False, True:
s = self.dumps(x, proto)
y = self.loads(s)
self.assertTrue(x is y, (proto, x, s, y))
expected = expected_opcode[min(proto, 3), x]
self.assertTrue(opcode_in_pickle(expected, s))
def test_newobj_tuple(self):
x = MyTuple([1, 2, 3])
x.foo = 42
x.bar = "hello"
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
def test_newobj_list(self):
x = MyList([1, 2, 3])
x.foo = 42
x.bar = "hello"
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
def test_newobj_generic(self):
for proto in protocols:
for C in myclasses:
B = C.__base__
x = C(C.sample)
x.foo = 42
s = self.dumps(x, proto)
y = self.loads(s)
detail = (proto, C, B, x, y, type(y))
self.assert_is_copy(x, y) # XXX revisit
self.assertEqual(B(x), B(y), detail)
self.assertEqual(x.__dict__, y.__dict__, detail)
def test_newobj_proxies(self):
# NEWOBJ should use the __class__ rather than the raw type
classes = myclasses[:]
# Cannot create weakproxies to these classes
for c in (MyInt, MyTuple):
classes.remove(c)
for proto in protocols:
for C in classes:
B = C.__base__
x = C(C.sample)
x.foo = 42
p = weakref.proxy(x)
s = self.dumps(p, proto)
y = self.loads(s)
self.assertEqual(type(y), type(x)) # rather than type(p)
detail = (proto, C, B, x, y, type(y))
self.assertEqual(B(x), B(y), detail)
self.assertEqual(x.__dict__, y.__dict__, detail)
def test_newobj_overridden_new(self):
# Test that Python class with C implemented __new__ is pickleable
for proto in protocols:
x = MyIntWithNew2(1)
x.foo = 42
s = self.dumps(x, proto)
y = self.loads(s)
self.assertIs(type(y), MyIntWithNew2)
self.assertEqual(int(y), 1)
self.assertEqual(y.foo, 42)
def test_newobj_not_class(self):
# Issue 24552
global SimpleNewObj
save = SimpleNewObj
o = SimpleNewObj.__new__(SimpleNewObj)
b = self.dumps(o, 4)
try:
SimpleNewObj = 42
self.assertRaises((TypeError, pickle.UnpicklingError), self.loads, b)
finally:
SimpleNewObj = save
# Register a type with copyreg, with extension code extcode. Pickle
# an object of that type. Check that the resulting pickle uses opcode
# (EXT[124]) under proto 2, and not in proto 1.
def produce_global_ext(self, extcode, opcode):
e = ExtensionSaver(extcode)
try:
copyreg.add_extension(__name__, "MyList", extcode)
x = MyList([1, 2, 3])
x.foo = 42
x.bar = "hello"
# Dump using protocol 1 for comparison.
s1 = self.dumps(x, 1)
self.assertIn(__name__.encode("utf-8"), s1)
self.assertIn(b"MyList", s1)
self.assertFalse(opcode_in_pickle(opcode, s1))
y = self.loads(s1)
self.assert_is_copy(x, y)
# Dump using protocol 2 for test.
s2 = self.dumps(x, 2)
self.assertNotIn(__name__.encode("utf-8"), s2)
self.assertNotIn(b"MyList", s2)
self.assertEqual(opcode_in_pickle(opcode, s2), True, repr(s2))
y = self.loads(s2)
self.assert_is_copy(x, y)
finally:
e.restore()
def test_global_ext1(self):
self.produce_global_ext(0x00000001, pickle.EXT1) # smallest EXT1 code
self.produce_global_ext(0x000000ff, pickle.EXT1) # largest EXT1 code
def test_global_ext2(self):
self.produce_global_ext(0x00000100, pickle.EXT2) # smallest EXT2 code
self.produce_global_ext(0x0000ffff, pickle.EXT2) # largest EXT2 code
self.produce_global_ext(0x0000abcd, pickle.EXT2) # check endianness
def test_global_ext4(self):
self.produce_global_ext(0x00010000, pickle.EXT4) # smallest EXT4 code
self.produce_global_ext(0x7fffffff, pickle.EXT4) # largest EXT4 code
self.produce_global_ext(0x12abcdef, pickle.EXT4) # check endianness
def test_list_chunking(self):
n = 10 # too small to chunk
x = list(range(n))
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
num_appends = count_opcode(pickle.APPENDS, s)
self.assertEqual(num_appends, proto > 0)
n = 2500 # expect at least two chunks when proto > 0
x = list(range(n))
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
num_appends = count_opcode(pickle.APPENDS, s)
if proto == 0:
self.assertEqual(num_appends, 0)
else:
self.assertTrue(num_appends >= 2)
def test_dict_chunking(self):
n = 10 # too small to chunk
x = dict.fromkeys(range(n))
for proto in protocols:
s = self.dumps(x, proto)
self.assertIsInstance(s, bytes_types)
y = self.loads(s)
self.assert_is_copy(x, y)
num_setitems = count_opcode(pickle.SETITEMS, s)
self.assertEqual(num_setitems, proto > 0)
n = 2500 # expect at least two chunks when proto > 0
x = dict.fromkeys(range(n))
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
num_setitems = count_opcode(pickle.SETITEMS, s)
if proto == 0:
self.assertEqual(num_setitems, 0)
else:
self.assertTrue(num_setitems >= 2)
def test_set_chunking(self):
n = 10 # too small to chunk
x = set(range(n))
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
num_additems = count_opcode(pickle.ADDITEMS, s)
if proto < 4:
self.assertEqual(num_additems, 0)
else:
self.assertEqual(num_additems, 1)
n = 2500 # expect at least two chunks when proto >= 4
x = set(range(n))
for proto in protocols:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
num_additems = count_opcode(pickle.ADDITEMS, s)
if proto < 4:
self.assertEqual(num_additems, 0)
else:
self.assertGreaterEqual(num_additems, 2)
def test_simple_newobj(self):
x = SimpleNewObj.__new__(SimpleNewObj, 0xface) # avoid __init__
x.abc = 666
for proto in protocols:
with self.subTest(proto=proto):
s = self.dumps(x, proto)
if proto < 1:
self.assertIn(b'\nI64206', s) # INT
else:
self.assertIn(b'M\xce\xfa', s) # BININT2
self.assertEqual(opcode_in_pickle(pickle.NEWOBJ, s),
2 <= proto)
self.assertFalse(opcode_in_pickle(pickle.NEWOBJ_EX, s))
y = self.loads(s) # will raise TypeError if __init__ called
self.assert_is_copy(x, y)
def test_complex_newobj(self):
x = ComplexNewObj.__new__(ComplexNewObj, 0xface) # avoid __init__
x.abc = 666
for proto in protocols:
with self.subTest(proto=proto):
s = self.dumps(x, proto)
if proto < 1:
self.assertIn(b'\nI64206', s) # INT
elif proto < 2:
self.assertIn(b'M\xce\xfa', s) # BININT2
elif proto < 4:
self.assertIn(b'X\x04\x00\x00\x00FACE', s) # BINUNICODE
else:
self.assertIn(b'\x8c\x04FACE', s) # SHORT_BINUNICODE
self.assertEqual(opcode_in_pickle(pickle.NEWOBJ, s),
2 <= proto)
self.assertFalse(opcode_in_pickle(pickle.NEWOBJ_EX, s))
y = self.loads(s) # will raise TypeError if __init__ called
self.assert_is_copy(x, y)
def test_complex_newobj_ex(self):
x = ComplexNewObjEx.__new__(ComplexNewObjEx, 0xface) # avoid __init__
x.abc = 666
for proto in protocols:
with self.subTest(proto=proto):
s = self.dumps(x, proto)
if proto < 1:
self.assertIn(b'\nI64206', s) # INT
elif proto < 2:
self.assertIn(b'M\xce\xfa', s) # BININT2
elif proto < 4:
self.assertIn(b'X\x04\x00\x00\x00FACE', s) # BINUNICODE
else:
self.assertIn(b'\x8c\x04FACE', s) # SHORT_BINUNICODE
self.assertFalse(opcode_in_pickle(pickle.NEWOBJ, s))
self.assertEqual(opcode_in_pickle(pickle.NEWOBJ_EX, s),
4 <= proto)
y = self.loads(s) # will raise TypeError if __init__ called
self.assert_is_copy(x, y)
def test_newobj_list_slots(self):
x = SlotList([1, 2, 3])
x.foo = 42
x.bar = "hello"
s = self.dumps(x, 2)
y = self.loads(s)
self.assert_is_copy(x, y)
def test_reduce_overrides_default_reduce_ex(self):
for proto in protocols:
x = REX_one()
self.assertEqual(x._reduce_called, 0)
s = self.dumps(x, proto)
self.assertEqual(x._reduce_called, 1)
y = self.loads(s)
self.assertEqual(y._reduce_called, 0)
def test_reduce_ex_called(self):
for proto in protocols:
x = REX_two()
self.assertEqual(x._proto, None)
s = self.dumps(x, proto)
self.assertEqual(x._proto, proto)
y = self.loads(s)
self.assertEqual(y._proto, None)
def test_reduce_ex_overrides_reduce(self):
for proto in protocols:
x = REX_three()
self.assertEqual(x._proto, None)
s = self.dumps(x, proto)
self.assertEqual(x._proto, proto)
y = self.loads(s)
self.assertEqual(y._proto, None)
def test_reduce_ex_calls_base(self):
for proto in protocols:
x = REX_four()
self.assertEqual(x._proto, None)
s = self.dumps(x, proto)
self.assertEqual(x._proto, proto)
y = self.loads(s)
self.assertEqual(y._proto, proto)
def test_reduce_calls_base(self):
for proto in protocols:
x = REX_five()
self.assertEqual(x._reduce_called, 0)
s = self.dumps(x, proto)
self.assertEqual(x._reduce_called, 1)
y = self.loads(s)
self.assertEqual(y._reduce_called, 1)
@no_tracing
def test_bad_getattr(self):
# Issue #3514: crash when there is an infinite loop in __getattr__
x = BadGetattr()
for proto in protocols:
self.assertRaises(RuntimeError, self.dumps, x, proto)
def test_reduce_bad_iterator(self):
# Issue4176: crash when 4th and 5th items of __reduce__()
# are not iterators
class C(object):
def __reduce__(self):
# 4th item is not an iterator
return list, (), None, [], None
class D(object):
def __reduce__(self):
# 5th item is not an iterator
return dict, (), None, None, []
# Python implementation is less strict and also accepts iterables.
for proto in protocols:
try:
self.dumps(C(), proto)
except pickle.PicklingError:
pass
try:
self.dumps(D(), proto)
except pickle.PicklingError:
pass
def test_many_puts_and_gets(self):
# Test that internal data structures correctly deal with lots of
# puts/gets.
keys = ("aaa" + str(i) for i in range(100))
large_dict = dict((k, [4, 5, 6]) for k in keys)
obj = [dict(large_dict), dict(large_dict), dict(large_dict)]
for proto in protocols:
with self.subTest(proto=proto):
dumped = self.dumps(obj, proto)
loaded = self.loads(dumped)
self.assert_is_copy(obj, loaded)
def test_attribute_name_interning(self):
# Test that attribute names of pickled objects are interned when
# unpickling.
for proto in protocols:
x = C()
x.foo = 42
x.bar = "hello"
s = self.dumps(x, proto)
y = self.loads(s)
x_keys = sorted(x.__dict__)
y_keys = sorted(y.__dict__)
for x_key, y_key in zip(x_keys, y_keys):
self.assertIs(x_key, y_key)
def test_pickle_to_2x(self):
# Pickle non-trivial data with protocol 2, expecting that it yields
# the same result as Python 2.x did.
# NOTE: this test is a bit too strong since we can produce different
# bytecode that 2.x will still understand.
dumped = self.dumps(range(5), 2)
self.assertEqual(dumped, DATA_XRANGE)
dumped = self.dumps(set([3]), 2)
self.assertEqual(dumped, DATA_SET2)
def test_large_pickles(self):
# Test the correctness of internal buffering routines when handling
# large data.
for proto in protocols:
data = (1, min, b'xy' * (30 * 1024), len)
dumped = self.dumps(data, proto)
loaded = self.loads(dumped)
self.assertEqual(len(loaded), len(data))
self.assertEqual(loaded, data)
def test_int_pickling_efficiency(self):
# Test compacity of int representation (see issue #12744)
for proto in protocols:
with self.subTest(proto=proto):
pickles = [self.dumps(2**n, proto) for n in range(70)]
sizes = list(map(len, pickles))
# the size function is monotonic
self.assertEqual(sorted(sizes), sizes)
if proto >= 2:
for p in pickles:
self.assertFalse(opcode_in_pickle(pickle.LONG, p))
def _check_pickling_with_opcode(self, obj, opcode, proto):
pickled = self.dumps(obj, proto)
self.assertTrue(opcode_in_pickle(opcode, pickled))
unpickled = self.loads(pickled)
self.assertEqual(obj, unpickled)
def test_appends_on_non_lists(self):
# Issue #17720
obj = REX_six([1, 2, 3])
for proto in protocols:
if proto == 0:
self._check_pickling_with_opcode(obj, pickle.APPEND, proto)
else:
self._check_pickling_with_opcode(obj, pickle.APPENDS, proto)
def test_setitems_on_non_dicts(self):
obj = REX_seven({1: -1, 2: -2, 3: -3})
for proto in protocols:
if proto == 0:
self._check_pickling_with_opcode(obj, pickle.SETITEM, proto)
else:
self._check_pickling_with_opcode(obj, pickle.SETITEMS, proto)
# Exercise framing (proto >= 4) for significant workloads
FRAME_SIZE_MIN = 4
FRAME_SIZE_TARGET = 64 * 1024
def check_frame_opcodes(self, pickled):
"""
Check the arguments of FRAME opcodes in a protocol 4+ pickle.
Note that binary objects that are larger than FRAME_SIZE_TARGET are not
framed by default and are therefore considered a frame by themselves in
the following consistency check.
"""
frame_end = frameless_start = None
frameless_opcodes = {'BINBYTES', 'BINUNICODE', 'BINBYTES8',
'BINUNICODE8', 'BYTEARRAY8'}
for op, arg, pos in pickletools.genops(pickled):
if frame_end is not None:
self.assertLessEqual(pos, frame_end)
if pos == frame_end:
frame_end = None
if frame_end is not None: # framed
self.assertNotEqual(op.name, 'FRAME')
if op.name in frameless_opcodes:
# Only short bytes and str objects should be written
# in a frame
self.assertLessEqual(len(arg), self.FRAME_SIZE_TARGET)
else: # not framed
if (op.name == 'FRAME' or
(op.name in frameless_opcodes and
len(arg) > self.FRAME_SIZE_TARGET)):
# Frame or large bytes or str object
if frameless_start is not None:
# Only short data should be written outside of a frame
self.assertLess(pos - frameless_start,
self.FRAME_SIZE_MIN)
frameless_start = None
elif frameless_start is None and op.name != 'PROTO':
frameless_start = pos
if op.name == 'FRAME':
self.assertGreaterEqual(arg, self.FRAME_SIZE_MIN)
frame_end = pos + 9 + arg
pos = len(pickled)
if frame_end is not None:
self.assertEqual(frame_end, pos)
elif frameless_start is not None:
self.assertLess(pos - frameless_start, self.FRAME_SIZE_MIN)
@support.skip_if_pgo_task
def test_framing_many_objects(self):
obj = list(range(10**5))
for proto in range(4, pickle.HIGHEST_PROTOCOL + 1):
with self.subTest(proto=proto):
pickled = self.dumps(obj, proto)
unpickled = self.loads(pickled)
self.assertEqual(obj, unpickled)
bytes_per_frame = (len(pickled) /
count_opcode(pickle.FRAME, pickled))
self.assertGreater(bytes_per_frame,
self.FRAME_SIZE_TARGET / 2)
self.assertLessEqual(bytes_per_frame,
self.FRAME_SIZE_TARGET * 1)
self.check_frame_opcodes(pickled)
def test_framing_large_objects(self):
N = 1024 * 1024
small_items = [[i] for i in range(10)]
obj = [b'x' * N, *small_items, b'y' * N, 'z' * N]
for proto in range(4, pickle.HIGHEST_PROTOCOL + 1):
for fast in [False, True]:
with self.subTest(proto=proto, fast=fast):
if not fast:
# fast=False by default.
# This covers in-memory pickling with pickle.dumps().
pickled = self.dumps(obj, proto)
else:
# Pickler is required when fast=True.
if not hasattr(self, 'pickler'):
continue
buf = io.BytesIO()
pickler = self.pickler(buf, protocol=proto)
pickler.fast = fast
pickler.dump(obj)
pickled = buf.getvalue()
unpickled = self.loads(pickled)
# More informative error message in case of failure.
self.assertEqual([len(x) for x in obj],
[len(x) for x in unpickled])
# Perform full equality check if the lengths match.
self.assertEqual(obj, unpickled)
n_frames = count_opcode(pickle.FRAME, pickled)
# A single frame for small objects between
# first two large objects.
self.assertEqual(n_frames, 1)
self.check_frame_opcodes(pickled)
def test_optional_frames(self):
if pickle.HIGHEST_PROTOCOL < 4:
return
def remove_frames(pickled, keep_frame=None):
"""Remove frame opcodes from the given pickle."""
frame_starts = []
# 1 byte for the opcode and 8 for the argument
frame_opcode_size = 9
for opcode, _, pos in pickletools.genops(pickled):
if opcode.name == 'FRAME':
frame_starts.append(pos)
newpickle = bytearray()
last_frame_end = 0
for i, pos in enumerate(frame_starts):
if keep_frame and keep_frame(i):
continue
newpickle += pickled[last_frame_end:pos]
last_frame_end = pos + frame_opcode_size
newpickle += pickled[last_frame_end:]
return newpickle
frame_size = self.FRAME_SIZE_TARGET
num_frames = 20
# Large byte objects (dict values) intermittent with small objects
# (dict keys)
for bytes_type in (bytes, bytearray):
obj = {i: bytes_type([i]) * frame_size for i in range(num_frames)}
for proto in range(4, pickle.HIGHEST_PROTOCOL + 1):
pickled = self.dumps(obj, proto)
frameless_pickle = remove_frames(pickled)
self.assertEqual(count_opcode(pickle.FRAME, frameless_pickle), 0)
self.assertEqual(obj, self.loads(frameless_pickle))
some_frames_pickle = remove_frames(pickled, lambda i: i % 2)
self.assertLess(count_opcode(pickle.FRAME, some_frames_pickle),
count_opcode(pickle.FRAME, pickled))
self.assertEqual(obj, self.loads(some_frames_pickle))
@support.skip_if_pgo_task
def test_framed_write_sizes_with_delayed_writer(self):
class ChunkAccumulator:
"""Accumulate pickler output in a list of raw chunks."""
def __init__(self):
self.chunks = []
def write(self, chunk):
self.chunks.append(chunk)
def concatenate_chunks(self):
return b"".join(self.chunks)
for proto in range(4, pickle.HIGHEST_PROTOCOL + 1):
objects = [(str(i).encode('ascii'), i % 42, {'i': str(i)})
for i in range(int(1e4))]
# Add a large unique ASCII string
objects.append('0123456789abcdef' *
(self.FRAME_SIZE_TARGET // 16 + 1))
# Protocol 4 packs groups of small objects into frames and issues
# calls to write only once or twice per frame:
# The C pickler issues one call to write per-frame (header and
# contents) while Python pickler issues two calls to write: one for
# the frame header and one for the frame binary contents.
writer = ChunkAccumulator()
self.pickler(writer, proto).dump(objects)
# Actually read the binary content of the chunks after the end
# of the call to dump: any memoryview passed to write should not
# be released otherwise this delayed access would not be possible.
pickled = writer.concatenate_chunks()
reconstructed = self.loads(pickled)
self.assertEqual(reconstructed, objects)
self.assertGreater(len(writer.chunks), 1)
# memoryviews should own the memory.
del objects
support.gc_collect()
self.assertEqual(writer.concatenate_chunks(), pickled)
n_frames = (len(pickled) - 1) // self.FRAME_SIZE_TARGET + 1
# There should be at least one call to write per frame
self.assertGreaterEqual(len(writer.chunks), n_frames)
# but not too many either: there can be one for the proto,
# one per-frame header, one per frame for the actual contents,
# and two for the header.
self.assertLessEqual(len(writer.chunks), 2 * n_frames + 3)
chunk_sizes = [len(c) for c in writer.chunks]
large_sizes = [s for s in chunk_sizes
if s >= self.FRAME_SIZE_TARGET]
medium_sizes = [s for s in chunk_sizes
if 9 < s < self.FRAME_SIZE_TARGET]
small_sizes = [s for s in chunk_sizes if s <= 9]
# Large chunks should not be too large:
for chunk_size in large_sizes:
self.assertLess(chunk_size, 2 * self.FRAME_SIZE_TARGET,
chunk_sizes)
# There shouldn't bee too many small chunks: the protocol header,
# the frame headers and the large string headers are written
# in small chunks.
self.assertLessEqual(len(small_sizes),
len(large_sizes) + len(medium_sizes) + 3,
chunk_sizes)
def test_nested_names(self):
global Nested
class Nested:
class A:
class B:
class C:
pass
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
for obj in [Nested.A, Nested.A.B, Nested.A.B.C]:
with self.subTest(proto=proto, obj=obj):
unpickled = self.loads(self.dumps(obj, proto))
self.assertIs(obj, unpickled)
def test_recursive_nested_names(self):
global Recursive
class Recursive:
pass
Recursive.mod = sys.modules[Recursive.__module__]
Recursive.__qualname__ = 'Recursive.mod.Recursive'
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
with self.subTest(proto=proto):
unpickled = self.loads(self.dumps(Recursive, proto))
self.assertIs(unpickled, Recursive)
del Recursive.mod # break reference loop
def test_py_methods(self):
global PyMethodsTest
class PyMethodsTest:
@staticmethod
def cheese():
return "cheese"
@classmethod
def wine(cls):
assert cls is PyMethodsTest
return "wine"
def biscuits(self):
assert isinstance(self, PyMethodsTest)
return "biscuits"
class Nested:
"Nested class"
@staticmethod
def ketchup():
return "ketchup"
@classmethod
def maple(cls):
assert cls is PyMethodsTest.Nested
return "maple"
def pie(self):
assert isinstance(self, PyMethodsTest.Nested)
return "pie"
py_methods = (
PyMethodsTest.cheese,
PyMethodsTest.wine,
PyMethodsTest().biscuits,
PyMethodsTest.Nested.ketchup,
PyMethodsTest.Nested.maple,
PyMethodsTest.Nested().pie
)
py_unbound_methods = (
(PyMethodsTest.biscuits, PyMethodsTest),
(PyMethodsTest.Nested.pie, PyMethodsTest.Nested)
)
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
for method in py_methods:
with self.subTest(proto=proto, method=method):
unpickled = self.loads(self.dumps(method, proto))
self.assertEqual(method(), unpickled())
for method, cls in py_unbound_methods:
obj = cls()
with self.subTest(proto=proto, method=method):
unpickled = self.loads(self.dumps(method, proto))
self.assertEqual(method(obj), unpickled(obj))
def test_c_methods(self):
global Subclass
class Subclass(tuple):
class Nested(str):
pass
c_methods = (
# bound built-in method
("abcd".index, ("c",)),
# unbound built-in method
(str.index, ("abcd", "c")),
# bound "slot" method
([1, 2, 3].__len__, ()),
# unbound "slot" method
(list.__len__, ([1, 2, 3],)),
# bound "coexist" method
({1, 2}.__contains__, (2,)),
# unbound "coexist" method
(set.__contains__, ({1, 2}, 2)),
# built-in class method
(dict.fromkeys, (("a", 1), ("b", 2))),
# built-in static method
(bytearray.maketrans, (b"abc", b"xyz")),
# subclass methods
(Subclass([1,2,2]).count, (2,)),
(Subclass.count, (Subclass([1,2,2]), 2)),
(Subclass.Nested("sweet").count, ("e",)),
(Subclass.Nested.count, (Subclass.Nested("sweet"), "e")),
)
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
for method, args in c_methods:
with self.subTest(proto=proto, method=method):
unpickled = self.loads(self.dumps(method, proto))
self.assertEqual(method(*args), unpickled(*args))
def test_compat_pickle(self):
tests = [
(range(1, 7), '__builtin__', 'xrange'),
(map(int, '123'), 'itertools', 'imap'),
(functools.reduce, '__builtin__', 'reduce'),
(dbm.whichdb, 'whichdb', 'whichdb'),
(Exception(), 'exceptions', 'Exception'),
(collections.UserDict(), 'UserDict', 'IterableUserDict'),
(collections.UserList(), 'UserList', 'UserList'),
(collections.defaultdict(), 'collections', 'defaultdict'),
]
for val, mod, name in tests:
for proto in range(3):
with self.subTest(type=type(val), proto=proto):
pickled = self.dumps(val, proto)
self.assertIn(('c%s\n%s' % (mod, name)).encode(), pickled)
self.assertIs(type(self.loads(pickled)), type(val))
def test_local_lookup_error(self):
# Test that whichmodule() errors out cleanly when looking up
# an assumed globally-reachable object fails.
def f():
pass
# Since the function is local, lookup will fail
for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
with self.assertRaises((AttributeError, pickle.PicklingError)):
pickletools.dis(self.dumps(f, proto))
# Same without a __module__ attribute (exercises a different path
# in _pickle.c).
del f.__module__
for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
with self.assertRaises((AttributeError, pickle.PicklingError)):
pickletools.dis(self.dumps(f, proto))
# Yet a different path.
f.__name__ = f.__qualname__
for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
with self.assertRaises((AttributeError, pickle.PicklingError)):
pickletools.dis(self.dumps(f, proto))
#
# PEP 574 tests below
#
def buffer_like_objects(self):
# Yield buffer-like objects with the bytestring "abcdef" in them
bytestring = b"abcdefgh"
yield ZeroCopyBytes(bytestring)
yield ZeroCopyBytearray(bytestring)
if _testbuffer is not None:
items = list(bytestring)
value = int.from_bytes(bytestring, byteorder='little')
for flags in (0, _testbuffer.ND_WRITABLE):
# 1-D, contiguous
yield PicklableNDArray(items, format='B', shape=(8,),
flags=flags)
# 2-D, C-contiguous
yield PicklableNDArray(items, format='B', shape=(4, 2),
strides=(2, 1), flags=flags)
# 2-D, Fortran-contiguous
yield PicklableNDArray(items, format='B',
shape=(4, 2), strides=(1, 4),
flags=flags)
def test_in_band_buffers(self):
# Test in-band buffers (PEP 574)
for obj in self.buffer_like_objects():
for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
data = self.dumps(obj, proto)
if obj.c_contiguous and proto >= 5:
# The raw memory bytes are serialized in physical order
self.assertIn(b"abcdefgh", data)
self.assertEqual(count_opcode(pickle.NEXT_BUFFER, data), 0)
if proto >= 5:
self.assertEqual(count_opcode(pickle.SHORT_BINBYTES, data),
1 if obj.readonly else 0)
self.assertEqual(count_opcode(pickle.BYTEARRAY8, data),
0 if obj.readonly else 1)
# Return a true value from buffer_callback should have
# the same effect
def buffer_callback(obj):
return True
data2 = self.dumps(obj, proto,
buffer_callback=buffer_callback)
self.assertEqual(data2, data)
new = self.loads(data)
# It's a copy
self.assertIsNot(new, obj)
self.assertIs(type(new), type(obj))
self.assertEqual(new, obj)
# XXX Unfortunately cannot test non-contiguous array
# (see comment in PicklableNDArray.__reduce_ex__)
def test_oob_buffers(self):
# Test out-of-band buffers (PEP 574)
for obj in self.buffer_like_objects():
for proto in range(0, 5):
# Need protocol >= 5 for buffer_callback
with self.assertRaises(ValueError):
self.dumps(obj, proto,
buffer_callback=[].append)
for proto in range(5, pickle.HIGHEST_PROTOCOL + 1):
buffers = []
buffer_callback = lambda pb: buffers.append(pb.raw())
data = self.dumps(obj, proto,
buffer_callback=buffer_callback)
self.assertNotIn(b"abcdefgh", data)
self.assertEqual(count_opcode(pickle.SHORT_BINBYTES, data), 0)
self.assertEqual(count_opcode(pickle.BYTEARRAY8, data), 0)
self.assertEqual(count_opcode(pickle.NEXT_BUFFER, data), 1)
self.assertEqual(count_opcode(pickle.READONLY_BUFFER, data),
1 if obj.readonly else 0)
if obj.c_contiguous:
self.assertEqual(bytes(buffers[0]), b"abcdefgh")
# Need buffers argument to unpickle properly
with self.assertRaises(pickle.UnpicklingError):
self.loads(data)
new = self.loads(data, buffers=buffers)
if obj.zero_copy_reconstruct:
# Zero-copy achieved
self.assertIs(new, obj)
else:
self.assertIs(type(new), type(obj))
self.assertEqual(new, obj)
# Non-sequence buffers accepted too
new = self.loads(data, buffers=iter(buffers))
if obj.zero_copy_reconstruct:
# Zero-copy achieved
self.assertIs(new, obj)
else:
self.assertIs(type(new), type(obj))
self.assertEqual(new, obj)
def test_oob_buffers_writable_to_readonly(self):
# Test reconstructing readonly object from writable buffer
obj = ZeroCopyBytes(b"foobar")
for proto in range(5, pickle.HIGHEST_PROTOCOL + 1):
buffers = []
buffer_callback = buffers.append
data = self.dumps(obj, proto, buffer_callback=buffer_callback)
buffers = map(bytearray, buffers)
new = self.loads(data, buffers=buffers)
self.assertIs(type(new), type(obj))
self.assertEqual(new, obj)
def test_picklebuffer_error(self):
# PickleBuffer forbidden with protocol < 5
pb = pickle.PickleBuffer(b"foobar")
for proto in range(0, 5):
with self.assertRaises(pickle.PickleError):
self.dumps(pb, proto)
def test_buffer_callback_error(self):
def buffer_callback(buffers):
1/0
pb = pickle.PickleBuffer(b"foobar")
with self.assertRaises(ZeroDivisionError):
self.dumps(pb, 5, buffer_callback=buffer_callback)
def test_buffers_error(self):
pb = pickle.PickleBuffer(b"foobar")
for proto in range(5, pickle.HIGHEST_PROTOCOL + 1):
data = self.dumps(pb, proto, buffer_callback=[].append)
# Non iterable buffers
with self.assertRaises(TypeError):
self.loads(data, buffers=object())
# Buffer iterable exhausts too early
with self.assertRaises(pickle.UnpicklingError):
self.loads(data, buffers=[])
def test_inband_accept_default_buffers_argument(self):
for proto in range(5, pickle.HIGHEST_PROTOCOL + 1):
data_pickled = self.dumps(1, proto, buffer_callback=None)
data = self.loads(data_pickled, buffers=None)
@unittest.skipIf(np is None, "Test needs Numpy")
def test_buffers_numpy(self):
def check_no_copy(x, y):
np.testing.assert_equal(x, y)
self.assertEqual(x.ctypes.data, y.ctypes.data)
def check_copy(x, y):
np.testing.assert_equal(x, y)
self.assertNotEqual(x.ctypes.data, y.ctypes.data)
def check_array(arr):
# In-band
for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
data = self.dumps(arr, proto)
new = self.loads(data)
check_copy(arr, new)
for proto in range(5, pickle.HIGHEST_PROTOCOL + 1):
buffer_callback = lambda _: True
data = self.dumps(arr, proto, buffer_callback=buffer_callback)
new = self.loads(data)
check_copy(arr, new)
# Out-of-band
for proto in range(5, pickle.HIGHEST_PROTOCOL + 1):
buffers = []
buffer_callback = buffers.append
data = self.dumps(arr, proto, buffer_callback=buffer_callback)
new = self.loads(data, buffers=buffers)
if arr.flags.c_contiguous or arr.flags.f_contiguous:
check_no_copy(arr, new)
else:
check_copy(arr, new)
# 1-D
arr = np.arange(6)
check_array(arr)
# 1-D, non-contiguous
check_array(arr[::2])
# 2-D, C-contiguous
arr = np.arange(12).reshape((3, 4))
check_array(arr)
# 2-D, F-contiguous
check_array(arr.T)
# 2-D, non-contiguous
check_array(arr[::2])
class BigmemPickleTests:
# Binary protocols can serialize longs of up to 2 GiB-1
@bigmemtest(size=_2G, memuse=3.6, dry_run=False)
def test_huge_long_32b(self, size):
data = 1 << (8 * size)
try:
for proto in protocols:
if proto < 2:
continue
with self.subTest(proto=proto):
with self.assertRaises((ValueError, OverflowError)):
self.dumps(data, protocol=proto)
finally:
data = None
# Protocol 3 can serialize up to 4 GiB-1 as a bytes object
# (older protocols don't have a dedicated opcode for bytes and are
# too inefficient)
@bigmemtest(size=_2G, memuse=2.5, dry_run=False)
def test_huge_bytes_32b(self, size):
data = b"abcd" * (size // 4)
try:
for proto in protocols:
if proto < 3:
continue
with self.subTest(proto=proto):
try:
pickled = self.dumps(data, protocol=proto)
header = (pickle.BINBYTES +
struct.pack("<I", len(data)))
data_start = pickled.index(data)
self.assertEqual(
header,
pickled[data_start-len(header):data_start])
finally:
pickled = None
finally:
data = None
@bigmemtest(size=_4G, memuse=2.5, dry_run=False)
def test_huge_bytes_64b(self, size):
data = b"acbd" * (size // 4)
try:
for proto in protocols:
if proto < 3:
continue
with self.subTest(proto=proto):
if proto == 3:
# Protocol 3 does not support large bytes objects.
# Verify that we do not crash when processing one.
with self.assertRaises((ValueError, OverflowError)):
self.dumps(data, protocol=proto)
continue
try:
pickled = self.dumps(data, protocol=proto)
header = (pickle.BINBYTES8 +
struct.pack("<Q", len(data)))
data_start = pickled.index(data)
self.assertEqual(
header,
pickled[data_start-len(header):data_start])
finally:
pickled = None
finally:
data = None
# All protocols use 1-byte per printable ASCII character; we add another
# byte because the encoded form has to be copied into the internal buffer.
@bigmemtest(size=_2G, memuse=8, dry_run=False)
def test_huge_str_32b(self, size):
data = "abcd" * (size // 4)
try:
for proto in protocols:
if proto == 0:
continue
with self.subTest(proto=proto):
try:
pickled = self.dumps(data, protocol=proto)
header = (pickle.BINUNICODE +
struct.pack("<I", len(data)))
data_start = pickled.index(b'abcd')
self.assertEqual(
header,
pickled[data_start-len(header):data_start])
self.assertEqual((pickled.rindex(b"abcd") + len(b"abcd") -
pickled.index(b"abcd")), len(data))
finally:
pickled = None
finally:
data = None
# BINUNICODE (protocols 1, 2 and 3) cannot carry more than 2**32 - 1 bytes
# of utf-8 encoded unicode. BINUNICODE8 (protocol 4) supports these huge
# unicode strings however.
@bigmemtest(size=_4G, memuse=8, dry_run=False)
def test_huge_str_64b(self, size):
data = "abcd" * (size // 4)
try:
for proto in protocols:
if proto == 0:
continue
with self.subTest(proto=proto):
if proto < 4:
with self.assertRaises((ValueError, OverflowError)):
self.dumps(data, protocol=proto)
continue
try:
pickled = self.dumps(data, protocol=proto)
header = (pickle.BINUNICODE8 +
struct.pack("<Q", len(data)))
data_start = pickled.index(b'abcd')
self.assertEqual(
header,
pickled[data_start-len(header):data_start])
self.assertEqual((pickled.rindex(b"abcd") + len(b"abcd") -
pickled.index(b"abcd")), len(data))
finally:
pickled = None
finally:
data = None
# Test classes for reduce_ex
class REX_one(object):
"""No __reduce_ex__ here, but inheriting it from object"""
_reduce_called = 0
def __reduce__(self):
self._reduce_called = 1
return REX_one, ()
class REX_two(object):
"""No __reduce__ here, but inheriting it from object"""
_proto = None
def __reduce_ex__(self, proto):
self._proto = proto
return REX_two, ()
class REX_three(object):
_proto = None
def __reduce_ex__(self, proto):
self._proto = proto
return REX_two, ()
def __reduce__(self):
raise TestFailed("This __reduce__ shouldn't be called")
class REX_four(object):
"""Calling base class method should succeed"""
_proto = None
def __reduce_ex__(self, proto):
self._proto = proto
return object.__reduce_ex__(self, proto)
class REX_five(object):
"""This one used to fail with infinite recursion"""
_reduce_called = 0
def __reduce__(self):
self._reduce_called = 1
return object.__reduce__(self)
class REX_six(object):
"""This class is used to check the 4th argument (list iterator) of
the reduce protocol.
"""
def __init__(self, items=None):
self.items = items if items is not None else []
def __eq__(self, other):
return type(self) is type(other) and self.items == other.items
def append(self, item):
self.items.append(item)
def __reduce__(self):
return type(self), (), None, iter(self.items), None
class REX_seven(object):
"""This class is used to check the 5th argument (dict iterator) of
the reduce protocol.
"""
def __init__(self, table=None):
self.table = table if table is not None else {}
def __eq__(self, other):
return type(self) is type(other) and self.table == other.table
def __setitem__(self, key, value):
self.table[key] = value
def __reduce__(self):
return type(self), (), None, None, iter(self.table.items())
class REX_state(object):
"""This class is used to check the 3th argument (state) of
the reduce protocol.
"""
def __init__(self, state=None):
self.state = state
def __eq__(self, other):
return type(self) is type(other) and self.state == other.state
def __setstate__(self, state):
self.state = state
def __reduce__(self):
return type(self), (), self.state
# Test classes for newobj
class MyInt(int):
sample = 1
class MyFloat(float):
sample = 1.0
class MyComplex(complex):
sample = 1.0 + 0.0j
class MyStr(str):
sample = "hello"
class MyUnicode(str):
sample = "hello \u1234"
class MyTuple(tuple):
sample = (1, 2, 3)
class MyList(list):
sample = [1, 2, 3]
class MyDict(dict):
sample = {"a": 1, "b": 2}
class MySet(set):
sample = {"a", "b"}
class MyFrozenSet(frozenset):
sample = frozenset({"a", "b"})
myclasses = [MyInt, MyFloat,
MyComplex,
MyStr, MyUnicode,
MyTuple, MyList, MyDict, MySet, MyFrozenSet]
class MyIntWithNew(int):
def __new__(cls, value):
raise AssertionError
class MyIntWithNew2(MyIntWithNew):
__new__ = int.__new__
class SlotList(MyList):
__slots__ = ["foo"]
class SimpleNewObj(int):
def __init__(self, *args, **kwargs):
# raise an error, to make sure this isn't called
raise TypeError("SimpleNewObj.__init__() didn't expect to get called")
def __eq__(self, other):
return int(self) == int(other) and self.__dict__ == other.__dict__
class ComplexNewObj(SimpleNewObj):
def __getnewargs__(self):
return ('%X' % self, 16)
class ComplexNewObjEx(SimpleNewObj):
def __getnewargs_ex__(self):
return ('%X' % self,), {'base': 16}
class BadGetattr:
def __getattr__(self, key):
self.foo
class AbstractPickleModuleTests:
def test_dump_closed_file(self):
f = open(TESTFN, "wb")
try:
f.close()
self.assertRaises(ValueError, self.dump, 123, f)
finally:
os_helper.unlink(TESTFN)
def test_load_closed_file(self):
f = open(TESTFN, "wb")
try:
f.close()
self.assertRaises(ValueError, self.dump, 123, f)
finally:
os_helper.unlink(TESTFN)
def test_load_from_and_dump_to_file(self):
stream = io.BytesIO()
data = [123, {}, 124]
self.dump(data, stream)
stream.seek(0)
unpickled = self.load(stream)
self.assertEqual(unpickled, data)
def test_highest_protocol(self):
# Of course this needs to be changed when HIGHEST_PROTOCOL changes.
self.assertEqual(pickle.HIGHEST_PROTOCOL, 5)
def test_callapi(self):
f = io.BytesIO()
# With and without keyword arguments
self.dump(123, f, -1)
self.dump(123, file=f, protocol=-1)
self.dumps(123, -1)
self.dumps(123, protocol=-1)
self.Pickler(f, -1)
self.Pickler(f, protocol=-1)
def test_dump_text_file(self):
f = open(TESTFN, "w")
try:
for proto in protocols:
self.assertRaises(TypeError, self.dump, 123, f, proto)
finally:
f.close()
os_helper.unlink(TESTFN)
def test_incomplete_input(self):
s = io.BytesIO(b"X''.")
self.assertRaises((EOFError, struct.error, pickle.UnpicklingError), self.load, s)
def test_bad_init(self):
# Test issue3664 (pickle can segfault from a badly initialized Pickler).
# Override initialization without calling __init__() of the superclass.
class BadPickler(self.Pickler):
def __init__(self): pass
class BadUnpickler(self.Unpickler):
def __init__(self): pass
self.assertRaises(pickle.PicklingError, BadPickler().dump, 0)
self.assertRaises(pickle.UnpicklingError, BadUnpickler().load)
def check_dumps_loads_oob_buffers(self, dumps, loads):
# No need to do the full gamut of tests here, just enough to
# check that dumps() and loads() redirect their arguments
# to the underlying Pickler and Unpickler, respectively.
obj = ZeroCopyBytes(b"foo")
for proto in range(0, 5):
# Need protocol >= 5 for buffer_callback
with self.assertRaises(ValueError):
dumps(obj, protocol=proto,
buffer_callback=[].append)
for proto in range(5, pickle.HIGHEST_PROTOCOL + 1):
buffers = []
buffer_callback = buffers.append
data = dumps(obj, protocol=proto,
buffer_callback=buffer_callback)
self.assertNotIn(b"foo", data)
self.assertEqual(bytes(buffers[0]), b"foo")
# Need buffers argument to unpickle properly
with self.assertRaises(pickle.UnpicklingError):
loads(data)
new = loads(data, buffers=buffers)
self.assertIs(new, obj)
def test_dumps_loads_oob_buffers(self):
# Test out-of-band buffers (PEP 574) with top-level dumps() and loads()
self.check_dumps_loads_oob_buffers(self.dumps, self.loads)
def test_dump_load_oob_buffers(self):
# Test out-of-band buffers (PEP 574) with top-level dump() and load()
def dumps(obj, **kwargs):
f = io.BytesIO()
self.dump(obj, f, **kwargs)
return f.getvalue()
def loads(data, **kwargs):
f = io.BytesIO(data)
return self.load(f, **kwargs)
self.check_dumps_loads_oob_buffers(dumps, loads)
class AbstractPersistentPicklerTests:
# This class defines persistent_id() and persistent_load()
# functions that should be used by the pickler. All even integers
# are pickled using persistent ids.
def persistent_id(self, object):
if isinstance(object, int) and object % 2 == 0:
self.id_count += 1
return str(object)
elif object == "test_false_value":
self.false_count += 1
return ""
else:
return None
def persistent_load(self, oid):
if not oid:
self.load_false_count += 1
return "test_false_value"
else:
self.load_count += 1
object = int(oid)
assert object % 2 == 0
return object
def test_persistence(self):
L = list(range(10)) + ["test_false_value"]
for proto in protocols:
self.id_count = 0
self.false_count = 0
self.load_false_count = 0
self.load_count = 0
self.assertEqual(self.loads(self.dumps(L, proto)), L)
self.assertEqual(self.id_count, 5)
self.assertEqual(self.false_count, 1)
self.assertEqual(self.load_count, 5)
self.assertEqual(self.load_false_count, 1)
class AbstractIdentityPersistentPicklerTests:
def persistent_id(self, obj):
return obj
def persistent_load(self, pid):
return pid
def _check_return_correct_type(self, obj, proto):
unpickled = self.loads(self.dumps(obj, proto))
self.assertIsInstance(unpickled, type(obj))
self.assertEqual(unpickled, obj)
def test_return_correct_type(self):
for proto in protocols:
# Protocol 0 supports only ASCII strings.
if proto == 0:
self._check_return_correct_type("abc", 0)
else:
for obj in [b"abc\n", "abc\n", -1, -1.1 * 0.1, str]:
self._check_return_correct_type(obj, proto)
def test_protocol0_is_ascii_only(self):
non_ascii_str = "\N{EMPTY SET}"
self.assertRaises(pickle.PicklingError, self.dumps, non_ascii_str, 0)
pickled = pickle.PERSID + non_ascii_str.encode('utf-8') + b'\n.'
self.assertRaises(pickle.UnpicklingError, self.loads, pickled)
class AbstractPicklerUnpicklerObjectTests:
pickler_class = None
unpickler_class = None
def setUp(self):
assert self.pickler_class
assert self.unpickler_class
def test_clear_pickler_memo(self):
# To test whether clear_memo() has any effect, we pickle an object,
# then pickle it again without clearing the memo; the two serialized
# forms should be different. If we clear_memo() and then pickle the
# object again, the third serialized form should be identical to the
# first one we obtained.
data = ["abcdefg", "abcdefg", 44]
for proto in protocols:
f = io.BytesIO()
pickler = self.pickler_class(f, proto)
pickler.dump(data)
first_pickled = f.getvalue()
# Reset BytesIO object.
f.seek(0)
f.truncate()
pickler.dump(data)
second_pickled = f.getvalue()
# Reset the Pickler and BytesIO objects.
pickler.clear_memo()
f.seek(0)
f.truncate()
pickler.dump(data)
third_pickled = f.getvalue()
self.assertNotEqual(first_pickled, second_pickled)
self.assertEqual(first_pickled, third_pickled)
def test_priming_pickler_memo(self):
# Verify that we can set the Pickler's memo attribute.
data = ["abcdefg", "abcdefg", 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data)
first_pickled = f.getvalue()
f = io.BytesIO()
primed = self.pickler_class(f)
primed.memo = pickler.memo
primed.dump(data)
primed_pickled = f.getvalue()
self.assertNotEqual(first_pickled, primed_pickled)
def test_priming_unpickler_memo(self):
# Verify that we can set the Unpickler's memo attribute.
data = ["abcdefg", "abcdefg", 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data)
first_pickled = f.getvalue()
f = io.BytesIO()
primed = self.pickler_class(f)
primed.memo = pickler.memo
primed.dump(data)
primed_pickled = f.getvalue()
unpickler = self.unpickler_class(io.BytesIO(first_pickled))
unpickled_data1 = unpickler.load()
self.assertEqual(unpickled_data1, data)
primed = self.unpickler_class(io.BytesIO(primed_pickled))
primed.memo = unpickler.memo
unpickled_data2 = primed.load()
primed.memo.clear()
self.assertEqual(unpickled_data2, data)
self.assertTrue(unpickled_data2 is unpickled_data1)
def test_reusing_unpickler_objects(self):
data1 = ["abcdefg", "abcdefg", 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data1)
pickled1 = f.getvalue()
data2 = ["abcdefg", 44, 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data2)
pickled2 = f.getvalue()
f = io.BytesIO()
f.write(pickled1)
f.seek(0)
unpickler = self.unpickler_class(f)
self.assertEqual(unpickler.load(), data1)
f.seek(0)
f.truncate()
f.write(pickled2)
f.seek(0)
self.assertEqual(unpickler.load(), data2)
def _check_multiple_unpicklings(self, ioclass, *, seekable=True):
for proto in protocols:
with self.subTest(proto=proto):
data1 = [(x, str(x)) for x in range(2000)] + [b"abcde", len]
f = ioclass()
pickler = self.pickler_class(f, protocol=proto)
pickler.dump(data1)
pickled = f.getvalue()
N = 5
f = ioclass(pickled * N)
unpickler = self.unpickler_class(f)
for i in range(N):
if seekable:
pos = f.tell()
self.assertEqual(unpickler.load(), data1)
if seekable:
self.assertEqual(f.tell(), pos + len(pickled))
self.assertRaises(EOFError, unpickler.load)
def test_multiple_unpicklings_seekable(self):
self._check_multiple_unpicklings(io.BytesIO)
def test_multiple_unpicklings_unseekable(self):
self._check_multiple_unpicklings(UnseekableIO, seekable=False)
def test_multiple_unpicklings_minimal(self):
# File-like object that doesn't support peek() and readinto()
# (bpo-39681)
self._check_multiple_unpicklings(MinimalIO, seekable=False)
def test_unpickling_buffering_readline(self):
# Issue #12687: the unpickler's buffering logic could fail with
# text mode opcodes.
data = list(range(10))
for proto in protocols:
for buf_size in range(1, 11):
f = io.BufferedRandom(io.BytesIO(), buffer_size=buf_size)
pickler = self.pickler_class(f, protocol=proto)
pickler.dump(data)
f.seek(0)
unpickler = self.unpickler_class(f)
self.assertEqual(unpickler.load(), data)
# Tests for dispatch_table attribute
REDUCE_A = 'reduce_A'
class AAA(object):
def __reduce__(self):
return str, (REDUCE_A,)
class BBB(object):
def __init__(self):
# Add an instance attribute to enable state-saving routines at pickling
# time.
self.a = "some attribute"
def __setstate__(self, state):
self.a = "BBB.__setstate__"
def setstate_bbb(obj, state):
"""Custom state setter for BBB objects
Such callable may be created by other persons than the ones who created the
BBB class. If passed as the state_setter item of a custom reducer, this
allows for custom state setting behavior of BBB objects. One can think of
it as the analogous of list_setitems or dict_setitems but for foreign
classes/functions.
"""
obj.a = "custom state_setter"
class AbstractCustomPicklerClass:
"""Pickler implementing a reducing hook using reducer_override."""
def reducer_override(self, obj):
obj_name = getattr(obj, "__name__", None)
if obj_name == 'f':
# asking the pickler to save f as 5
return int, (5, )
if obj_name == 'MyClass':
return str, ('some str',)
elif obj_name == 'g':
# in this case, the callback returns an invalid result (not a 2-5
# tuple or a string), the pickler should raise a proper error.
return False
elif obj_name == 'h':
# Simulate a case when the reducer fails. The error should
# be propagated to the original ``dump`` call.
raise ValueError('The reducer just failed')
return NotImplemented
class AbstractHookTests:
def test_pickler_hook(self):
# test the ability of a custom, user-defined CPickler subclass to
# override the default reducing routines of any type using the method
# reducer_override
def f():
pass
def g():
pass
def h():
pass
class MyClass:
pass
for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
with self.subTest(proto=proto):
bio = io.BytesIO()
p = self.pickler_class(bio, proto)
p.dump([f, MyClass, math.log])
new_f, some_str, math_log = pickle.loads(bio.getvalue())
self.assertEqual(new_f, 5)
self.assertEqual(some_str, 'some str')
# math.log does not have its usual reducer overridden, so the
# custom reduction callback should silently direct the pickler
# to the default pickling by attribute, by returning
# NotImplemented
self.assertIs(math_log, math.log)
with self.assertRaises(pickle.PicklingError):
p.dump(g)
with self.assertRaisesRegex(
ValueError, 'The reducer just failed'):
p.dump(h)
@support.cpython_only
def test_reducer_override_no_reference_cycle(self):
# bpo-39492: reducer_override used to induce a spurious reference cycle
# inside the Pickler object, that could prevent all serialized objects
# from being garbage-collected without explicitly invoking gc.collect.
for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
with self.subTest(proto=proto):
def f():
pass
wr = weakref.ref(f)
bio = io.BytesIO()
p = self.pickler_class(bio, proto)
p.dump(f)
new_f = pickle.loads(bio.getvalue())
assert new_f == 5
del p
del f
self.assertIsNone(wr())
class AbstractDispatchTableTests:
def test_default_dispatch_table(self):
# No dispatch_table attribute by default
f = io.BytesIO()
p = self.pickler_class(f, 0)
with self.assertRaises(AttributeError):
p.dispatch_table
self.assertFalse(hasattr(p, 'dispatch_table'))
def test_class_dispatch_table(self):
# A dispatch_table attribute can be specified class-wide
dt = self.get_dispatch_table()
class MyPickler(self.pickler_class):
dispatch_table = dt
def dumps(obj, protocol=None):
f = io.BytesIO()
p = MyPickler(f, protocol)
self.assertEqual(p.dispatch_table, dt)
p.dump(obj)
return f.getvalue()
self._test_dispatch_table(dumps, dt)
def test_instance_dispatch_table(self):
# A dispatch_table attribute can also be specified instance-wide
dt = self.get_dispatch_table()
def dumps(obj, protocol=None):
f = io.BytesIO()
p = self.pickler_class(f, protocol)
p.dispatch_table = dt
self.assertEqual(p.dispatch_table, dt)
p.dump(obj)
return f.getvalue()
self._test_dispatch_table(dumps, dt)
def _test_dispatch_table(self, dumps, dispatch_table):
def custom_load_dump(obj):
return pickle.loads(dumps(obj, 0))
def default_load_dump(obj):
return pickle.loads(pickle.dumps(obj, 0))
# pickling complex numbers using protocol 0 relies on copyreg
# so check pickling a complex number still works
z = 1 + 2j
self.assertEqual(custom_load_dump(z), z)
self.assertEqual(default_load_dump(z), z)
# modify pickling of complex
REDUCE_1 = 'reduce_1'
def reduce_1(obj):
return str, (REDUCE_1,)
dispatch_table[complex] = reduce_1
self.assertEqual(custom_load_dump(z), REDUCE_1)
self.assertEqual(default_load_dump(z), z)
# check picklability of AAA and BBB
a = AAA()
b = BBB()
self.assertEqual(custom_load_dump(a), REDUCE_A)
self.assertIsInstance(custom_load_dump(b), BBB)
self.assertEqual(default_load_dump(a), REDUCE_A)
self.assertIsInstance(default_load_dump(b), BBB)
# modify pickling of BBB
dispatch_table[BBB] = reduce_1
self.assertEqual(custom_load_dump(a), REDUCE_A)
self.assertEqual(custom_load_dump(b), REDUCE_1)
self.assertEqual(default_load_dump(a), REDUCE_A)
self.assertIsInstance(default_load_dump(b), BBB)
# revert pickling of BBB and modify pickling of AAA
REDUCE_2 = 'reduce_2'
def reduce_2(obj):
return str, (REDUCE_2,)
dispatch_table[AAA] = reduce_2
del dispatch_table[BBB]
self.assertEqual(custom_load_dump(a), REDUCE_2)
self.assertIsInstance(custom_load_dump(b), BBB)
self.assertEqual(default_load_dump(a), REDUCE_A)
self.assertIsInstance(default_load_dump(b), BBB)
# End-to-end testing of save_reduce with the state_setter keyword
# argument. This is a dispatch_table test as the primary goal of
# state_setter is to tweak objects reduction behavior.
# In particular, state_setter is useful when the default __setstate__
# behavior is not flexible enough.
# No custom reducer for b has been registered for now, so
# BBB.__setstate__ should be used at unpickling time
self.assertEqual(default_load_dump(b).a, "BBB.__setstate__")
def reduce_bbb(obj):
return BBB, (), obj.__dict__, None, None, setstate_bbb
dispatch_table[BBB] = reduce_bbb
# The custom reducer reduce_bbb includes a state setter, that should
# have priority over BBB.__setstate__
self.assertEqual(custom_load_dump(b).a, "custom state_setter")
if __name__ == "__main__":
# Print some stuff that can be used to rewrite DATA{0,1,2}
from pickletools import dis
x = create_data()
for i in range(pickle.HIGHEST_PROTOCOL+1):
p = pickle.dumps(x, i)
print("DATA{0} = (".format(i))
for j in range(0, len(p), 20):
b = bytes(p[j:j+20])
print(" {0!r}".format(b))
print(")")
print()
print("# Disassembly of DATA{0}".format(i))
print("DATA{0}_DIS = \"\"\"\\".format(i))
dis(p)
print("\"\"\"")
print()