| /* Math module -- standard C math library functions, pi and e */ | 
 |  | 
 | /* Here are some comments from Tim Peters, extracted from the | 
 |    discussion attached to http://bugs.python.org/issue1640.  They | 
 |    describe the general aims of the math module with respect to | 
 |    special values, IEEE-754 floating-point exceptions, and Python | 
 |    exceptions. | 
 |  | 
 | These are the "spirit of 754" rules: | 
 |  | 
 | 1. If the mathematical result is a real number, but of magnitude too | 
 | large to approximate by a machine float, overflow is signaled and the | 
 | result is an infinity (with the appropriate sign). | 
 |  | 
 | 2. If the mathematical result is a real number, but of magnitude too | 
 | small to approximate by a machine float, underflow is signaled and the | 
 | result is a zero (with the appropriate sign). | 
 |  | 
 | 3. At a singularity (a value x such that the limit of f(y) as y | 
 | approaches x exists and is an infinity), "divide by zero" is signaled | 
 | and the result is an infinity (with the appropriate sign).  This is | 
 | complicated a little by that the left-side and right-side limits may | 
 | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 | 
 | from the positive or negative directions.  In that specific case, the | 
 | sign of the zero determines the result of 1/0. | 
 |  | 
 | 4. At a point where a function has no defined result in the extended | 
 | reals (i.e., the reals plus an infinity or two), invalid operation is | 
 | signaled and a NaN is returned. | 
 |  | 
 | And these are what Python has historically /tried/ to do (but not | 
 | always successfully, as platform libm behavior varies a lot): | 
 |  | 
 | For #1, raise OverflowError. | 
 |  | 
 | For #2, return a zero (with the appropriate sign if that happens by | 
 | accident ;-)). | 
 |  | 
 | For #3 and #4, raise ValueError.  It may have made sense to raise | 
 | Python's ZeroDivisionError in #3, but historically that's only been | 
 | raised for division by zero and mod by zero. | 
 |  | 
 | */ | 
 |  | 
 | /* | 
 |    In general, on an IEEE-754 platform the aim is to follow the C99 | 
 |    standard, including Annex 'F', whenever possible.  Where the | 
 |    standard recommends raising the 'divide-by-zero' or 'invalid' | 
 |    floating-point exceptions, Python should raise a ValueError.  Where | 
 |    the standard recommends raising 'overflow', Python should raise an | 
 |    OverflowError.  In all other circumstances a value should be | 
 |    returned. | 
 |  */ | 
 |  | 
 | #ifndef Py_BUILD_CORE_BUILTIN | 
 | #  define Py_BUILD_CORE_MODULE 1 | 
 | #endif | 
 |  | 
 | #include "Python.h" | 
 | #include "pycore_bitutils.h"      // _Py_bit_length() | 
 | #include "pycore_call.h"          // _PyObject_CallNoArgs() | 
 | #include "pycore_dtoa.h"          // _Py_dg_infinity() | 
 | #include "pycore_long.h"          // _PyLong_GetZero() | 
 | #include "pycore_moduleobject.h"  // _PyModule_GetState() | 
 | #include "pycore_object.h"        // _PyObject_LookupSpecial() | 
 | #include "pycore_pymath.h"        // _PY_SHORT_FLOAT_REPR | 
 | /* For DBL_EPSILON in _math.h */ | 
 | #include <float.h> | 
 | /* For _Py_log1p with workarounds for buggy handling of zeros. */ | 
 | #include "_math.h" | 
 | #include <stdbool.h> | 
 |  | 
 | #include "clinic/mathmodule.c.h" | 
 |  | 
 | /*[clinic input] | 
 | module math | 
 | [clinic start generated code]*/ | 
 | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/ | 
 |  | 
 |  | 
 | typedef struct { | 
 |     PyObject *str___ceil__; | 
 |     PyObject *str___floor__; | 
 |     PyObject *str___trunc__; | 
 | } math_module_state; | 
 |  | 
 | static inline math_module_state* | 
 | get_math_module_state(PyObject *module) | 
 | { | 
 |     void *state = _PyModule_GetState(module); | 
 |     assert(state != NULL); | 
 |     return (math_module_state *)state; | 
 | } | 
 |  | 
 | /* | 
 |    sin(pi*x), giving accurate results for all finite x (especially x | 
 |    integral or close to an integer).  This is here for use in the | 
 |    reflection formula for the gamma function.  It conforms to IEEE | 
 |    754-2008 for finite arguments, but not for infinities or nans. | 
 | */ | 
 |  | 
 | static const double pi = 3.141592653589793238462643383279502884197; | 
 | static const double logpi = 1.144729885849400174143427351353058711647; | 
 | #if !defined(HAVE_ERF) || !defined(HAVE_ERFC) | 
 | static const double sqrtpi = 1.772453850905516027298167483341145182798; | 
 | #endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */ | 
 |  | 
 |  | 
 | /* Version of PyFloat_AsDouble() with in-line fast paths | 
 |    for exact floats and integers.  Gives a substantial | 
 |    speed improvement for extracting float arguments. | 
 | */ | 
 |  | 
 | #define ASSIGN_DOUBLE(target_var, obj, error_label)        \ | 
 |     if (PyFloat_CheckExact(obj)) {                         \ | 
 |         target_var = PyFloat_AS_DOUBLE(obj);               \ | 
 |     }                                                      \ | 
 |     else if (PyLong_CheckExact(obj)) {                     \ | 
 |         target_var = PyLong_AsDouble(obj);                 \ | 
 |         if (target_var == -1.0 && PyErr_Occurred()) {      \ | 
 |             goto error_label;                              \ | 
 |         }                                                  \ | 
 |     }                                                      \ | 
 |     else {                                                 \ | 
 |         target_var = PyFloat_AsDouble(obj);                \ | 
 |         if (target_var == -1.0 && PyErr_Occurred()) {      \ | 
 |             goto error_label;                              \ | 
 |         }                                                  \ | 
 |     } | 
 |  | 
 | static double | 
 | m_sinpi(double x) | 
 | { | 
 |     double y, r; | 
 |     int n; | 
 |     /* this function should only ever be called for finite arguments */ | 
 |     assert(Py_IS_FINITE(x)); | 
 |     y = fmod(fabs(x), 2.0); | 
 |     n = (int)round(2.0*y); | 
 |     assert(0 <= n && n <= 4); | 
 |     switch (n) { | 
 |     case 0: | 
 |         r = sin(pi*y); | 
 |         break; | 
 |     case 1: | 
 |         r = cos(pi*(y-0.5)); | 
 |         break; | 
 |     case 2: | 
 |         /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give | 
 |            -0.0 instead of 0.0 when y == 1.0. */ | 
 |         r = sin(pi*(1.0-y)); | 
 |         break; | 
 |     case 3: | 
 |         r = -cos(pi*(y-1.5)); | 
 |         break; | 
 |     case 4: | 
 |         r = sin(pi*(y-2.0)); | 
 |         break; | 
 |     default: | 
 |         Py_UNREACHABLE(); | 
 |     } | 
 |     return copysign(1.0, x)*r; | 
 | } | 
 |  | 
 | /* Implementation of the real gamma function.  In extensive but non-exhaustive | 
 |    random tests, this function proved accurate to within <= 10 ulps across the | 
 |    entire float domain.  Note that accuracy may depend on the quality of the | 
 |    system math functions, the pow function in particular.  Special cases | 
 |    follow C99 annex F.  The parameters and method are tailored to platforms | 
 |    whose double format is the IEEE 754 binary64 format. | 
 |  | 
 |    Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 | 
 |    and g=6.024680040776729583740234375; these parameters are amongst those | 
 |    used by the Boost library.  Following Boost (again), we re-express the | 
 |    Lanczos sum as a rational function, and compute it that way.  The | 
 |    coefficients below were computed independently using MPFR, and have been | 
 |    double-checked against the coefficients in the Boost source code. | 
 |  | 
 |    For x < 0.0 we use the reflection formula. | 
 |  | 
 |    There's one minor tweak that deserves explanation: Lanczos' formula for | 
 |    Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x | 
 |    values, x+g-0.5 can be represented exactly.  However, in cases where it | 
 |    can't be represented exactly the small error in x+g-0.5 can be magnified | 
 |    significantly by the pow and exp calls, especially for large x.  A cheap | 
 |    correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error | 
 |    involved in the computation of x+g-0.5 (that is, e = computed value of | 
 |    x+g-0.5 - exact value of x+g-0.5).  Here's the proof: | 
 |  | 
 |    Correction factor | 
 |    ----------------- | 
 |    Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 | 
 |    double, and e is tiny.  Then: | 
 |  | 
 |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) | 
 |      = pow(y, x-0.5)/exp(y) * C, | 
 |  | 
 |    where the correction_factor C is given by | 
 |  | 
 |      C = pow(1-e/y, x-0.5) * exp(e) | 
 |  | 
 |    Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: | 
 |  | 
 |      C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y | 
 |  | 
 |    But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and | 
 |  | 
 |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), | 
 |  | 
 |    Note that for accuracy, when computing r*C it's better to do | 
 |  | 
 |      r + e*g/y*r; | 
 |  | 
 |    than | 
 |  | 
 |      r * (1 + e*g/y); | 
 |  | 
 |    since the addition in the latter throws away most of the bits of | 
 |    information in e*g/y. | 
 | */ | 
 |  | 
 | #define LANCZOS_N 13 | 
 | static const double lanczos_g = 6.024680040776729583740234375; | 
 | static const double lanczos_g_minus_half = 5.524680040776729583740234375; | 
 | static const double lanczos_num_coeffs[LANCZOS_N] = { | 
 |     23531376880.410759688572007674451636754734846804940, | 
 |     42919803642.649098768957899047001988850926355848959, | 
 |     35711959237.355668049440185451547166705960488635843, | 
 |     17921034426.037209699919755754458931112671403265390, | 
 |     6039542586.3520280050642916443072979210699388420708, | 
 |     1439720407.3117216736632230727949123939715485786772, | 
 |     248874557.86205415651146038641322942321632125127801, | 
 |     31426415.585400194380614231628318205362874684987640, | 
 |     2876370.6289353724412254090516208496135991145378768, | 
 |     186056.26539522349504029498971604569928220784236328, | 
 |     8071.6720023658162106380029022722506138218516325024, | 
 |     210.82427775157934587250973392071336271166969580291, | 
 |     2.5066282746310002701649081771338373386264310793408 | 
 | }; | 
 |  | 
 | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ | 
 | static const double lanczos_den_coeffs[LANCZOS_N] = { | 
 |     0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, | 
 |     13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; | 
 |  | 
 | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ | 
 | #define NGAMMA_INTEGRAL 23 | 
 | static const double gamma_integral[NGAMMA_INTEGRAL] = { | 
 |     1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, | 
 |     3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, | 
 |     1307674368000.0, 20922789888000.0, 355687428096000.0, | 
 |     6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, | 
 |     51090942171709440000.0, 1124000727777607680000.0, | 
 | }; | 
 |  | 
 | /* Lanczos' sum L_g(x), for positive x */ | 
 |  | 
 | static double | 
 | lanczos_sum(double x) | 
 | { | 
 |     double num = 0.0, den = 0.0; | 
 |     int i; | 
 |     assert(x > 0.0); | 
 |     /* evaluate the rational function lanczos_sum(x).  For large | 
 |        x, the obvious algorithm risks overflow, so we instead | 
 |        rescale the denominator and numerator of the rational | 
 |        function by x**(1-LANCZOS_N) and treat this as a | 
 |        rational function in 1/x.  This also reduces the error for | 
 |        larger x values.  The choice of cutoff point (5.0 below) is | 
 |        somewhat arbitrary; in tests, smaller cutoff values than | 
 |        this resulted in lower accuracy. */ | 
 |     if (x < 5.0) { | 
 |         for (i = LANCZOS_N; --i >= 0; ) { | 
 |             num = num * x + lanczos_num_coeffs[i]; | 
 |             den = den * x + lanczos_den_coeffs[i]; | 
 |         } | 
 |     } | 
 |     else { | 
 |         for (i = 0; i < LANCZOS_N; i++) { | 
 |             num = num / x + lanczos_num_coeffs[i]; | 
 |             den = den / x + lanczos_den_coeffs[i]; | 
 |         } | 
 |     } | 
 |     return num/den; | 
 | } | 
 |  | 
 | /* Constant for +infinity, generated in the same way as float('inf'). */ | 
 |  | 
 | static double | 
 | m_inf(void) | 
 | { | 
 | #if _PY_SHORT_FLOAT_REPR == 1 | 
 |     return _Py_dg_infinity(0); | 
 | #else | 
 |     return Py_HUGE_VAL; | 
 | #endif | 
 | } | 
 |  | 
 | /* Constant nan value, generated in the same way as float('nan'). */ | 
 | /* We don't currently assume that Py_NAN is defined everywhere. */ | 
 |  | 
 | #if _PY_SHORT_FLOAT_REPR == 1 | 
 |  | 
 | static double | 
 | m_nan(void) | 
 | { | 
 | #if _PY_SHORT_FLOAT_REPR == 1 | 
 |     return _Py_dg_stdnan(0); | 
 | #else | 
 |     return Py_NAN; | 
 | #endif | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static double | 
 | m_tgamma(double x) | 
 | { | 
 |     double absx, r, y, z, sqrtpow; | 
 |  | 
 |     /* special cases */ | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_NAN(x) || x > 0.0) | 
 |             return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */ | 
 |         else { | 
 |             errno = EDOM; | 
 |             return Py_NAN;  /* tgamma(-inf) = nan, invalid */ | 
 |         } | 
 |     } | 
 |     if (x == 0.0) { | 
 |         errno = EDOM; | 
 |         /* tgamma(+-0.0) = +-inf, divide-by-zero */ | 
 |         return copysign(Py_HUGE_VAL, x); | 
 |     } | 
 |  | 
 |     /* integer arguments */ | 
 |     if (x == floor(x)) { | 
 |         if (x < 0.0) { | 
 |             errno = EDOM;  /* tgamma(n) = nan, invalid for */ | 
 |             return Py_NAN; /* negative integers n */ | 
 |         } | 
 |         if (x <= NGAMMA_INTEGRAL) | 
 |             return gamma_integral[(int)x - 1]; | 
 |     } | 
 |     absx = fabs(x); | 
 |  | 
 |     /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */ | 
 |     if (absx < 1e-20) { | 
 |         r = 1.0/x; | 
 |         if (Py_IS_INFINITY(r)) | 
 |             errno = ERANGE; | 
 |         return r; | 
 |     } | 
 |  | 
 |     /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for | 
 |        x > 200, and underflows to +-0.0 for x < -200, not a negative | 
 |        integer. */ | 
 |     if (absx > 200.0) { | 
 |         if (x < 0.0) { | 
 |             return 0.0/m_sinpi(x); | 
 |         } | 
 |         else { | 
 |             errno = ERANGE; | 
 |             return Py_HUGE_VAL; | 
 |         } | 
 |     } | 
 |  | 
 |     y = absx + lanczos_g_minus_half; | 
 |     /* compute error in sum */ | 
 |     if (absx > lanczos_g_minus_half) { | 
 |         /* note: the correction can be foiled by an optimizing | 
 |            compiler that (incorrectly) thinks that an expression like | 
 |            a + b - a - b can be optimized to 0.0.  This shouldn't | 
 |            happen in a standards-conforming compiler. */ | 
 |         double q = y - absx; | 
 |         z = q - lanczos_g_minus_half; | 
 |     } | 
 |     else { | 
 |         double q = y - lanczos_g_minus_half; | 
 |         z = q - absx; | 
 |     } | 
 |     z = z * lanczos_g / y; | 
 |     if (x < 0.0) { | 
 |         r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx); | 
 |         r -= z * r; | 
 |         if (absx < 140.0) { | 
 |             r /= pow(y, absx - 0.5); | 
 |         } | 
 |         else { | 
 |             sqrtpow = pow(y, absx / 2.0 - 0.25); | 
 |             r /= sqrtpow; | 
 |             r /= sqrtpow; | 
 |         } | 
 |     } | 
 |     else { | 
 |         r = lanczos_sum(absx) / exp(y); | 
 |         r += z * r; | 
 |         if (absx < 140.0) { | 
 |             r *= pow(y, absx - 0.5); | 
 |         } | 
 |         else { | 
 |             sqrtpow = pow(y, absx / 2.0 - 0.25); | 
 |             r *= sqrtpow; | 
 |             r *= sqrtpow; | 
 |         } | 
 |     } | 
 |     if (Py_IS_INFINITY(r)) | 
 |         errno = ERANGE; | 
 |     return r; | 
 | } | 
 |  | 
 | /* | 
 |    lgamma:  natural log of the absolute value of the Gamma function. | 
 |    For large arguments, Lanczos' formula works extremely well here. | 
 | */ | 
 |  | 
 | static double | 
 | m_lgamma(double x) | 
 | { | 
 |     double r; | 
 |     double absx; | 
 |  | 
 |     /* special cases */ | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_NAN(x)) | 
 |             return x;  /* lgamma(nan) = nan */ | 
 |         else | 
 |             return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ | 
 |     } | 
 |  | 
 |     /* integer arguments */ | 
 |     if (x == floor(x) && x <= 2.0) { | 
 |         if (x <= 0.0) { | 
 |             errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */ | 
 |             return Py_HUGE_VAL; /* integers n <= 0 */ | 
 |         } | 
 |         else { | 
 |             return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ | 
 |         } | 
 |     } | 
 |  | 
 |     absx = fabs(x); | 
 |     /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ | 
 |     if (absx < 1e-20) | 
 |         return -log(absx); | 
 |  | 
 |     /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by | 
 |        having a second set of numerator coefficients for lanczos_sum that | 
 |        absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g | 
 |        subtraction below; it's probably not worth it. */ | 
 |     r = log(lanczos_sum(absx)) - lanczos_g; | 
 |     r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); | 
 |     if (x < 0.0) | 
 |         /* Use reflection formula to get value for negative x. */ | 
 |         r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r; | 
 |     if (Py_IS_INFINITY(r)) | 
 |         errno = ERANGE; | 
 |     return r; | 
 | } | 
 |  | 
 | #if !defined(HAVE_ERF) || !defined(HAVE_ERFC) | 
 |  | 
 | /* | 
 |    Implementations of the error function erf(x) and the complementary error | 
 |    function erfc(x). | 
 |  | 
 |    Method: we use a series approximation for erf for small x, and a continued | 
 |    fraction approximation for erfc(x) for larger x; | 
 |    combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), | 
 |    this gives us erf(x) and erfc(x) for all x. | 
 |  | 
 |    The series expansion used is: | 
 |  | 
 |       erf(x) = x*exp(-x*x)/sqrt(pi) * [ | 
 |                      2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] | 
 |  | 
 |    The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). | 
 |    This series converges well for smallish x, but slowly for larger x. | 
 |  | 
 |    The continued fraction expansion used is: | 
 |  | 
 |       erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) | 
 |                               3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] | 
 |  | 
 |    after the first term, the general term has the form: | 
 |  | 
 |       k*(k-0.5)/(2*k+0.5 + x**2 - ...). | 
 |  | 
 |    This expansion converges fast for larger x, but convergence becomes | 
 |    infinitely slow as x approaches 0.0.  The (somewhat naive) continued | 
 |    fraction evaluation algorithm used below also risks overflow for large x; | 
 |    but for large x, erfc(x) == 0.0 to within machine precision.  (For | 
 |    example, erfc(30.0) is approximately 2.56e-393). | 
 |  | 
 |    Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and | 
 |    continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < | 
 |    ERFC_CONTFRAC_CUTOFF.  ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the | 
 |    numbers of terms to use for the relevant expansions.  */ | 
 |  | 
 | #define ERF_SERIES_CUTOFF 1.5 | 
 | #define ERF_SERIES_TERMS 25 | 
 | #define ERFC_CONTFRAC_CUTOFF 30.0 | 
 | #define ERFC_CONTFRAC_TERMS 50 | 
 |  | 
 | /* | 
 |    Error function, via power series. | 
 |  | 
 |    Given a finite float x, return an approximation to erf(x). | 
 |    Converges reasonably fast for small x. | 
 | */ | 
 |  | 
 | static double | 
 | m_erf_series(double x) | 
 | { | 
 |     double x2, acc, fk, result; | 
 |     int i, saved_errno; | 
 |  | 
 |     x2 = x * x; | 
 |     acc = 0.0; | 
 |     fk = (double)ERF_SERIES_TERMS + 0.5; | 
 |     for (i = 0; i < ERF_SERIES_TERMS; i++) { | 
 |         acc = 2.0 + x2 * acc / fk; | 
 |         fk -= 1.0; | 
 |     } | 
 |     /* Make sure the exp call doesn't affect errno; | 
 |        see m_erfc_contfrac for more. */ | 
 |     saved_errno = errno; | 
 |     result = acc * x * exp(-x2) / sqrtpi; | 
 |     errno = saved_errno; | 
 |     return result; | 
 | } | 
 |  | 
 | /* | 
 |    Complementary error function, via continued fraction expansion. | 
 |  | 
 |    Given a positive float x, return an approximation to erfc(x).  Converges | 
 |    reasonably fast for x large (say, x > 2.0), and should be safe from | 
 |    overflow if x and nterms are not too large.  On an IEEE 754 machine, with x | 
 |    <= 30.0, we're safe up to nterms = 100.  For x >= 30.0, erfc(x) is smaller | 
 |    than the smallest representable nonzero float.  */ | 
 |  | 
 | static double | 
 | m_erfc_contfrac(double x) | 
 | { | 
 |     double x2, a, da, p, p_last, q, q_last, b, result; | 
 |     int i, saved_errno; | 
 |  | 
 |     if (x >= ERFC_CONTFRAC_CUTOFF) | 
 |         return 0.0; | 
 |  | 
 |     x2 = x*x; | 
 |     a = 0.0; | 
 |     da = 0.5; | 
 |     p = 1.0; p_last = 0.0; | 
 |     q = da + x2; q_last = 1.0; | 
 |     for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { | 
 |         double temp; | 
 |         a += da; | 
 |         da += 2.0; | 
 |         b = da + x2; | 
 |         temp = p; p = b*p - a*p_last; p_last = temp; | 
 |         temp = q; q = b*q - a*q_last; q_last = temp; | 
 |     } | 
 |     /* Issue #8986: On some platforms, exp sets errno on underflow to zero; | 
 |        save the current errno value so that we can restore it later. */ | 
 |     saved_errno = errno; | 
 |     result = p / q * x * exp(-x2) / sqrtpi; | 
 |     errno = saved_errno; | 
 |     return result; | 
 | } | 
 |  | 
 | #endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */ | 
 |  | 
 | /* Error function erf(x), for general x */ | 
 |  | 
 | static double | 
 | m_erf(double x) | 
 | { | 
 | #ifdef HAVE_ERF | 
 |     return erf(x); | 
 | #else | 
 |     double absx, cf; | 
 |  | 
 |     if (Py_IS_NAN(x)) | 
 |         return x; | 
 |     absx = fabs(x); | 
 |     if (absx < ERF_SERIES_CUTOFF) | 
 |         return m_erf_series(x); | 
 |     else { | 
 |         cf = m_erfc_contfrac(absx); | 
 |         return x > 0.0 ? 1.0 - cf : cf - 1.0; | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | /* Complementary error function erfc(x), for general x. */ | 
 |  | 
 | static double | 
 | m_erfc(double x) | 
 | { | 
 | #ifdef HAVE_ERFC | 
 |     return erfc(x); | 
 | #else | 
 |     double absx, cf; | 
 |  | 
 |     if (Py_IS_NAN(x)) | 
 |         return x; | 
 |     absx = fabs(x); | 
 |     if (absx < ERF_SERIES_CUTOFF) | 
 |         return 1.0 - m_erf_series(x); | 
 |     else { | 
 |         cf = m_erfc_contfrac(absx); | 
 |         return x > 0.0 ? cf : 2.0 - cf; | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |    wrapper for atan2 that deals directly with special cases before | 
 |    delegating to the platform libm for the remaining cases.  This | 
 |    is necessary to get consistent behaviour across platforms. | 
 |    Windows, FreeBSD and alpha Tru64 are amongst platforms that don't | 
 |    always follow C99. | 
 | */ | 
 |  | 
 | static double | 
 | m_atan2(double y, double x) | 
 | { | 
 |     if (Py_IS_NAN(x) || Py_IS_NAN(y)) | 
 |         return Py_NAN; | 
 |     if (Py_IS_INFINITY(y)) { | 
 |         if (Py_IS_INFINITY(x)) { | 
 |             if (copysign(1., x) == 1.) | 
 |                 /* atan2(+-inf, +inf) == +-pi/4 */ | 
 |                 return copysign(0.25*Py_MATH_PI, y); | 
 |             else | 
 |                 /* atan2(+-inf, -inf) == +-pi*3/4 */ | 
 |                 return copysign(0.75*Py_MATH_PI, y); | 
 |         } | 
 |         /* atan2(+-inf, x) == +-pi/2 for finite x */ | 
 |         return copysign(0.5*Py_MATH_PI, y); | 
 |     } | 
 |     if (Py_IS_INFINITY(x) || y == 0.) { | 
 |         if (copysign(1., x) == 1.) | 
 |             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ | 
 |             return copysign(0., y); | 
 |         else | 
 |             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ | 
 |             return copysign(Py_MATH_PI, y); | 
 |     } | 
 |     return atan2(y, x); | 
 | } | 
 |  | 
 |  | 
 | /* IEEE 754-style remainder operation: x - n*y where n*y is the nearest | 
 |    multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754 | 
 |    binary floating-point format, the result is always exact. */ | 
 |  | 
 | static double | 
 | m_remainder(double x, double y) | 
 | { | 
 |     /* Deal with most common case first. */ | 
 |     if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) { | 
 |         double absx, absy, c, m, r; | 
 |  | 
 |         if (y == 0.0) { | 
 |             return Py_NAN; | 
 |         } | 
 |  | 
 |         absx = fabs(x); | 
 |         absy = fabs(y); | 
 |         m = fmod(absx, absy); | 
 |  | 
 |         /* | 
 |            Warning: some subtlety here. What we *want* to know at this point is | 
 |            whether the remainder m is less than, equal to, or greater than half | 
 |            of absy. However, we can't do that comparison directly because we | 
 |            can't be sure that 0.5*absy is representable (the multiplication | 
 |            might incur precision loss due to underflow). So instead we compare | 
 |            m with the complement c = absy - m: m < 0.5*absy if and only if m < | 
 |            c, and so on. The catch is that absy - m might also not be | 
 |            representable, but it turns out that it doesn't matter: | 
 |  | 
 |            - if m > 0.5*absy then absy - m is exactly representable, by | 
 |              Sterbenz's lemma, so m > c | 
 |            - if m == 0.5*absy then again absy - m is exactly representable | 
 |              and m == c | 
 |            - if m < 0.5*absy then either (i) 0.5*absy is exactly representable, | 
 |              in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m < | 
 |              c, or (ii) absy is tiny, either subnormal or in the lowest normal | 
 |              binade. Then absy - m is exactly representable and again m < c. | 
 |         */ | 
 |  | 
 |         c = absy - m; | 
 |         if (m < c) { | 
 |             r = m; | 
 |         } | 
 |         else if (m > c) { | 
 |             r = -c; | 
 |         } | 
 |         else { | 
 |             /* | 
 |                Here absx is exactly halfway between two multiples of absy, | 
 |                and we need to choose the even multiple. x now has the form | 
 |  | 
 |                    absx = n * absy + m | 
 |  | 
 |                for some integer n (recalling that m = 0.5*absy at this point). | 
 |                If n is even we want to return m; if n is odd, we need to | 
 |                return -m. | 
 |  | 
 |                So | 
 |  | 
 |                    0.5 * (absx - m) = (n/2) * absy | 
 |  | 
 |                and now reducing modulo absy gives us: | 
 |  | 
 |                                                   | m, if n is odd | 
 |                    fmod(0.5 * (absx - m), absy) = | | 
 |                                                   | 0, if n is even | 
 |  | 
 |                Now m - 2.0 * fmod(...) gives the desired result: m | 
 |                if n is even, -m if m is odd. | 
 |  | 
 |                Note that all steps in fmod(0.5 * (absx - m), absy) | 
 |                will be computed exactly, with no rounding error | 
 |                introduced. | 
 |             */ | 
 |             assert(m == c); | 
 |             r = m - 2.0 * fmod(0.5 * (absx - m), absy); | 
 |         } | 
 |         return copysign(1.0, x) * r; | 
 |     } | 
 |  | 
 |     /* Special values. */ | 
 |     if (Py_IS_NAN(x)) { | 
 |         return x; | 
 |     } | 
 |     if (Py_IS_NAN(y)) { | 
 |         return y; | 
 |     } | 
 |     if (Py_IS_INFINITY(x)) { | 
 |         return Py_NAN; | 
 |     } | 
 |     assert(Py_IS_INFINITY(y)); | 
 |     return x; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |     Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), | 
 |     log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with | 
 |     special values directly, passing positive non-special values through to | 
 |     the system log/log10. | 
 |  */ | 
 |  | 
 | static double | 
 | m_log(double x) | 
 | { | 
 |     if (Py_IS_FINITE(x)) { | 
 |         if (x > 0.0) | 
 |             return log(x); | 
 |         errno = EDOM; | 
 |         if (x == 0.0) | 
 |             return -Py_HUGE_VAL; /* log(0) = -inf */ | 
 |         else | 
 |             return Py_NAN; /* log(-ve) = nan */ | 
 |     } | 
 |     else if (Py_IS_NAN(x)) | 
 |         return x; /* log(nan) = nan */ | 
 |     else if (x > 0.0) | 
 |         return x; /* log(inf) = inf */ | 
 |     else { | 
 |         errno = EDOM; | 
 |         return Py_NAN; /* log(-inf) = nan */ | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |    log2: log to base 2. | 
 |  | 
 |    Uses an algorithm that should: | 
 |  | 
 |      (a) produce exact results for powers of 2, and | 
 |      (b) give a monotonic log2 (for positive finite floats), | 
 |          assuming that the system log is monotonic. | 
 | */ | 
 |  | 
 | static double | 
 | m_log2(double x) | 
 | { | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_NAN(x)) | 
 |             return x; /* log2(nan) = nan */ | 
 |         else if (x > 0.0) | 
 |             return x; /* log2(+inf) = +inf */ | 
 |         else { | 
 |             errno = EDOM; | 
 |             return Py_NAN; /* log2(-inf) = nan, invalid-operation */ | 
 |         } | 
 |     } | 
 |  | 
 |     if (x > 0.0) { | 
 | #ifdef HAVE_LOG2 | 
 |         return log2(x); | 
 | #else | 
 |         double m; | 
 |         int e; | 
 |         m = frexp(x, &e); | 
 |         /* We want log2(m * 2**e) == log(m) / log(2) + e.  Care is needed when | 
 |          * x is just greater than 1.0: in that case e is 1, log(m) is negative, | 
 |          * and we get significant cancellation error from the addition of | 
 |          * log(m) / log(2) to e.  The slight rewrite of the expression below | 
 |          * avoids this problem. | 
 |          */ | 
 |         if (x >= 1.0) { | 
 |             return log(2.0 * m) / log(2.0) + (e - 1); | 
 |         } | 
 |         else { | 
 |             return log(m) / log(2.0) + e; | 
 |         } | 
 | #endif | 
 |     } | 
 |     else if (x == 0.0) { | 
 |         errno = EDOM; | 
 |         return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */ | 
 |     } | 
 |     else { | 
 |         errno = EDOM; | 
 |         return Py_NAN; /* log2(-inf) = nan, invalid-operation */ | 
 |     } | 
 | } | 
 |  | 
 | static double | 
 | m_log10(double x) | 
 | { | 
 |     if (Py_IS_FINITE(x)) { | 
 |         if (x > 0.0) | 
 |             return log10(x); | 
 |         errno = EDOM; | 
 |         if (x == 0.0) | 
 |             return -Py_HUGE_VAL; /* log10(0) = -inf */ | 
 |         else | 
 |             return Py_NAN; /* log10(-ve) = nan */ | 
 |     } | 
 |     else if (Py_IS_NAN(x)) | 
 |         return x; /* log10(nan) = nan */ | 
 |     else if (x > 0.0) | 
 |         return x; /* log10(inf) = inf */ | 
 |     else { | 
 |         errno = EDOM; | 
 |         return Py_NAN; /* log10(-inf) = nan */ | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | static PyObject * | 
 | math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs) | 
 | { | 
 |     PyObject *res, *x; | 
 |     Py_ssize_t i; | 
 |  | 
 |     if (nargs == 0) { | 
 |         return PyLong_FromLong(0); | 
 |     } | 
 |     res = PyNumber_Index(args[0]); | 
 |     if (res == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     if (nargs == 1) { | 
 |         Py_SETREF(res, PyNumber_Absolute(res)); | 
 |         return res; | 
 |     } | 
 |  | 
 |     PyObject *one = _PyLong_GetOne();  // borrowed ref | 
 |     for (i = 1; i < nargs; i++) { | 
 |         x = _PyNumber_Index(args[i]); | 
 |         if (x == NULL) { | 
 |             Py_DECREF(res); | 
 |             return NULL; | 
 |         } | 
 |         if (res == one) { | 
 |             /* Fast path: just check arguments. | 
 |                It is okay to use identity comparison here. */ | 
 |             Py_DECREF(x); | 
 |             continue; | 
 |         } | 
 |         Py_SETREF(res, _PyLong_GCD(res, x)); | 
 |         Py_DECREF(x); | 
 |         if (res == NULL) { | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |     return res; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_gcd_doc, | 
 | "gcd($module, *integers)\n" | 
 | "--\n" | 
 | "\n" | 
 | "Greatest Common Divisor."); | 
 |  | 
 |  | 
 | static PyObject * | 
 | long_lcm(PyObject *a, PyObject *b) | 
 | { | 
 |     PyObject *g, *m, *f, *ab; | 
 |  | 
 |     if (Py_SIZE(a) == 0 || Py_SIZE(b) == 0) { | 
 |         return PyLong_FromLong(0); | 
 |     } | 
 |     g = _PyLong_GCD(a, b); | 
 |     if (g == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     f = PyNumber_FloorDivide(a, g); | 
 |     Py_DECREF(g); | 
 |     if (f == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     m = PyNumber_Multiply(f, b); | 
 |     Py_DECREF(f); | 
 |     if (m == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     ab = PyNumber_Absolute(m); | 
 |     Py_DECREF(m); | 
 |     return ab; | 
 | } | 
 |  | 
 |  | 
 | static PyObject * | 
 | math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs) | 
 | { | 
 |     PyObject *res, *x; | 
 |     Py_ssize_t i; | 
 |  | 
 |     if (nargs == 0) { | 
 |         return PyLong_FromLong(1); | 
 |     } | 
 |     res = PyNumber_Index(args[0]); | 
 |     if (res == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     if (nargs == 1) { | 
 |         Py_SETREF(res, PyNumber_Absolute(res)); | 
 |         return res; | 
 |     } | 
 |  | 
 |     PyObject *zero = _PyLong_GetZero();  // borrowed ref | 
 |     for (i = 1; i < nargs; i++) { | 
 |         x = PyNumber_Index(args[i]); | 
 |         if (x == NULL) { | 
 |             Py_DECREF(res); | 
 |             return NULL; | 
 |         } | 
 |         if (res == zero) { | 
 |             /* Fast path: just check arguments. | 
 |                It is okay to use identity comparison here. */ | 
 |             Py_DECREF(x); | 
 |             continue; | 
 |         } | 
 |         Py_SETREF(res, long_lcm(res, x)); | 
 |         Py_DECREF(x); | 
 |         if (res == NULL) { | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |     return res; | 
 | } | 
 |  | 
 |  | 
 | PyDoc_STRVAR(math_lcm_doc, | 
 | "lcm($module, *integers)\n" | 
 | "--\n" | 
 | "\n" | 
 | "Least Common Multiple."); | 
 |  | 
 |  | 
 | /* Call is_error when errno != 0, and where x is the result libm | 
 |  * returned.  is_error will usually set up an exception and return | 
 |  * true (1), but may return false (0) without setting up an exception. | 
 |  */ | 
 | static int | 
 | is_error(double x) | 
 | { | 
 |     int result = 1;     /* presumption of guilt */ | 
 |     assert(errno);      /* non-zero errno is a precondition for calling */ | 
 |     if (errno == EDOM) | 
 |         PyErr_SetString(PyExc_ValueError, "math domain error"); | 
 |  | 
 |     else if (errno == ERANGE) { | 
 |         /* ANSI C generally requires libm functions to set ERANGE | 
 |          * on overflow, but also generally *allows* them to set | 
 |          * ERANGE on underflow too.  There's no consistency about | 
 |          * the latter across platforms. | 
 |          * Alas, C99 never requires that errno be set. | 
 |          * Here we suppress the underflow errors (libm functions | 
 |          * should return a zero on underflow, and +- HUGE_VAL on | 
 |          * overflow, so testing the result for zero suffices to | 
 |          * distinguish the cases). | 
 |          * | 
 |          * On some platforms (Ubuntu/ia64) it seems that errno can be | 
 |          * set to ERANGE for subnormal results that do *not* underflow | 
 |          * to zero.  So to be safe, we'll ignore ERANGE whenever the | 
 |          * function result is less than 1.5 in absolute value. | 
 |          * | 
 |          * bpo-46018: Changed to 1.5 to ensure underflows in expm1() | 
 |          * are correctly detected, since the function may underflow | 
 |          * toward -1.0 rather than 0.0. | 
 |          */ | 
 |         if (fabs(x) < 1.5) | 
 |             result = 0; | 
 |         else | 
 |             PyErr_SetString(PyExc_OverflowError, | 
 |                             "math range error"); | 
 |     } | 
 |     else | 
 |         /* Unexpected math error */ | 
 |         PyErr_SetFromErrno(PyExc_ValueError); | 
 |     return result; | 
 | } | 
 |  | 
 | /* | 
 |    math_1 is used to wrap a libm function f that takes a double | 
 |    argument and returns a double. | 
 |  | 
 |    The error reporting follows these rules, which are designed to do | 
 |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
 |    platforms. | 
 |  | 
 |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
 |    - an infinite result from finite inputs causes OverflowError to be | 
 |      raised if can_overflow is 1, or raises ValueError if can_overflow | 
 |      is 0. | 
 |    - if the result is finite and errno == EDOM then ValueError is | 
 |      raised | 
 |    - if the result is finite and nonzero and errno == ERANGE then | 
 |      OverflowError is raised | 
 |  | 
 |    The last rule is used to catch overflow on platforms which follow | 
 |    C89 but for which HUGE_VAL is not an infinity. | 
 |  | 
 |    For the majority of one-argument functions these rules are enough | 
 |    to ensure that Python's functions behave as specified in 'Annex F' | 
 |    of the C99 standard, with the 'invalid' and 'divide-by-zero' | 
 |    floating-point exceptions mapping to Python's ValueError and the | 
 |    'overflow' floating-point exception mapping to OverflowError. | 
 |    math_1 only works for functions that don't have singularities *and* | 
 |    the possibility of overflow; fortunately, that covers everything we | 
 |    care about right now. | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_1_to_whatever(PyObject *arg, double (*func) (double), | 
 |                    PyObject *(*from_double_func) (double), | 
 |                    int can_overflow) | 
 | { | 
 |     double x, r; | 
 |     x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     errno = 0; | 
 |     r = (*func)(x); | 
 |     if (Py_IS_NAN(r) && !Py_IS_NAN(x)) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "math domain error"); /* invalid arg */ | 
 |         return NULL; | 
 |     } | 
 |     if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) { | 
 |         if (can_overflow) | 
 |             PyErr_SetString(PyExc_OverflowError, | 
 |                             "math range error"); /* overflow */ | 
 |         else | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "math domain error"); /* singularity */ | 
 |         return NULL; | 
 |     } | 
 |     if (Py_IS_FINITE(r) && errno && is_error(r)) | 
 |         /* this branch unnecessary on most platforms */ | 
 |         return NULL; | 
 |  | 
 |     return (*from_double_func)(r); | 
 | } | 
 |  | 
 | /* variant of math_1, to be used when the function being wrapped is known to | 
 |    set errno properly (that is, errno = EDOM for invalid or divide-by-zero, | 
 |    errno = ERANGE for overflow). */ | 
 |  | 
 | static PyObject * | 
 | math_1a(PyObject *arg, double (*func) (double)) | 
 | { | 
 |     double x, r; | 
 |     x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     errno = 0; | 
 |     r = (*func)(x); | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | /* | 
 |    math_2 is used to wrap a libm function f that takes two double | 
 |    arguments and returns a double. | 
 |  | 
 |    The error reporting follows these rules, which are designed to do | 
 |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
 |    platforms. | 
 |  | 
 |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
 |    - an infinite result from finite inputs causes OverflowError to be | 
 |      raised. | 
 |    - if the result is finite and errno == EDOM then ValueError is | 
 |      raised | 
 |    - if the result is finite and nonzero and errno == ERANGE then | 
 |      OverflowError is raised | 
 |  | 
 |    The last rule is used to catch overflow on platforms which follow | 
 |    C89 but for which HUGE_VAL is not an infinity. | 
 |  | 
 |    For most two-argument functions (copysign, fmod, hypot, atan2) | 
 |    these rules are enough to ensure that Python's functions behave as | 
 |    specified in 'Annex F' of the C99 standard, with the 'invalid' and | 
 |    'divide-by-zero' floating-point exceptions mapping to Python's | 
 |    ValueError and the 'overflow' floating-point exception mapping to | 
 |    OverflowError. | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_1(PyObject *arg, double (*func) (double), int can_overflow) | 
 | { | 
 |     return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow); | 
 | } | 
 |  | 
 | static PyObject * | 
 | math_2(PyObject *const *args, Py_ssize_t nargs, | 
 |        double (*func) (double, double), const char *funcname) | 
 | { | 
 |     double x, y, r; | 
 |     if (!_PyArg_CheckPositional(funcname, nargs, 2, 2)) | 
 |         return NULL; | 
 |     x = PyFloat_AsDouble(args[0]); | 
 |     if (x == -1.0 && PyErr_Occurred()) { | 
 |         return NULL; | 
 |     } | 
 |     y = PyFloat_AsDouble(args[1]); | 
 |     if (y == -1.0 && PyErr_Occurred()) { | 
 |         return NULL; | 
 |     } | 
 |     errno = 0; | 
 |     r = (*func)(x, y); | 
 |     if (Py_IS_NAN(r)) { | 
 |         if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 |             errno = EDOM; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     else if (Py_IS_INFINITY(r)) { | 
 |         if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) | 
 |             errno = ERANGE; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     else | 
 |         return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | #define FUNC1(funcname, func, can_overflow, docstring)                  \ | 
 |     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 |         return math_1(args, func, can_overflow);                            \ | 
 |     }\ | 
 |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | #define FUNC1A(funcname, func, docstring)                               \ | 
 |     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 |         return math_1a(args, func);                                     \ | 
 |     }\ | 
 |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | #define FUNC2(funcname, func, docstring) \ | 
 |     static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \ | 
 |         return math_2(args, nargs, func, #funcname); \ | 
 |     }\ | 
 |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | FUNC1(acos, acos, 0, | 
 |       "acos($module, x, /)\n--\n\n" | 
 |       "Return the arc cosine (measured in radians) of x.\n\n" | 
 |       "The result is between 0 and pi.") | 
 | FUNC1(acosh, acosh, 0, | 
 |       "acosh($module, x, /)\n--\n\n" | 
 |       "Return the inverse hyperbolic cosine of x.") | 
 | FUNC1(asin, asin, 0, | 
 |       "asin($module, x, /)\n--\n\n" | 
 |       "Return the arc sine (measured in radians) of x.\n\n" | 
 |       "The result is between -pi/2 and pi/2.") | 
 | FUNC1(asinh, asinh, 0, | 
 |       "asinh($module, x, /)\n--\n\n" | 
 |       "Return the inverse hyperbolic sine of x.") | 
 | FUNC1(atan, atan, 0, | 
 |       "atan($module, x, /)\n--\n\n" | 
 |       "Return the arc tangent (measured in radians) of x.\n\n" | 
 |       "The result is between -pi/2 and pi/2.") | 
 | FUNC2(atan2, m_atan2, | 
 |       "atan2($module, y, x, /)\n--\n\n" | 
 |       "Return the arc tangent (measured in radians) of y/x.\n\n" | 
 |       "Unlike atan(y/x), the signs of both x and y are considered.") | 
 | FUNC1(atanh, atanh, 0, | 
 |       "atanh($module, x, /)\n--\n\n" | 
 |       "Return the inverse hyperbolic tangent of x.") | 
 | FUNC1(cbrt, cbrt, 0, | 
 |       "cbrt($module, x, /)\n--\n\n" | 
 |       "Return the cube root of x.") | 
 |  | 
 | /*[clinic input] | 
 | math.ceil | 
 |  | 
 |     x as number: object | 
 |     / | 
 |  | 
 | Return the ceiling of x as an Integral. | 
 |  | 
 | This is the smallest integer >= x. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_ceil(PyObject *module, PyObject *number) | 
 | /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/ | 
 | { | 
 |  | 
 |     if (!PyFloat_CheckExact(number)) { | 
 |         math_module_state *state = get_math_module_state(module); | 
 |         PyObject *method = _PyObject_LookupSpecial(number, state->str___ceil__); | 
 |         if (method != NULL) { | 
 |             PyObject *result = _PyObject_CallNoArgs(method); | 
 |             Py_DECREF(method); | 
 |             return result; | 
 |         } | 
 |         if (PyErr_Occurred()) | 
 |             return NULL; | 
 |     } | 
 |     double x = PyFloat_AsDouble(number); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |  | 
 |     return PyLong_FromDouble(ceil(x)); | 
 | } | 
 |  | 
 | FUNC2(copysign, copysign, | 
 |       "copysign($module, x, y, /)\n--\n\n" | 
 |        "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n" | 
 |       "On platforms that support signed zeros, copysign(1.0, -0.0)\n" | 
 |       "returns -1.0.\n") | 
 | FUNC1(cos, cos, 0, | 
 |       "cos($module, x, /)\n--\n\n" | 
 |       "Return the cosine of x (measured in radians).") | 
 | FUNC1(cosh, cosh, 1, | 
 |       "cosh($module, x, /)\n--\n\n" | 
 |       "Return the hyperbolic cosine of x.") | 
 | FUNC1A(erf, m_erf, | 
 |        "erf($module, x, /)\n--\n\n" | 
 |        "Error function at x.") | 
 | FUNC1A(erfc, m_erfc, | 
 |        "erfc($module, x, /)\n--\n\n" | 
 |        "Complementary error function at x.") | 
 | FUNC1(exp, exp, 1, | 
 |       "exp($module, x, /)\n--\n\n" | 
 |       "Return e raised to the power of x.") | 
 | FUNC1(exp2, exp2, 1, | 
 |       "exp2($module, x, /)\n--\n\n" | 
 |       "Return 2 raised to the power of x.") | 
 | FUNC1(expm1, expm1, 1, | 
 |       "expm1($module, x, /)\n--\n\n" | 
 |       "Return exp(x)-1.\n\n" | 
 |       "This function avoids the loss of precision involved in the direct " | 
 |       "evaluation of exp(x)-1 for small x.") | 
 | FUNC1(fabs, fabs, 0, | 
 |       "fabs($module, x, /)\n--\n\n" | 
 |       "Return the absolute value of the float x.") | 
 |  | 
 | /*[clinic input] | 
 | math.floor | 
 |  | 
 |     x as number: object | 
 |     / | 
 |  | 
 | Return the floor of x as an Integral. | 
 |  | 
 | This is the largest integer <= x. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_floor(PyObject *module, PyObject *number) | 
 | /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/ | 
 | { | 
 |     double x; | 
 |  | 
 |     if (PyFloat_CheckExact(number)) { | 
 |         x = PyFloat_AS_DOUBLE(number); | 
 |     } | 
 |     else | 
 |     { | 
 |         math_module_state *state = get_math_module_state(module); | 
 |         PyObject *method = _PyObject_LookupSpecial(number, state->str___floor__); | 
 |         if (method != NULL) { | 
 |             PyObject *result = _PyObject_CallNoArgs(method); | 
 |             Py_DECREF(method); | 
 |             return result; | 
 |         } | 
 |         if (PyErr_Occurred()) | 
 |             return NULL; | 
 |         x = PyFloat_AsDouble(number); | 
 |         if (x == -1.0 && PyErr_Occurred()) | 
 |             return NULL; | 
 |     } | 
 |     return PyLong_FromDouble(floor(x)); | 
 | } | 
 |  | 
 | FUNC1A(gamma, m_tgamma, | 
 |       "gamma($module, x, /)\n--\n\n" | 
 |       "Gamma function at x.") | 
 | FUNC1A(lgamma, m_lgamma, | 
 |       "lgamma($module, x, /)\n--\n\n" | 
 |       "Natural logarithm of absolute value of Gamma function at x.") | 
 | FUNC1(log1p, m_log1p, 0, | 
 |       "log1p($module, x, /)\n--\n\n" | 
 |       "Return the natural logarithm of 1+x (base e).\n\n" | 
 |       "The result is computed in a way which is accurate for x near zero.") | 
 | FUNC2(remainder, m_remainder, | 
 |       "remainder($module, x, y, /)\n--\n\n" | 
 |       "Difference between x and the closest integer multiple of y.\n\n" | 
 |       "Return x - n*y where n*y is the closest integer multiple of y.\n" | 
 |       "In the case where x is exactly halfway between two multiples of\n" | 
 |       "y, the nearest even value of n is used. The result is always exact.") | 
 | FUNC1(sin, sin, 0, | 
 |       "sin($module, x, /)\n--\n\n" | 
 |       "Return the sine of x (measured in radians).") | 
 | FUNC1(sinh, sinh, 1, | 
 |       "sinh($module, x, /)\n--\n\n" | 
 |       "Return the hyperbolic sine of x.") | 
 | FUNC1(sqrt, sqrt, 0, | 
 |       "sqrt($module, x, /)\n--\n\n" | 
 |       "Return the square root of x.") | 
 | FUNC1(tan, tan, 0, | 
 |       "tan($module, x, /)\n--\n\n" | 
 |       "Return the tangent of x (measured in radians).") | 
 | FUNC1(tanh, tanh, 0, | 
 |       "tanh($module, x, /)\n--\n\n" | 
 |       "Return the hyperbolic tangent of x.") | 
 |  | 
 | /* Precision summation function as msum() by Raymond Hettinger in | 
 |    <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, | 
 |    enhanced with the exact partials sum and roundoff from Mark | 
 |    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. | 
 |    See those links for more details, proofs and other references. | 
 |  | 
 |    Note 1: IEEE 754 floating-point semantics with a rounding mode of | 
 |    roundTiesToEven are assumed. | 
 |  | 
 |    Note 2: No provision is made for intermediate overflow handling; | 
 |    therefore, fsum([1e+308, -1e+308, 1e+308]) returns 1e+308 while | 
 |    fsum([1e+308, 1e+308, -1e+308]) raises an OverflowError due to the | 
 |    overflow of the first partial sum. | 
 |  | 
 |    Note 3: The algorithm has two potential sources of fragility. First, C | 
 |    permits arithmetic operations on `double`s to be performed in an | 
 |    intermediate format whose range and precision may be greater than those of | 
 |    `double` (see for example C99 §5.2.4.2.2, paragraph 8). This can happen for | 
 |    example on machines using the now largely historical x87 FPUs. In this case, | 
 |    `fsum` can produce incorrect results. If `FLT_EVAL_METHOD` is `0` or `1`, or | 
 |    `FLT_EVAL_METHOD` is `2` and `long double` is identical to `double`, then we | 
 |    should be safe from this source of errors. Second, an aggressively | 
 |    optimizing compiler can re-associate operations so that (for example) the | 
 |    statement `yr = hi - x;` is treated as `yr = (x + y) - x` and then | 
 |    re-associated as `yr = y + (x - x)`, giving `y = yr` and `lo = 0.0`. That | 
 |    re-association would be in violation of the C standard, and should not occur | 
 |    except possibly in the presence of unsafe optimizations (e.g., -ffast-math, | 
 |    -fassociative-math). Such optimizations should be avoided for this module. | 
 |  | 
 |    Note 4: The signature of math.fsum() differs from builtins.sum() | 
 |    because the start argument doesn't make sense in the context of | 
 |    accurate summation.  Since the partials table is collapsed before | 
 |    returning a result, sum(seq2, start=sum(seq1)) may not equal the | 
 |    accurate result returned by sum(itertools.chain(seq1, seq2)). | 
 | */ | 
 |  | 
 | #define NUM_PARTIALS  32  /* initial partials array size, on stack */ | 
 |  | 
 | /* Extend the partials array p[] by doubling its size. */ | 
 | static int                          /* non-zero on error */ | 
 | _fsum_realloc(double **p_ptr, Py_ssize_t  n, | 
 |              double  *ps,    Py_ssize_t *m_ptr) | 
 | { | 
 |     void *v = NULL; | 
 |     Py_ssize_t m = *m_ptr; | 
 |  | 
 |     m += m;  /* double */ | 
 |     if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { | 
 |         double *p = *p_ptr; | 
 |         if (p == ps) { | 
 |             v = PyMem_Malloc(sizeof(double) * m); | 
 |             if (v != NULL) | 
 |                 memcpy(v, ps, sizeof(double) * n); | 
 |         } | 
 |         else | 
 |             v = PyMem_Realloc(p, sizeof(double) * m); | 
 |     } | 
 |     if (v == NULL) {        /* size overflow or no memory */ | 
 |         PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); | 
 |         return 1; | 
 |     } | 
 |     *p_ptr = (double*) v; | 
 |     *m_ptr = m; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Full precision summation of a sequence of floats. | 
 |  | 
 |    def msum(iterable): | 
 |        partials = []  # sorted, non-overlapping partial sums | 
 |        for x in iterable: | 
 |            i = 0 | 
 |            for y in partials: | 
 |                if abs(x) < abs(y): | 
 |                    x, y = y, x | 
 |                hi = x + y | 
 |                lo = y - (hi - x) | 
 |                if lo: | 
 |                    partials[i] = lo | 
 |                    i += 1 | 
 |                x = hi | 
 |            partials[i:] = [x] | 
 |        return sum_exact(partials) | 
 |  | 
 |    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo | 
 |    are exactly equal to x+y.  The inner loop applies hi/lo summation to each | 
 |    partial so that the list of partial sums remains exact. | 
 |  | 
 |    Sum_exact() adds the partial sums exactly and correctly rounds the final | 
 |    result (using the round-half-to-even rule).  The items in partials remain | 
 |    non-zero, non-special, non-overlapping and strictly increasing in | 
 |    magnitude, but possibly not all having the same sign. | 
 |  | 
 |    Depends on IEEE 754 arithmetic guarantees and half-even rounding. | 
 | */ | 
 |  | 
 | /*[clinic input] | 
 | math.fsum | 
 |  | 
 |     seq: object | 
 |     / | 
 |  | 
 | Return an accurate floating point sum of values in the iterable seq. | 
 |  | 
 | Assumes IEEE-754 floating point arithmetic. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_fsum(PyObject *module, PyObject *seq) | 
 | /*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/ | 
 | { | 
 |     PyObject *item, *iter, *sum = NULL; | 
 |     Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; | 
 |     double x, y, t, ps[NUM_PARTIALS], *p = ps; | 
 |     double xsave, special_sum = 0.0, inf_sum = 0.0; | 
 |     double hi, yr, lo = 0.0; | 
 |  | 
 |     iter = PyObject_GetIter(seq); | 
 |     if (iter == NULL) | 
 |         return NULL; | 
 |  | 
 |     for(;;) {           /* for x in iterable */ | 
 |         assert(0 <= n && n <= m); | 
 |         assert((m == NUM_PARTIALS && p == ps) || | 
 |                (m >  NUM_PARTIALS && p != NULL)); | 
 |  | 
 |         item = PyIter_Next(iter); | 
 |         if (item == NULL) { | 
 |             if (PyErr_Occurred()) | 
 |                 goto _fsum_error; | 
 |             break; | 
 |         } | 
 |         ASSIGN_DOUBLE(x, item, error_with_item); | 
 |         Py_DECREF(item); | 
 |  | 
 |         xsave = x; | 
 |         for (i = j = 0; j < n; j++) {       /* for y in partials */ | 
 |             y = p[j]; | 
 |             if (fabs(x) < fabs(y)) { | 
 |                 t = x; x = y; y = t; | 
 |             } | 
 |             hi = x + y; | 
 |             yr = hi - x; | 
 |             lo = y - yr; | 
 |             if (lo != 0.0) | 
 |                 p[i++] = lo; | 
 |             x = hi; | 
 |         } | 
 |  | 
 |         n = i;                              /* ps[i:] = [x] */ | 
 |         if (x != 0.0) { | 
 |             if (! Py_IS_FINITE(x)) { | 
 |                 /* a nonfinite x could arise either as | 
 |                    a result of intermediate overflow, or | 
 |                    as a result of a nan or inf in the | 
 |                    summands */ | 
 |                 if (Py_IS_FINITE(xsave)) { | 
 |                     PyErr_SetString(PyExc_OverflowError, | 
 |                           "intermediate overflow in fsum"); | 
 |                     goto _fsum_error; | 
 |                 } | 
 |                 if (Py_IS_INFINITY(xsave)) | 
 |                     inf_sum += xsave; | 
 |                 special_sum += xsave; | 
 |                 /* reset partials */ | 
 |                 n = 0; | 
 |             } | 
 |             else if (n >= m && _fsum_realloc(&p, n, ps, &m)) | 
 |                 goto _fsum_error; | 
 |             else | 
 |                 p[n++] = x; | 
 |         } | 
 |     } | 
 |  | 
 |     if (special_sum != 0.0) { | 
 |         if (Py_IS_NAN(inf_sum)) | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "-inf + inf in fsum"); | 
 |         else | 
 |             sum = PyFloat_FromDouble(special_sum); | 
 |         goto _fsum_error; | 
 |     } | 
 |  | 
 |     hi = 0.0; | 
 |     if (n > 0) { | 
 |         hi = p[--n]; | 
 |         /* sum_exact(ps, hi) from the top, stop when the sum becomes | 
 |            inexact. */ | 
 |         while (n > 0) { | 
 |             x = hi; | 
 |             y = p[--n]; | 
 |             assert(fabs(y) < fabs(x)); | 
 |             hi = x + y; | 
 |             yr = hi - x; | 
 |             lo = y - yr; | 
 |             if (lo != 0.0) | 
 |                 break; | 
 |         } | 
 |         /* Make half-even rounding work across multiple partials. | 
 |            Needed so that sum([1e-16, 1, 1e16]) will round-up the last | 
 |            digit to two instead of down to zero (the 1e-16 makes the 1 | 
 |            slightly closer to two).  With a potential 1 ULP rounding | 
 |            error fixed-up, math.fsum() can guarantee commutativity. */ | 
 |         if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || | 
 |                       (lo > 0.0 && p[n-1] > 0.0))) { | 
 |             y = lo * 2.0; | 
 |             x = hi + y; | 
 |             yr = x - hi; | 
 |             if (y == yr) | 
 |                 hi = x; | 
 |         } | 
 |     } | 
 |     sum = PyFloat_FromDouble(hi); | 
 |  | 
 |   _fsum_error: | 
 |     Py_DECREF(iter); | 
 |     if (p != ps) | 
 |         PyMem_Free(p); | 
 |     return sum; | 
 |  | 
 |   error_with_item: | 
 |     Py_DECREF(item); | 
 |     goto _fsum_error; | 
 | } | 
 |  | 
 | #undef NUM_PARTIALS | 
 |  | 
 |  | 
 | static unsigned long | 
 | count_set_bits(unsigned long n) | 
 | { | 
 |     unsigned long count = 0; | 
 |     while (n != 0) { | 
 |         ++count; | 
 |         n &= n - 1; /* clear least significant bit */ | 
 |     } | 
 |     return count; | 
 | } | 
 |  | 
 | /* Integer square root | 
 |  | 
 | Given a nonnegative integer `n`, we want to compute the largest integer | 
 | `a` for which `a * a <= n`, or equivalently the integer part of the exact | 
 | square root of `n`. | 
 |  | 
 | We use an adaptive-precision pure-integer version of Newton's iteration. Given | 
 | a positive integer `n`, the algorithm produces at each iteration an integer | 
 | approximation `a` to the square root of `n >> s` for some even integer `s`, | 
 | with `s` decreasing as the iterations progress. On the final iteration, `s` is | 
 | zero and we have an approximation to the square root of `n` itself. | 
 |  | 
 | At every step, the approximation `a` is strictly within 1.0 of the true square | 
 | root, so we have | 
 |  | 
 |     (a - 1)**2 < (n >> s) < (a + 1)**2 | 
 |  | 
 | After the final iteration, a check-and-correct step is needed to determine | 
 | whether `a` or `a - 1` gives the desired integer square root of `n`. | 
 |  | 
 | The algorithm is remarkable in its simplicity. There's no need for a | 
 | per-iteration check-and-correct step, and termination is straightforward: the | 
 | number of iterations is known in advance (it's exactly `floor(log2(log2(n)))` | 
 | for `n > 1`). The only tricky part of the correctness proof is in establishing | 
 | that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one | 
 | iteration to the next. A sketch of the proof of this is given below. | 
 |  | 
 | In addition to the proof sketch, a formal, computer-verified proof | 
 | of correctness (using Lean) of an equivalent recursive algorithm can be found | 
 | here: | 
 |  | 
 |     https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean | 
 |  | 
 |  | 
 | Here's Python code equivalent to the C implementation below: | 
 |  | 
 |     def isqrt(n): | 
 |         """ | 
 |         Return the integer part of the square root of the input. | 
 |         """ | 
 |         n = operator.index(n) | 
 |  | 
 |         if n < 0: | 
 |             raise ValueError("isqrt() argument must be nonnegative") | 
 |         if n == 0: | 
 |             return 0 | 
 |  | 
 |         c = (n.bit_length() - 1) // 2 | 
 |         a = 1 | 
 |         d = 0 | 
 |         for s in reversed(range(c.bit_length())): | 
 |             # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2 | 
 |             e = d | 
 |             d = c >> s | 
 |             a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a | 
 |  | 
 |         return a - (a*a > n) | 
 |  | 
 |  | 
 | Sketch of proof of correctness | 
 | ------------------------------ | 
 |  | 
 | The delicate part of the correctness proof is showing that the loop invariant | 
 | is preserved from one iteration to the next. That is, just before the line | 
 |  | 
 |     a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a | 
 |  | 
 | is executed in the above code, we know that | 
 |  | 
 |     (1)  (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2. | 
 |  | 
 | (since `e` is always the value of `d` from the previous iteration). We must | 
 | prove that after that line is executed, we have | 
 |  | 
 |     (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2 | 
 |  | 
 | To facilitate the proof, we make some changes of notation. Write `m` for | 
 | `n >> 2*(c-d)`, and write `b` for the new value of `a`, so | 
 |  | 
 |     b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a | 
 |  | 
 | or equivalently: | 
 |  | 
 |     (2)  b = (a << d - e - 1) + (m >> d - e + 1) // a | 
 |  | 
 | Then we can rewrite (1) as: | 
 |  | 
 |     (3)  (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2 | 
 |  | 
 | and we must show that (b - 1)**2 < m < (b + 1)**2. | 
 |  | 
 | From this point on, we switch to mathematical notation, so `/` means exact | 
 | division rather than integer division and `^` is used for exponentiation. We | 
 | use the `√` symbol for the exact square root. In (3), we can remove the | 
 | implicit floor operation to give: | 
 |  | 
 |     (4)  (a - 1)^2 < m / 4^(d - e) < (a + 1)^2 | 
 |  | 
 | Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives | 
 |  | 
 |     (5)  0 <= | 2^(d-e)a - √m | < 2^(d-e) | 
 |  | 
 | Squaring and dividing through by `2^(d-e+1) a` gives | 
 |  | 
 |     (6)  0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a | 
 |  | 
 | We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the | 
 | right-hand side of (6) with `1`, and now replacing the central | 
 | term `m / (2^(d-e+1) a)` with its floor in (6) gives | 
 |  | 
 |     (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1 | 
 |  | 
 | Or equivalently, from (2): | 
 |  | 
 |     (7) -1 < b - √m < 1 | 
 |  | 
 | and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed | 
 | to prove. | 
 |  | 
 | We're not quite done: we still have to prove the inequality `2^(d - e - 1) <= | 
 | a` that was used to get line (7) above. From the definition of `c`, we have | 
 | `4^c <= n`, which implies | 
 |  | 
 |     (8)  4^d <= m | 
 |  | 
 | also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows | 
 | that `2d - 2e - 1 <= d` and hence that | 
 |  | 
 |     (9)  4^(2d - 2e - 1) <= m | 
 |  | 
 | Dividing both sides by `4^(d - e)` gives | 
 |  | 
 |     (10)  4^(d - e - 1) <= m / 4^(d - e) | 
 |  | 
 | But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence | 
 |  | 
 |     (11)  4^(d - e - 1) < (a + 1)^2 | 
 |  | 
 | Now taking square roots of both sides and observing that both `2^(d-e-1)` and | 
 | `a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This | 
 | completes the proof sketch. | 
 |  | 
 | */ | 
 |  | 
 | /* | 
 |     The _approximate_isqrt_tab table provides approximate square roots for | 
 |     16-bit integers. For any n in the range 2**14 <= n < 2**16, the value | 
 |  | 
 |         a = _approximate_isqrt_tab[(n >> 8) - 64] | 
 |  | 
 |     is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2. | 
 |  | 
 |     The table was computed in Python using the expression: | 
 |  | 
 |         [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)] | 
 | */ | 
 |  | 
 | static const uint8_t _approximate_isqrt_tab[192] = { | 
 |     128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, | 
 |     140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, | 
 |     151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, | 
 |     160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169, | 
 |     170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, | 
 |     179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186, | 
 |     187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194, | 
 |     195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202, | 
 |     203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210, | 
 |     210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217, | 
 |     217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224, | 
 |     224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230, | 
 |     231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237, | 
 |     238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, | 
 |     244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, | 
 |     250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255, | 
 | }; | 
 |  | 
 | /* Approximate square root of a large 64-bit integer. | 
 |  | 
 |    Given `n` satisfying `2**62 <= n < 2**64`, return `a` | 
 |    satisfying `(a - 1)**2 < n < (a + 1)**2`. */ | 
 |  | 
 | static inline uint32_t | 
 | _approximate_isqrt(uint64_t n) | 
 | { | 
 |     uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64]; | 
 |     u = (u << 7) + (uint32_t)(n >> 41) / u; | 
 |     return (u << 15) + (uint32_t)((n >> 17) / u); | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | math.isqrt | 
 |  | 
 |     n: object | 
 |     / | 
 |  | 
 | Return the integer part of the square root of the input. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_isqrt(PyObject *module, PyObject *n) | 
 | /*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/ | 
 | { | 
 |     int a_too_large, c_bit_length; | 
 |     size_t c, d; | 
 |     uint64_t m; | 
 |     uint32_t u; | 
 |     PyObject *a = NULL, *b; | 
 |  | 
 |     n = _PyNumber_Index(n); | 
 |     if (n == NULL) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (_PyLong_Sign(n) < 0) { | 
 |         PyErr_SetString( | 
 |             PyExc_ValueError, | 
 |             "isqrt() argument must be nonnegative"); | 
 |         goto error; | 
 |     } | 
 |     if (_PyLong_Sign(n) == 0) { | 
 |         Py_DECREF(n); | 
 |         return PyLong_FromLong(0); | 
 |     } | 
 |  | 
 |     /* c = (n.bit_length() - 1) // 2 */ | 
 |     c = _PyLong_NumBits(n); | 
 |     if (c == (size_t)(-1)) { | 
 |         goto error; | 
 |     } | 
 |     c = (c - 1U) / 2U; | 
 |  | 
 |     /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a | 
 |        fast, almost branch-free algorithm. */ | 
 |     if (c <= 31U) { | 
 |         int shift = 31 - (int)c; | 
 |         m = (uint64_t)PyLong_AsUnsignedLongLong(n); | 
 |         Py_DECREF(n); | 
 |         if (m == (uint64_t)(-1) && PyErr_Occurred()) { | 
 |             return NULL; | 
 |         } | 
 |         u = _approximate_isqrt(m << 2*shift) >> shift; | 
 |         u -= (uint64_t)u * u > m; | 
 |         return PyLong_FromUnsignedLong(u); | 
 |     } | 
 |  | 
 |     /* Slow path: n >= 2**64. We perform the first five iterations in C integer | 
 |        arithmetic, then switch to using Python long integers. */ | 
 |  | 
 |     /* From n >= 2**64 it follows that c.bit_length() >= 6. */ | 
 |     c_bit_length = 6; | 
 |     while ((c >> c_bit_length) > 0U) { | 
 |         ++c_bit_length; | 
 |     } | 
 |  | 
 |     /* Initialise d and a. */ | 
 |     d = c >> (c_bit_length - 5); | 
 |     b = _PyLong_Rshift(n, 2U*c - 62U); | 
 |     if (b == NULL) { | 
 |         goto error; | 
 |     } | 
 |     m = (uint64_t)PyLong_AsUnsignedLongLong(b); | 
 |     Py_DECREF(b); | 
 |     if (m == (uint64_t)(-1) && PyErr_Occurred()) { | 
 |         goto error; | 
 |     } | 
 |     u = _approximate_isqrt(m) >> (31U - d); | 
 |     a = PyLong_FromUnsignedLong(u); | 
 |     if (a == NULL) { | 
 |         goto error; | 
 |     } | 
 |  | 
 |     for (int s = c_bit_length - 6; s >= 0; --s) { | 
 |         PyObject *q; | 
 |         size_t e = d; | 
 |  | 
 |         d = c >> s; | 
 |  | 
 |         /* q = (n >> 2*c - e - d + 1) // a */ | 
 |         q = _PyLong_Rshift(n, 2U*c - d - e + 1U); | 
 |         if (q == NULL) { | 
 |             goto error; | 
 |         } | 
 |         Py_SETREF(q, PyNumber_FloorDivide(q, a)); | 
 |         if (q == NULL) { | 
 |             goto error; | 
 |         } | 
 |  | 
 |         /* a = (a << d - 1 - e) + q */ | 
 |         Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e)); | 
 |         if (a == NULL) { | 
 |             Py_DECREF(q); | 
 |             goto error; | 
 |         } | 
 |         Py_SETREF(a, PyNumber_Add(a, q)); | 
 |         Py_DECREF(q); | 
 |         if (a == NULL) { | 
 |             goto error; | 
 |         } | 
 |     } | 
 |  | 
 |     /* The correct result is either a or a - 1. Figure out which, and | 
 |        decrement a if necessary. */ | 
 |  | 
 |     /* a_too_large = n < a * a */ | 
 |     b = PyNumber_Multiply(a, a); | 
 |     if (b == NULL) { | 
 |         goto error; | 
 |     } | 
 |     a_too_large = PyObject_RichCompareBool(n, b, Py_LT); | 
 |     Py_DECREF(b); | 
 |     if (a_too_large == -1) { | 
 |         goto error; | 
 |     } | 
 |  | 
 |     if (a_too_large) { | 
 |         Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne())); | 
 |     } | 
 |     Py_DECREF(n); | 
 |     return a; | 
 |  | 
 |   error: | 
 |     Py_XDECREF(a); | 
 |     Py_DECREF(n); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* Divide-and-conquer factorial algorithm | 
 |  * | 
 |  * Based on the formula and pseudo-code provided at: | 
 |  * http://www.luschny.de/math/factorial/binarysplitfact.html | 
 |  * | 
 |  * Faster algorithms exist, but they're more complicated and depend on | 
 |  * a fast prime factorization algorithm. | 
 |  * | 
 |  * Notes on the algorithm | 
 |  * ---------------------- | 
 |  * | 
 |  * factorial(n) is written in the form 2**k * m, with m odd.  k and m are | 
 |  * computed separately, and then combined using a left shift. | 
 |  * | 
 |  * The function factorial_odd_part computes the odd part m (i.e., the greatest | 
 |  * odd divisor) of factorial(n), using the formula: | 
 |  * | 
 |  *   factorial_odd_part(n) = | 
 |  * | 
 |  *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j | 
 |  * | 
 |  * Example: factorial_odd_part(20) = | 
 |  * | 
 |  *        (1) * | 
 |  *        (1) * | 
 |  *        (1 * 3 * 5) * | 
 |  *        (1 * 3 * 5 * 7 * 9) * | 
 |  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) | 
 |  * | 
 |  * Here i goes from large to small: the first term corresponds to i=4 (any | 
 |  * larger i gives an empty product), and the last term corresponds to i=0. | 
 |  * Each term can be computed from the last by multiplying by the extra odd | 
 |  * numbers required: e.g., to get from the penultimate term to the last one, | 
 |  * we multiply by (11 * 13 * 15 * 17 * 19). | 
 |  * | 
 |  * To see a hint of why this formula works, here are the same numbers as above | 
 |  * but with the even parts (i.e., the appropriate powers of 2) included.  For | 
 |  * each subterm in the product for i, we multiply that subterm by 2**i: | 
 |  * | 
 |  *   factorial(20) = | 
 |  * | 
 |  *        (16) * | 
 |  *        (8) * | 
 |  *        (4 * 12 * 20) * | 
 |  *        (2 * 6 * 10 * 14 * 18) * | 
 |  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) | 
 |  * | 
 |  * The factorial_partial_product function computes the product of all odd j in | 
 |  * range(start, stop) for given start and stop.  It's used to compute the | 
 |  * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It | 
 |  * operates recursively, repeatedly splitting the range into two roughly equal | 
 |  * pieces until the subranges are small enough to be computed using only C | 
 |  * integer arithmetic. | 
 |  * | 
 |  * The two-valuation k (i.e., the exponent of the largest power of 2 dividing | 
 |  * the factorial) is computed independently in the main math_factorial | 
 |  * function.  By standard results, its value is: | 
 |  * | 
 |  *    two_valuation = n//2 + n//4 + n//8 + .... | 
 |  * | 
 |  * It can be shown (e.g., by complete induction on n) that two_valuation is | 
 |  * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of | 
 |  * '1'-bits in the binary expansion of n. | 
 |  */ | 
 |  | 
 | /* factorial_partial_product: Compute product(range(start, stop, 2)) using | 
 |  * divide and conquer.  Assumes start and stop are odd and stop > start. | 
 |  * max_bits must be >= bit_length(stop - 2). */ | 
 |  | 
 | static PyObject * | 
 | factorial_partial_product(unsigned long start, unsigned long stop, | 
 |                           unsigned long max_bits) | 
 | { | 
 |     unsigned long midpoint, num_operands; | 
 |     PyObject *left = NULL, *right = NULL, *result = NULL; | 
 |  | 
 |     /* If the return value will fit an unsigned long, then we can | 
 |      * multiply in a tight, fast loop where each multiply is O(1). | 
 |      * Compute an upper bound on the number of bits required to store | 
 |      * the answer. | 
 |      * | 
 |      * Storing some integer z requires floor(lg(z))+1 bits, which is | 
 |      * conveniently the value returned by bit_length(z).  The | 
 |      * product x*y will require at most | 
 |      * bit_length(x) + bit_length(y) bits to store, based | 
 |      * on the idea that lg product = lg x + lg y. | 
 |      * | 
 |      * We know that stop - 2 is the largest number to be multiplied.  From | 
 |      * there, we have: bit_length(answer) <= num_operands * | 
 |      * bit_length(stop - 2) | 
 |      */ | 
 |  | 
 |     num_operands = (stop - start) / 2; | 
 |     /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the | 
 |      * unlikely case of an overflow in num_operands * max_bits. */ | 
 |     if (num_operands <= 8 * SIZEOF_LONG && | 
 |         num_operands * max_bits <= 8 * SIZEOF_LONG) { | 
 |         unsigned long j, total; | 
 |         for (total = start, j = start + 2; j < stop; j += 2) | 
 |             total *= j; | 
 |         return PyLong_FromUnsignedLong(total); | 
 |     } | 
 |  | 
 |     /* find midpoint of range(start, stop), rounded up to next odd number. */ | 
 |     midpoint = (start + num_operands) | 1; | 
 |     left = factorial_partial_product(start, midpoint, | 
 |                                      _Py_bit_length(midpoint - 2)); | 
 |     if (left == NULL) | 
 |         goto error; | 
 |     right = factorial_partial_product(midpoint, stop, max_bits); | 
 |     if (right == NULL) | 
 |         goto error; | 
 |     result = PyNumber_Multiply(left, right); | 
 |  | 
 |   error: | 
 |     Py_XDECREF(left); | 
 |     Py_XDECREF(right); | 
 |     return result; | 
 | } | 
 |  | 
 | /* factorial_odd_part:  compute the odd part of factorial(n). */ | 
 |  | 
 | static PyObject * | 
 | factorial_odd_part(unsigned long n) | 
 | { | 
 |     long i; | 
 |     unsigned long v, lower, upper; | 
 |     PyObject *partial, *tmp, *inner, *outer; | 
 |  | 
 |     inner = PyLong_FromLong(1); | 
 |     if (inner == NULL) | 
 |         return NULL; | 
 |     outer = Py_NewRef(inner); | 
 |  | 
 |     upper = 3; | 
 |     for (i = _Py_bit_length(n) - 2; i >= 0; i--) { | 
 |         v = n >> i; | 
 |         if (v <= 2) | 
 |             continue; | 
 |         lower = upper; | 
 |         /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ | 
 |         upper = (v + 1) | 1; | 
 |         /* Here inner is the product of all odd integers j in the range (0, | 
 |            n/2**(i+1)].  The factorial_partial_product call below gives the | 
 |            product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ | 
 |         partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2)); | 
 |         /* inner *= partial */ | 
 |         if (partial == NULL) | 
 |             goto error; | 
 |         tmp = PyNumber_Multiply(inner, partial); | 
 |         Py_DECREF(partial); | 
 |         if (tmp == NULL) | 
 |             goto error; | 
 |         Py_SETREF(inner, tmp); | 
 |         /* Now inner is the product of all odd integers j in the range (0, | 
 |            n/2**i], giving the inner product in the formula above. */ | 
 |  | 
 |         /* outer *= inner; */ | 
 |         tmp = PyNumber_Multiply(outer, inner); | 
 |         if (tmp == NULL) | 
 |             goto error; | 
 |         Py_SETREF(outer, tmp); | 
 |     } | 
 |     Py_DECREF(inner); | 
 |     return outer; | 
 |  | 
 |   error: | 
 |     Py_DECREF(outer); | 
 |     Py_DECREF(inner); | 
 |     return NULL; | 
 | } | 
 |  | 
 |  | 
 | /* Lookup table for small factorial values */ | 
 |  | 
 | static const unsigned long SmallFactorials[] = { | 
 |     1, 1, 2, 6, 24, 120, 720, 5040, 40320, | 
 |     362880, 3628800, 39916800, 479001600, | 
 | #if SIZEOF_LONG >= 8 | 
 |     6227020800, 87178291200, 1307674368000, | 
 |     20922789888000, 355687428096000, 6402373705728000, | 
 |     121645100408832000, 2432902008176640000 | 
 | #endif | 
 | }; | 
 |  | 
 | /*[clinic input] | 
 | math.factorial | 
 |  | 
 |     n as arg: object | 
 |     / | 
 |  | 
 | Find n!. | 
 |  | 
 | Raise a ValueError if x is negative or non-integral. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_factorial(PyObject *module, PyObject *arg) | 
 | /*[clinic end generated code: output=6686f26fae00e9ca input=713fb771677e8c31]*/ | 
 | { | 
 |     long x, two_valuation; | 
 |     int overflow; | 
 |     PyObject *result, *odd_part; | 
 |  | 
 |     x = PyLong_AsLongAndOverflow(arg, &overflow); | 
 |     if (x == -1 && PyErr_Occurred()) { | 
 |         return NULL; | 
 |     } | 
 |     else if (overflow == 1) { | 
 |         PyErr_Format(PyExc_OverflowError, | 
 |                      "factorial() argument should not exceed %ld", | 
 |                      LONG_MAX); | 
 |         return NULL; | 
 |     } | 
 |     else if (overflow == -1 || x < 0) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "factorial() not defined for negative values"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* use lookup table if x is small */ | 
 |     if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) | 
 |         return PyLong_FromUnsignedLong(SmallFactorials[x]); | 
 |  | 
 |     /* else express in the form odd_part * 2**two_valuation, and compute as | 
 |        odd_part << two_valuation. */ | 
 |     odd_part = factorial_odd_part(x); | 
 |     if (odd_part == NULL) | 
 |         return NULL; | 
 |     two_valuation = x - count_set_bits(x); | 
 |     result = _PyLong_Lshift(odd_part, two_valuation); | 
 |     Py_DECREF(odd_part); | 
 |     return result; | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.trunc | 
 |  | 
 |     x: object | 
 |     / | 
 |  | 
 | Truncates the Real x to the nearest Integral toward 0. | 
 |  | 
 | Uses the __trunc__ magic method. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_trunc(PyObject *module, PyObject *x) | 
 | /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/ | 
 | { | 
 |     PyObject *trunc, *result; | 
 |  | 
 |     if (PyFloat_CheckExact(x)) { | 
 |         return PyFloat_Type.tp_as_number->nb_int(x); | 
 |     } | 
 |  | 
 |     if (Py_TYPE(x)->tp_dict == NULL) { | 
 |         if (PyType_Ready(Py_TYPE(x)) < 0) | 
 |             return NULL; | 
 |     } | 
 |  | 
 |     math_module_state *state = get_math_module_state(module); | 
 |     trunc = _PyObject_LookupSpecial(x, state->str___trunc__); | 
 |     if (trunc == NULL) { | 
 |         if (!PyErr_Occurred()) | 
 |             PyErr_Format(PyExc_TypeError, | 
 |                          "type %.100s doesn't define __trunc__ method", | 
 |                          Py_TYPE(x)->tp_name); | 
 |         return NULL; | 
 |     } | 
 |     result = _PyObject_CallNoArgs(trunc); | 
 |     Py_DECREF(trunc); | 
 |     return result; | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.frexp | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Return the mantissa and exponent of x, as pair (m, e). | 
 |  | 
 | m is a float and e is an int, such that x = m * 2.**e. | 
 | If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_frexp_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/ | 
 | { | 
 |     int i; | 
 |     /* deal with special cases directly, to sidestep platform | 
 |        differences */ | 
 |     if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { | 
 |         i = 0; | 
 |     } | 
 |     else { | 
 |         x = frexp(x, &i); | 
 |     } | 
 |     return Py_BuildValue("(di)", x, i); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.ldexp | 
 |  | 
 |     x: double | 
 |     i: object | 
 |     / | 
 |  | 
 | Return x * (2**i). | 
 |  | 
 | This is essentially the inverse of frexp(). | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_ldexp_impl(PyObject *module, double x, PyObject *i) | 
 | /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/ | 
 | { | 
 |     double r; | 
 |     long exp; | 
 |     int overflow; | 
 |  | 
 |     if (PyLong_Check(i)) { | 
 |         /* on overflow, replace exponent with either LONG_MAX | 
 |            or LONG_MIN, depending on the sign. */ | 
 |         exp = PyLong_AsLongAndOverflow(i, &overflow); | 
 |         if (exp == -1 && PyErr_Occurred()) | 
 |             return NULL; | 
 |         if (overflow) | 
 |             exp = overflow < 0 ? LONG_MIN : LONG_MAX; | 
 |     } | 
 |     else { | 
 |         PyErr_SetString(PyExc_TypeError, | 
 |                         "Expected an int as second argument to ldexp."); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (x == 0. || !Py_IS_FINITE(x)) { | 
 |         /* NaNs, zeros and infinities are returned unchanged */ | 
 |         r = x; | 
 |         errno = 0; | 
 |     } else if (exp > INT_MAX) { | 
 |         /* overflow */ | 
 |         r = copysign(Py_HUGE_VAL, x); | 
 |         errno = ERANGE; | 
 |     } else if (exp < INT_MIN) { | 
 |         /* underflow to +-0 */ | 
 |         r = copysign(0., x); | 
 |         errno = 0; | 
 |     } else { | 
 |         errno = 0; | 
 |         r = ldexp(x, (int)exp); | 
 |         if (Py_IS_INFINITY(r)) | 
 |             errno = ERANGE; | 
 |     } | 
 |  | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.modf | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Return the fractional and integer parts of x. | 
 |  | 
 | Both results carry the sign of x and are floats. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_modf_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/ | 
 | { | 
 |     double y; | 
 |     /* some platforms don't do the right thing for NaNs and | 
 |        infinities, so we take care of special cases directly. */ | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_INFINITY(x)) | 
 |             return Py_BuildValue("(dd)", copysign(0., x), x); | 
 |         else if (Py_IS_NAN(x)) | 
 |             return Py_BuildValue("(dd)", x, x); | 
 |     } | 
 |  | 
 |     errno = 0; | 
 |     x = modf(x, &y); | 
 |     return Py_BuildValue("(dd)", x, y); | 
 | } | 
 |  | 
 |  | 
 | /* A decent logarithm is easy to compute even for huge ints, but libm can't | 
 |    do that by itself -- loghelper can.  func is log or log10, and name is | 
 |    "log" or "log10".  Note that overflow of the result isn't possible: an int | 
 |    can contain no more than INT_MAX * SHIFT bits, so has value certainly less | 
 |    than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is | 
 |    small enough to fit in an IEEE single.  log and log10 are even smaller. | 
 |    However, intermediate overflow is possible for an int if the number of bits | 
 |    in that int is larger than PY_SSIZE_T_MAX. */ | 
 |  | 
 | static PyObject* | 
 | loghelper(PyObject* arg, double (*func)(double)) | 
 | { | 
 |     /* If it is int, do it ourselves. */ | 
 |     if (PyLong_Check(arg)) { | 
 |         double x, result; | 
 |         Py_ssize_t e; | 
 |  | 
 |         /* Negative or zero inputs give a ValueError. */ | 
 |         if (Py_SIZE(arg) <= 0) { | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "math domain error"); | 
 |             return NULL; | 
 |         } | 
 |  | 
 |         x = PyLong_AsDouble(arg); | 
 |         if (x == -1.0 && PyErr_Occurred()) { | 
 |             if (!PyErr_ExceptionMatches(PyExc_OverflowError)) | 
 |                 return NULL; | 
 |             /* Here the conversion to double overflowed, but it's possible | 
 |                to compute the log anyway.  Clear the exception and continue. */ | 
 |             PyErr_Clear(); | 
 |             x = _PyLong_Frexp((PyLongObject *)arg, &e); | 
 |             if (x == -1.0 && PyErr_Occurred()) | 
 |                 return NULL; | 
 |             /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ | 
 |             result = func(x) + func(2.0) * e; | 
 |         } | 
 |         else | 
 |             /* Successfully converted x to a double. */ | 
 |             result = func(x); | 
 |         return PyFloat_FromDouble(result); | 
 |     } | 
 |  | 
 |     /* Else let libm handle it by itself. */ | 
 |     return math_1(arg, func, 0); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.log | 
 |  | 
 |     x:    object | 
 |     [ | 
 |     base: object(c_default="NULL") = math.e | 
 |     ] | 
 |     / | 
 |  | 
 | Return the logarithm of x to the given base. | 
 |  | 
 | If the base not specified, returns the natural logarithm (base e) of x. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_log_impl(PyObject *module, PyObject *x, int group_right_1, | 
 |               PyObject *base) | 
 | /*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/ | 
 | { | 
 |     PyObject *num, *den; | 
 |     PyObject *ans; | 
 |  | 
 |     num = loghelper(x, m_log); | 
 |     if (num == NULL || base == NULL) | 
 |         return num; | 
 |  | 
 |     den = loghelper(base, m_log); | 
 |     if (den == NULL) { | 
 |         Py_DECREF(num); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     ans = PyNumber_TrueDivide(num, den); | 
 |     Py_DECREF(num); | 
 |     Py_DECREF(den); | 
 |     return ans; | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.log2 | 
 |  | 
 |     x: object | 
 |     / | 
 |  | 
 | Return the base 2 logarithm of x. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_log2(PyObject *module, PyObject *x) | 
 | /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/ | 
 | { | 
 |     return loghelper(x, m_log2); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.log10 | 
 |  | 
 |     x: object | 
 |     / | 
 |  | 
 | Return the base 10 logarithm of x. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_log10(PyObject *module, PyObject *x) | 
 | /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/ | 
 | { | 
 |     return loghelper(x, m_log10); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.fmod | 
 |  | 
 |     x: double | 
 |     y: double | 
 |     / | 
 |  | 
 | Return fmod(x, y), according to platform C. | 
 |  | 
 | x % y may differ. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_fmod_impl(PyObject *module, double x, double y) | 
 | /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/ | 
 | { | 
 |     double r; | 
 |     /* fmod(x, +/-Inf) returns x for finite x. */ | 
 |     if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) | 
 |         return PyFloat_FromDouble(x); | 
 |     errno = 0; | 
 |     r = fmod(x, y); | 
 |     if (Py_IS_NAN(r)) { | 
 |         if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 |             errno = EDOM; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     else | 
 |         return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | /* | 
 | Given a *vec* of values, compute the vector norm: | 
 |  | 
 |     sqrt(sum(x ** 2 for x in vec)) | 
 |  | 
 | The *max* variable should be equal to the largest fabs(x). | 
 | The *n* variable is the length of *vec*. | 
 | If n==0, then *max* should be 0.0. | 
 | If an infinity is present in the vec, *max* should be INF. | 
 | The *found_nan* variable indicates whether some member of | 
 | the *vec* is a NaN. | 
 |  | 
 | To avoid overflow/underflow and to achieve high accuracy giving results | 
 | that are almost always correctly rounded, four techniques are used: | 
 |  | 
 | * lossless scaling using a power-of-two scaling factor | 
 | * accurate squaring using Veltkamp-Dekker splitting [1] | 
 | * compensated summation using a variant of the Neumaier algorithm [2] | 
 | * differential correction of the square root [3] | 
 |  | 
 | The usual presentation of the Neumaier summation algorithm has an | 
 | expensive branch depending on which operand has the larger | 
 | magnitude.  We avoid this cost by arranging the calculation so that | 
 | fabs(csum) is always as large as fabs(x). | 
 |  | 
 | To establish the invariant, *csum* is initialized to 1.0 which is | 
 | always larger than x**2 after scaling or after division by *max*. | 
 | After the loop is finished, the initial 1.0 is subtracted out for a | 
 | net zero effect on the final sum.  Since *csum* will be greater than | 
 | 1.0, the subtraction of 1.0 will not cause fractional digits to be | 
 | dropped from *csum*. | 
 |  | 
 | To get the full benefit from compensated summation, the largest | 
 | addend should be in the range: 0.5 <= |x| <= 1.0.  Accordingly, | 
 | scaling or division by *max* should not be skipped even if not | 
 | otherwise needed to prevent overflow or loss of precision. | 
 |  | 
 | The assertion that hi*hi <= 1.0 is a bit subtle.  Each vector element | 
 | gets scaled to a magnitude below 1.0.  The Veltkamp-Dekker splitting | 
 | algorithm gives a *hi* value that is correctly rounded to half | 
 | precision.  When a value at or below 1.0 is correctly rounded, it | 
 | never goes above 1.0.  And when values at or below 1.0 are squared, | 
 | they remain at or below 1.0, thus preserving the summation invariant. | 
 |  | 
 | Another interesting assertion is that csum+lo*lo == csum. In the loop, | 
 | each scaled vector element has a magnitude less than 1.0.  After the | 
 | Veltkamp split, *lo* has a maximum value of 2**-27.  So the maximum | 
 | value of *lo* squared is 2**-54.  The value of ulp(1.0)/2.0 is 2**-53. | 
 | Given that csum >= 1.0, we have: | 
 |     lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2 | 
 | Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum. | 
 |  | 
 | To minimize loss of information during the accumulation of fractional | 
 | values, each term has a separate accumulator.  This also breaks up | 
 | sequential dependencies in the inner loop so the CPU can maximize | 
 | floating point throughput. [4]  On a 2.6 GHz Haswell, adding one | 
 | dimension has an incremental cost of only 5ns -- for example when | 
 | moving from hypot(x,y) to hypot(x,y,z). | 
 |  | 
 | The square root differential correction is needed because a | 
 | correctly rounded square root of a correctly rounded sum of | 
 | squares can still be off by as much as one ulp. | 
 |  | 
 | The differential correction starts with a value *x* that is | 
 | the difference between the square of *h*, the possibly inaccurately | 
 | rounded square root, and the accurately computed sum of squares. | 
 | The correction is the first order term of the Maclaurin series | 
 | expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5] | 
 |  | 
 | Essentially, this differential correction is equivalent to one | 
 | refinement step in Newton's divide-and-average square root | 
 | algorithm, effectively doubling the number of accurate bits. | 
 | This technique is used in Dekker's SQRT2 algorithm and again in | 
 | Borges' ALGORITHM 4 and 5. | 
 |  | 
 | Without proof for all cases, hypot() cannot claim to be always | 
 | correctly rounded.  However for n <= 1000, prior to the final addition | 
 | that rounds the overall result, the internal accuracy of "h" together | 
 | with its correction of "x / (2.0 * h)" is at least 100 bits. [6] | 
 | Also, hypot() was tested against a Decimal implementation with | 
 | prec=300.  After 100 million trials, no incorrectly rounded examples | 
 | were found.  In addition, perfect commutativity (all permutations are | 
 | exactly equal) was verified for 1 billion random inputs with n=5. [7] | 
 |  | 
 | References: | 
 |  | 
 | 1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf | 
 | 2. Compensated summation:  http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf | 
 | 3. Square root differential correction:  https://arxiv.org/pdf/1904.09481.pdf | 
 | 4. Data dependency graph:  https://bugs.python.org/file49439/hypot.png | 
 | 5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0 | 
 | 6. Analysis of internal accuracy:  https://bugs.python.org/file49484/best_frac.py | 
 | 7. Commutativity test:  https://bugs.python.org/file49448/test_hypot_commutativity.py | 
 |  | 
 | */ | 
 |  | 
 | static inline double | 
 | vector_norm(Py_ssize_t n, double *vec, double max, int found_nan) | 
 | { | 
 |     const double T27 = 134217729.0;     /* ldexp(1.0, 27) + 1.0) */ | 
 |     double x, scale, oldcsum, csum = 1.0, frac1 = 0.0, frac2 = 0.0, frac3 = 0.0; | 
 |     double t, hi, lo, h; | 
 |     int max_e; | 
 |     Py_ssize_t i; | 
 |  | 
 |     if (Py_IS_INFINITY(max)) { | 
 |         return max; | 
 |     } | 
 |     if (found_nan) { | 
 |         return Py_NAN; | 
 |     } | 
 |     if (max == 0.0 || n <= 1) { | 
 |         return max; | 
 |     } | 
 |     frexp(max, &max_e); | 
 |     if (max_e >= -1023) { | 
 |         scale = ldexp(1.0, -max_e); | 
 |         assert(max * scale >= 0.5); | 
 |         assert(max * scale < 1.0); | 
 |         for (i=0 ; i < n ; i++) { | 
 |             x = vec[i]; | 
 |             assert(Py_IS_FINITE(x) && fabs(x) <= max); | 
 |  | 
 |             x *= scale; | 
 |             assert(fabs(x) < 1.0); | 
 |  | 
 |             t = x * T27; | 
 |             hi = t - (t - x); | 
 |             lo = x - hi; | 
 |             assert(hi + lo == x); | 
 |  | 
 |             x = hi * hi; | 
 |             assert(x <= 1.0); | 
 |             assert(fabs(csum) >= fabs(x)); | 
 |             oldcsum = csum; | 
 |             csum += x; | 
 |             frac1 += (oldcsum - csum) + x; | 
 |  | 
 |             x = 2.0 * hi * lo; | 
 |             assert(fabs(csum) >= fabs(x)); | 
 |             oldcsum = csum; | 
 |             csum += x; | 
 |             frac2 += (oldcsum - csum) + x; | 
 |  | 
 |             assert(csum + lo * lo == csum); | 
 |             frac3 += lo * lo; | 
 |         } | 
 |         h = sqrt(csum - 1.0 + (frac1 + frac2 + frac3)); | 
 |  | 
 |         x = h; | 
 |         t = x * T27; | 
 |         hi = t - (t - x); | 
 |         lo = x - hi; | 
 |         assert (hi + lo == x); | 
 |  | 
 |         x = -hi * hi; | 
 |         assert(fabs(csum) >= fabs(x)); | 
 |         oldcsum = csum; | 
 |         csum += x; | 
 |         frac1 += (oldcsum - csum) + x; | 
 |  | 
 |         x = -2.0 * hi * lo; | 
 |         assert(fabs(csum) >= fabs(x)); | 
 |         oldcsum = csum; | 
 |         csum += x; | 
 |         frac2 += (oldcsum - csum) + x; | 
 |  | 
 |         x = -lo * lo; | 
 |         assert(fabs(csum) >= fabs(x)); | 
 |         oldcsum = csum; | 
 |         csum += x; | 
 |         frac3 += (oldcsum - csum) + x; | 
 |  | 
 |         x = csum - 1.0 + (frac1 + frac2 + frac3); | 
 |         return (h + x / (2.0 * h)) / scale; | 
 |     } | 
 |     /* When max_e < -1023, ldexp(1.0, -max_e) overflows. | 
 |        So instead of multiplying by a scale, we just divide by *max*. | 
 |     */ | 
 |     for (i=0 ; i < n ; i++) { | 
 |         x = vec[i]; | 
 |         assert(Py_IS_FINITE(x) && fabs(x) <= max); | 
 |         x /= max; | 
 |         x = x*x; | 
 |         assert(x <= 1.0); | 
 |         assert(fabs(csum) >= fabs(x)); | 
 |         oldcsum = csum; | 
 |         csum += x; | 
 |         frac1 += (oldcsum - csum) + x; | 
 |     } | 
 |     return max * sqrt(csum - 1.0 + frac1); | 
 | } | 
 |  | 
 | #define NUM_STACK_ELEMS 16 | 
 |  | 
 | /*[clinic input] | 
 | math.dist | 
 |  | 
 |     p: object | 
 |     q: object | 
 |     / | 
 |  | 
 | Return the Euclidean distance between two points p and q. | 
 |  | 
 | The points should be specified as sequences (or iterables) of | 
 | coordinates.  Both inputs must have the same dimension. | 
 |  | 
 | Roughly equivalent to: | 
 |     sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_dist_impl(PyObject *module, PyObject *p, PyObject *q) | 
 | /*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/ | 
 | { | 
 |     PyObject *item; | 
 |     double max = 0.0; | 
 |     double x, px, qx, result; | 
 |     Py_ssize_t i, m, n; | 
 |     int found_nan = 0, p_allocated = 0, q_allocated = 0; | 
 |     double diffs_on_stack[NUM_STACK_ELEMS]; | 
 |     double *diffs = diffs_on_stack; | 
 |  | 
 |     if (!PyTuple_Check(p)) { | 
 |         p = PySequence_Tuple(p); | 
 |         if (p == NULL) { | 
 |             return NULL; | 
 |         } | 
 |         p_allocated = 1; | 
 |     } | 
 |     if (!PyTuple_Check(q)) { | 
 |         q = PySequence_Tuple(q); | 
 |         if (q == NULL) { | 
 |             if (p_allocated) { | 
 |                 Py_DECREF(p); | 
 |             } | 
 |             return NULL; | 
 |         } | 
 |         q_allocated = 1; | 
 |     } | 
 |  | 
 |     m = PyTuple_GET_SIZE(p); | 
 |     n = PyTuple_GET_SIZE(q); | 
 |     if (m != n) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "both points must have the same number of dimensions"); | 
 |         goto error_exit; | 
 |     } | 
 |     if (n > NUM_STACK_ELEMS) { | 
 |         diffs = (double *) PyObject_Malloc(n * sizeof(double)); | 
 |         if (diffs == NULL) { | 
 |             PyErr_NoMemory(); | 
 |             goto error_exit; | 
 |         } | 
 |     } | 
 |     for (i=0 ; i<n ; i++) { | 
 |         item = PyTuple_GET_ITEM(p, i); | 
 |         ASSIGN_DOUBLE(px, item, error_exit); | 
 |         item = PyTuple_GET_ITEM(q, i); | 
 |         ASSIGN_DOUBLE(qx, item, error_exit); | 
 |         x = fabs(px - qx); | 
 |         diffs[i] = x; | 
 |         found_nan |= Py_IS_NAN(x); | 
 |         if (x > max) { | 
 |             max = x; | 
 |         } | 
 |     } | 
 |     result = vector_norm(n, diffs, max, found_nan); | 
 |     if (diffs != diffs_on_stack) { | 
 |         PyObject_Free(diffs); | 
 |     } | 
 |     if (p_allocated) { | 
 |         Py_DECREF(p); | 
 |     } | 
 |     if (q_allocated) { | 
 |         Py_DECREF(q); | 
 |     } | 
 |     return PyFloat_FromDouble(result); | 
 |  | 
 |   error_exit: | 
 |     if (diffs != diffs_on_stack) { | 
 |         PyObject_Free(diffs); | 
 |     } | 
 |     if (p_allocated) { | 
 |         Py_DECREF(p); | 
 |     } | 
 |     if (q_allocated) { | 
 |         Py_DECREF(q); | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* AC: cannot convert yet, waiting for *args support */ | 
 | static PyObject * | 
 | math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs) | 
 | { | 
 |     Py_ssize_t i; | 
 |     PyObject *item; | 
 |     double max = 0.0; | 
 |     double x, result; | 
 |     int found_nan = 0; | 
 |     double coord_on_stack[NUM_STACK_ELEMS]; | 
 |     double *coordinates = coord_on_stack; | 
 |  | 
 |     if (nargs > NUM_STACK_ELEMS) { | 
 |         coordinates = (double *) PyObject_Malloc(nargs * sizeof(double)); | 
 |         if (coordinates == NULL) { | 
 |             return PyErr_NoMemory(); | 
 |         } | 
 |     } | 
 |     for (i = 0; i < nargs; i++) { | 
 |         item = args[i]; | 
 |         ASSIGN_DOUBLE(x, item, error_exit); | 
 |         x = fabs(x); | 
 |         coordinates[i] = x; | 
 |         found_nan |= Py_IS_NAN(x); | 
 |         if (x > max) { | 
 |             max = x; | 
 |         } | 
 |     } | 
 |     result = vector_norm(nargs, coordinates, max, found_nan); | 
 |     if (coordinates != coord_on_stack) { | 
 |         PyObject_Free(coordinates); | 
 |     } | 
 |     return PyFloat_FromDouble(result); | 
 |  | 
 |   error_exit: | 
 |     if (coordinates != coord_on_stack) { | 
 |         PyObject_Free(coordinates); | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 | #undef NUM_STACK_ELEMS | 
 |  | 
 | PyDoc_STRVAR(math_hypot_doc, | 
 |              "hypot(*coordinates) -> value\n\n\ | 
 | Multidimensional Euclidean distance from the origin to a point.\n\ | 
 | \n\ | 
 | Roughly equivalent to:\n\ | 
 |     sqrt(sum(x**2 for x in coordinates))\n\ | 
 | \n\ | 
 | For a two dimensional point (x, y), gives the hypotenuse\n\ | 
 | using the Pythagorean theorem:  sqrt(x*x + y*y).\n\ | 
 | \n\ | 
 | For example, the hypotenuse of a 3/4/5 right triangle is:\n\ | 
 | \n\ | 
 |     >>> hypot(3.0, 4.0)\n\ | 
 |     5.0\n\ | 
 | "); | 
 |  | 
 | /** sumprod() ***************************************************************/ | 
 |  | 
 | /* Forward declaration */ | 
 | static inline int _check_long_mult_overflow(long a, long b); | 
 |  | 
 | static inline bool | 
 | long_add_would_overflow(long a, long b) | 
 | { | 
 |     return (a > 0) ? (b > LONG_MAX - a) : (b < LONG_MIN - a); | 
 | } | 
 |  | 
 | /* | 
 | Double and triple length extended precision floating point arithmetic | 
 | based on ideas from three sources: | 
 |  | 
 |   Improved Kahan–Babuška algorithm by Arnold Neumaier | 
 |   https://www.mat.univie.ac.at/~neum/scan/01.pdf | 
 |  | 
 |   A Floating-Point Technique for Extending the Available Precision | 
 |   by T. J. Dekker | 
 |   https://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf | 
 |  | 
 |   Ultimately Fast Accurate Summation by Siegfried M. Rump | 
 |   https://www.tuhh.de/ti3/paper/rump/Ru08b.pdf | 
 |  | 
 | Double length functions: | 
 | * dl_split() exact split of a C double into two half precision components. | 
 | * dl_mul() exact multiplication of two C doubles. | 
 |  | 
 | Triple length functions and constant: | 
 | * tl_zero is a triple length zero for starting or resetting an accumulation. | 
 | * tl_add() compensated addition of a C double to a triple length number. | 
 | * tl_fma() performs a triple length fused-multiply-add. | 
 | * tl_to_d() converts from triple length number back to a C double. | 
 |  | 
 | */ | 
 |  | 
 | typedef struct{ double hi; double lo; } DoubleLength; | 
 | typedef struct{ double hi; double lo; double tiny; } TripleLength; | 
 |  | 
 | static const TripleLength tl_zero = {0.0, 0.0, 0.0}; | 
 |  | 
 | static inline DoubleLength | 
 | twosum(double a, double b) | 
 | { | 
 |     double s = a + b; | 
 |     double ap = s - b; | 
 |     double bp = s - a; | 
 |     double da = a - ap; | 
 |     double db = b - bp; | 
 |     double t = da + db; | 
 |     return  (DoubleLength) {s, t}; | 
 | } | 
 |  | 
 | static inline TripleLength | 
 | tl_add(TripleLength total, double x) | 
 | { | 
 |     /* Input:       x     total.hi   total.lo    total.tiny | 
 |                    |--- twosum ---| | 
 |                     s.hi      s.lo | 
 |                              |--- twosum ---| | 
 |                               t.hi      t.lo | 
 |                                        |--- single sum ---| | 
 |        Output:      s.hi     t.hi       tiny | 
 |      */ | 
 |     DoubleLength s = twosum(x, total.hi); | 
 |     DoubleLength t = twosum(s.lo, total.lo); | 
 |     return (TripleLength) {s.hi, t.hi, t.lo + total.tiny}; | 
 | } | 
 |  | 
 | static inline DoubleLength | 
 | dl_split(double x) { | 
 |     double t = x * 134217729.0;  /* Veltkamp constant = float(0x8000001) */ | 
 |     double hi = t - (t - x); | 
 |     double lo = x - hi; | 
 |     return (DoubleLength) {hi, lo}; | 
 | } | 
 |  | 
 | static inline DoubleLength | 
 | dl_mul(double x, double y) | 
 | { | 
 |     /* Dekker mul12().  Section (5.12) */ | 
 |     DoubleLength xx = dl_split(x); | 
 |     DoubleLength yy = dl_split(y); | 
 |     double p = xx.hi * yy.hi; | 
 |     double q = xx.hi * yy.lo + xx.lo * yy.hi; | 
 |     double z = p + q; | 
 |     double zz = p - z + q + xx.lo * yy.lo; | 
 |     return (DoubleLength) {z, zz}; | 
 | } | 
 |  | 
 | static inline TripleLength | 
 | tl_fma(TripleLength total, double p, double q) | 
 | { | 
 |     DoubleLength product = dl_mul(p, q); | 
 |     total = tl_add(total, product.hi); | 
 |     return  tl_add(total, product.lo); | 
 | } | 
 |  | 
 | static inline double | 
 | tl_to_d(TripleLength total) | 
 | { | 
 |     return total.tiny + total.lo + total.hi; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | math.sumprod | 
 |  | 
 |     p: object | 
 |     q: object | 
 |     / | 
 |  | 
 | Return the sum of products of values from two iterables p and q. | 
 |  | 
 | Roughly equivalent to: | 
 |  | 
 |     sum(itertools.starmap(operator.mul, zip(p, q, strict=True))) | 
 |  | 
 | For float and mixed int/float inputs, the intermediate products | 
 | and sums are computed with extended precision. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_sumprod_impl(PyObject *module, PyObject *p, PyObject *q) | 
 | /*[clinic end generated code: output=6722dbfe60664554 input=82be54fe26f87e30]*/ | 
 | { | 
 |     PyObject *p_i = NULL, *q_i = NULL, *term_i = NULL, *new_total = NULL; | 
 |     PyObject *p_it, *q_it, *total; | 
 |     iternextfunc p_next, q_next; | 
 |     bool p_stopped = false, q_stopped = false; | 
 |     bool int_path_enabled = true, int_total_in_use = false; | 
 |     bool flt_path_enabled = true, flt_total_in_use = false; | 
 |     long int_total = 0; | 
 |     TripleLength flt_total = tl_zero; | 
 |  | 
 |     p_it = PyObject_GetIter(p); | 
 |     if (p_it == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     q_it = PyObject_GetIter(q); | 
 |     if (q_it == NULL) { | 
 |         Py_DECREF(p_it); | 
 |         return NULL; | 
 |     } | 
 |     total = PyLong_FromLong(0); | 
 |     if (total == NULL) { | 
 |         Py_DECREF(p_it); | 
 |         Py_DECREF(q_it); | 
 |         return NULL; | 
 |     } | 
 |     p_next = *Py_TYPE(p_it)->tp_iternext; | 
 |     q_next = *Py_TYPE(q_it)->tp_iternext; | 
 |     while (1) { | 
 |         bool finished; | 
 |  | 
 |         assert (p_i == NULL); | 
 |         assert (q_i == NULL); | 
 |         assert (term_i == NULL); | 
 |         assert (new_total == NULL); | 
 |  | 
 |         assert (p_it != NULL); | 
 |         assert (q_it != NULL); | 
 |         assert (total != NULL); | 
 |  | 
 |         p_i = p_next(p_it); | 
 |         if (p_i == NULL) { | 
 |             if (PyErr_Occurred()) { | 
 |                 if (!PyErr_ExceptionMatches(PyExc_StopIteration)) { | 
 |                     goto err_exit; | 
 |                 } | 
 |                 PyErr_Clear(); | 
 |             } | 
 |             p_stopped = true; | 
 |         } | 
 |         q_i = q_next(q_it); | 
 |         if (q_i == NULL) { | 
 |             if (PyErr_Occurred()) { | 
 |                 if (!PyErr_ExceptionMatches(PyExc_StopIteration)) { | 
 |                     goto err_exit; | 
 |                 } | 
 |                 PyErr_Clear(); | 
 |             } | 
 |             q_stopped = true; | 
 |         } | 
 |         if (p_stopped != q_stopped) { | 
 |             PyErr_Format(PyExc_ValueError, "Inputs are not the same length"); | 
 |             goto err_exit; | 
 |         } | 
 |         finished = p_stopped & q_stopped; | 
 |  | 
 |         if (int_path_enabled) { | 
 |  | 
 |             if (!finished && PyLong_CheckExact(p_i) & PyLong_CheckExact(q_i)) { | 
 |                 int overflow; | 
 |                 long int_p, int_q, int_prod; | 
 |  | 
 |                 int_p = PyLong_AsLongAndOverflow(p_i, &overflow); | 
 |                 if (overflow) { | 
 |                     goto finalize_int_path; | 
 |                 } | 
 |                 int_q = PyLong_AsLongAndOverflow(q_i, &overflow); | 
 |                 if (overflow) { | 
 |                     goto finalize_int_path; | 
 |                 } | 
 |                 if (_check_long_mult_overflow(int_p, int_q)) { | 
 |                     goto finalize_int_path; | 
 |                 } | 
 |                 int_prod = int_p * int_q; | 
 |                 if (long_add_would_overflow(int_total, int_prod)) { | 
 |                     goto finalize_int_path; | 
 |                 } | 
 |                 int_total += int_prod; | 
 |                 int_total_in_use = true; | 
 |                 Py_CLEAR(p_i); | 
 |                 Py_CLEAR(q_i); | 
 |                 continue; | 
 |             } | 
 |  | 
 |           finalize_int_path: | 
 |             //  # We're finished, overflowed, or have a non-int | 
 |             int_path_enabled = false; | 
 |             if (int_total_in_use) { | 
 |                 term_i = PyLong_FromLong(int_total); | 
 |                 if (term_i == NULL) { | 
 |                     goto err_exit; | 
 |                 } | 
 |                 new_total = PyNumber_Add(total, term_i); | 
 |                 if (new_total == NULL) { | 
 |                     goto err_exit; | 
 |                 } | 
 |                 Py_SETREF(total, new_total); | 
 |                 new_total = NULL; | 
 |                 Py_CLEAR(term_i); | 
 |                 int_total = 0;   // An ounce of prevention, ... | 
 |                 int_total_in_use = false; | 
 |             } | 
 |         } | 
 |  | 
 |         if (flt_path_enabled) { | 
 |  | 
 |             if (!finished) { | 
 |                 double flt_p, flt_q; | 
 |                 bool p_type_float = PyFloat_CheckExact(p_i); | 
 |                 bool q_type_float = PyFloat_CheckExact(q_i); | 
 |                 if (p_type_float && q_type_float) { | 
 |                     flt_p = PyFloat_AS_DOUBLE(p_i); | 
 |                     flt_q = PyFloat_AS_DOUBLE(q_i); | 
 |                 } else if (p_type_float && (PyLong_CheckExact(q_i) || PyBool_Check(q_i))) { | 
 |                     /* We care about float/int pairs and int/float pairs because | 
 |                        they arise naturally in several use cases such as price | 
 |                        times quantity, measurements with integer weights, or | 
 |                        data selected by a vector of bools. */ | 
 |                     flt_p = PyFloat_AS_DOUBLE(p_i); | 
 |                     flt_q = PyLong_AsDouble(q_i); | 
 |                     if (flt_q == -1.0 && PyErr_Occurred()) { | 
 |                         PyErr_Clear(); | 
 |                         goto finalize_flt_path; | 
 |                     } | 
 |                 } else if (q_type_float && (PyLong_CheckExact(p_i) || PyBool_Check(q_i))) { | 
 |                     flt_q = PyFloat_AS_DOUBLE(q_i); | 
 |                     flt_p = PyLong_AsDouble(p_i); | 
 |                     if (flt_p == -1.0 && PyErr_Occurred()) { | 
 |                         PyErr_Clear(); | 
 |                         goto finalize_flt_path; | 
 |                     } | 
 |                 } else { | 
 |                     goto finalize_flt_path; | 
 |                 } | 
 |                 TripleLength new_flt_total = tl_fma(flt_total, flt_p, flt_q); | 
 |                 if (isfinite(new_flt_total.hi)) { | 
 |                     flt_total = new_flt_total; | 
 |                     flt_total_in_use = true; | 
 |                     Py_CLEAR(p_i); | 
 |                     Py_CLEAR(q_i); | 
 |                     continue; | 
 |                 } | 
 |             } | 
 |  | 
 |           finalize_flt_path: | 
 |             // We're finished, overflowed, have a non-float, or got a non-finite value | 
 |             flt_path_enabled = false; | 
 |             if (flt_total_in_use) { | 
 |                 term_i = PyFloat_FromDouble(tl_to_d(flt_total)); | 
 |                 if (term_i == NULL) { | 
 |                     goto err_exit; | 
 |                 } | 
 |                 new_total = PyNumber_Add(total, term_i); | 
 |                 if (new_total == NULL) { | 
 |                     goto err_exit; | 
 |                 } | 
 |                 Py_SETREF(total, new_total); | 
 |                 new_total = NULL; | 
 |                 Py_CLEAR(term_i); | 
 |                 flt_total = tl_zero; | 
 |                 flt_total_in_use = false; | 
 |             } | 
 |         } | 
 |  | 
 |         assert(!int_total_in_use); | 
 |         assert(!flt_total_in_use); | 
 |         if (finished) { | 
 |             goto normal_exit; | 
 |         } | 
 |         term_i = PyNumber_Multiply(p_i, q_i); | 
 |         if (term_i == NULL) { | 
 |             goto err_exit; | 
 |         } | 
 |         new_total = PyNumber_Add(total, term_i); | 
 |         if (new_total == NULL) { | 
 |             goto err_exit; | 
 |         } | 
 |         Py_SETREF(total, new_total); | 
 |         new_total = NULL; | 
 |         Py_CLEAR(p_i); | 
 |         Py_CLEAR(q_i); | 
 |         Py_CLEAR(term_i); | 
 |     } | 
 |  | 
 |  normal_exit: | 
 |     Py_DECREF(p_it); | 
 |     Py_DECREF(q_it); | 
 |     return total; | 
 |  | 
 |  err_exit: | 
 |     Py_DECREF(p_it); | 
 |     Py_DECREF(q_it); | 
 |     Py_DECREF(total); | 
 |     Py_XDECREF(p_i); | 
 |     Py_XDECREF(q_i); | 
 |     Py_XDECREF(term_i); | 
 |     Py_XDECREF(new_total); | 
 |     return NULL; | 
 | } | 
 |  | 
 |  | 
 | /* pow can't use math_2, but needs its own wrapper: the problem is | 
 |    that an infinite result can arise either as a result of overflow | 
 |    (in which case OverflowError should be raised) or as a result of | 
 |    e.g. 0.**-5. (for which ValueError needs to be raised.) | 
 | */ | 
 |  | 
 | /*[clinic input] | 
 | math.pow | 
 |  | 
 |     x: double | 
 |     y: double | 
 |     / | 
 |  | 
 | Return x**y (x to the power of y). | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_pow_impl(PyObject *module, double x, double y) | 
 | /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/ | 
 | { | 
 |     double r; | 
 |     int odd_y; | 
 |  | 
 |     /* deal directly with IEEE specials, to cope with problems on various | 
 |        platforms whose semantics don't exactly match C99 */ | 
 |     r = 0.; /* silence compiler warning */ | 
 |     if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { | 
 |         errno = 0; | 
 |         if (Py_IS_NAN(x)) | 
 |             r = y == 0. ? 1. : x; /* NaN**0 = 1 */ | 
 |         else if (Py_IS_NAN(y)) | 
 |             r = x == 1. ? 1. : y; /* 1**NaN = 1 */ | 
 |         else if (Py_IS_INFINITY(x)) { | 
 |             odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; | 
 |             if (y > 0.) | 
 |                 r = odd_y ? x : fabs(x); | 
 |             else if (y == 0.) | 
 |                 r = 1.; | 
 |             else /* y < 0. */ | 
 |                 r = odd_y ? copysign(0., x) : 0.; | 
 |         } | 
 |         else if (Py_IS_INFINITY(y)) { | 
 |             if (fabs(x) == 1.0) | 
 |                 r = 1.; | 
 |             else if (y > 0. && fabs(x) > 1.0) | 
 |                 r = y; | 
 |             else if (y < 0. && fabs(x) < 1.0) { | 
 |                 r = -y; /* result is +inf */ | 
 |             } | 
 |             else | 
 |                 r = 0.; | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* let libm handle finite**finite */ | 
 |         errno = 0; | 
 |         r = pow(x, y); | 
 |         /* a NaN result should arise only from (-ve)**(finite | 
 |            non-integer); in this case we want to raise ValueError. */ | 
 |         if (!Py_IS_FINITE(r)) { | 
 |             if (Py_IS_NAN(r)) { | 
 |                 errno = EDOM; | 
 |             } | 
 |             /* | 
 |                an infinite result here arises either from: | 
 |                (A) (+/-0.)**negative (-> divide-by-zero) | 
 |                (B) overflow of x**y with x and y finite | 
 |             */ | 
 |             else if (Py_IS_INFINITY(r)) { | 
 |                 if (x == 0.) | 
 |                     errno = EDOM; | 
 |                 else | 
 |                     errno = ERANGE; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     else | 
 |         return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 |  | 
 | static const double degToRad = Py_MATH_PI / 180.0; | 
 | static const double radToDeg = 180.0 / Py_MATH_PI; | 
 |  | 
 | /*[clinic input] | 
 | math.degrees | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Convert angle x from radians to degrees. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_degrees_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/ | 
 | { | 
 |     return PyFloat_FromDouble(x * radToDeg); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.radians | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Convert angle x from degrees to radians. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_radians_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/ | 
 | { | 
 |     return PyFloat_FromDouble(x * degToRad); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.isfinite | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Return True if x is neither an infinity nor a NaN, and False otherwise. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_isfinite_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/ | 
 | { | 
 |     return PyBool_FromLong((long)Py_IS_FINITE(x)); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.isnan | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Return True if x is a NaN (not a number), and False otherwise. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_isnan_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/ | 
 | { | 
 |     return PyBool_FromLong((long)Py_IS_NAN(x)); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.isinf | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Return True if x is a positive or negative infinity, and False otherwise. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_isinf_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/ | 
 | { | 
 |     return PyBool_FromLong((long)Py_IS_INFINITY(x)); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.isclose -> bool | 
 |  | 
 |     a: double | 
 |     b: double | 
 |     * | 
 |     rel_tol: double = 1e-09 | 
 |         maximum difference for being considered "close", relative to the | 
 |         magnitude of the input values | 
 |     abs_tol: double = 0.0 | 
 |         maximum difference for being considered "close", regardless of the | 
 |         magnitude of the input values | 
 |  | 
 | Determine whether two floating point numbers are close in value. | 
 |  | 
 | Return True if a is close in value to b, and False otherwise. | 
 |  | 
 | For the values to be considered close, the difference between them | 
 | must be smaller than at least one of the tolerances. | 
 |  | 
 | -inf, inf and NaN behave similarly to the IEEE 754 Standard.  That | 
 | is, NaN is not close to anything, even itself.  inf and -inf are | 
 | only close to themselves. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static int | 
 | math_isclose_impl(PyObject *module, double a, double b, double rel_tol, | 
 |                   double abs_tol) | 
 | /*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/ | 
 | { | 
 |     double diff = 0.0; | 
 |  | 
 |     /* sanity check on the inputs */ | 
 |     if (rel_tol < 0.0 || abs_tol < 0.0 ) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "tolerances must be non-negative"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if ( a == b ) { | 
 |         /* short circuit exact equality -- needed to catch two infinities of | 
 |            the same sign. And perhaps speeds things up a bit sometimes. | 
 |         */ | 
 |         return 1; | 
 |     } | 
 |  | 
 |     /* This catches the case of two infinities of opposite sign, or | 
 |        one infinity and one finite number. Two infinities of opposite | 
 |        sign would otherwise have an infinite relative tolerance. | 
 |        Two infinities of the same sign are caught by the equality check | 
 |        above. | 
 |     */ | 
 |  | 
 |     if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* now do the regular computation | 
 |        this is essentially the "weak" test from the Boost library | 
 |     */ | 
 |  | 
 |     diff = fabs(b - a); | 
 |  | 
 |     return (((diff <= fabs(rel_tol * b)) || | 
 |              (diff <= fabs(rel_tol * a))) || | 
 |             (diff <= abs_tol)); | 
 | } | 
 |  | 
 | static inline int | 
 | _check_long_mult_overflow(long a, long b) { | 
 |  | 
 |     /* From Python2's int_mul code: | 
 |  | 
 |     Integer overflow checking for * is painful:  Python tried a couple ways, but | 
 |     they didn't work on all platforms, or failed in endcases (a product of | 
 |     -sys.maxint-1 has been a particular pain). | 
 |  | 
 |     Here's another way: | 
 |  | 
 |     The native long product x*y is either exactly right or *way* off, being | 
 |     just the last n bits of the true product, where n is the number of bits | 
 |     in a long (the delivered product is the true product plus i*2**n for | 
 |     some integer i). | 
 |  | 
 |     The native double product (double)x * (double)y is subject to three | 
 |     rounding errors:  on a sizeof(long)==8 box, each cast to double can lose | 
 |     info, and even on a sizeof(long)==4 box, the multiplication can lose info. | 
 |     But, unlike the native long product, it's not in *range* trouble:  even | 
 |     if sizeof(long)==32 (256-bit longs), the product easily fits in the | 
 |     dynamic range of a double.  So the leading 50 (or so) bits of the double | 
 |     product are correct. | 
 |  | 
 |     We check these two ways against each other, and declare victory if they're | 
 |     approximately the same.  Else, because the native long product is the only | 
 |     one that can lose catastrophic amounts of information, it's the native long | 
 |     product that must have overflowed. | 
 |  | 
 |     */ | 
 |  | 
 |     long longprod = (long)((unsigned long)a * b); | 
 |     double doubleprod = (double)a * (double)b; | 
 |     double doubled_longprod = (double)longprod; | 
 |  | 
 |     if (doubled_longprod == doubleprod) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     const double diff = doubled_longprod - doubleprod; | 
 |     const double absdiff = diff >= 0.0 ? diff : -diff; | 
 |     const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod; | 
 |  | 
 |     if (32.0 * absdiff <= absprod) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | math.prod | 
 |  | 
 |     iterable: object | 
 |     / | 
 |     * | 
 |     start: object(c_default="NULL") = 1 | 
 |  | 
 | Calculate the product of all the elements in the input iterable. | 
 |  | 
 | The default start value for the product is 1. | 
 |  | 
 | When the iterable is empty, return the start value.  This function is | 
 | intended specifically for use with numeric values and may reject | 
 | non-numeric types. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start) | 
 | /*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/ | 
 | { | 
 |     PyObject *result = start; | 
 |     PyObject *temp, *item, *iter; | 
 |  | 
 |     iter = PyObject_GetIter(iterable); | 
 |     if (iter == NULL) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (result == NULL) { | 
 |         result = _PyLong_GetOne(); | 
 |     } | 
 |     Py_INCREF(result); | 
 | #ifndef SLOW_PROD | 
 |     /* Fast paths for integers keeping temporary products in C. | 
 |      * Assumes all inputs are the same type. | 
 |      * If the assumption fails, default to use PyObjects instead. | 
 |     */ | 
 |     if (PyLong_CheckExact(result)) { | 
 |         int overflow; | 
 |         long i_result = PyLong_AsLongAndOverflow(result, &overflow); | 
 |         /* If this already overflowed, don't even enter the loop. */ | 
 |         if (overflow == 0) { | 
 |             Py_SETREF(result, NULL); | 
 |         } | 
 |         /* Loop over all the items in the iterable until we finish, we overflow | 
 |          * or we found a non integer element */ | 
 |         while (result == NULL) { | 
 |             item = PyIter_Next(iter); | 
 |             if (item == NULL) { | 
 |                 Py_DECREF(iter); | 
 |                 if (PyErr_Occurred()) { | 
 |                     return NULL; | 
 |                 } | 
 |                 return PyLong_FromLong(i_result); | 
 |             } | 
 |             if (PyLong_CheckExact(item)) { | 
 |                 long b = PyLong_AsLongAndOverflow(item, &overflow); | 
 |                 if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) { | 
 |                     long x = i_result * b; | 
 |                     i_result = x; | 
 |                     Py_DECREF(item); | 
 |                     continue; | 
 |                 } | 
 |             } | 
 |             /* Either overflowed or is not an int. | 
 |              * Restore real objects and process normally */ | 
 |             result = PyLong_FromLong(i_result); | 
 |             if (result == NULL) { | 
 |                 Py_DECREF(item); | 
 |                 Py_DECREF(iter); | 
 |                 return NULL; | 
 |             } | 
 |             temp = PyNumber_Multiply(result, item); | 
 |             Py_DECREF(result); | 
 |             Py_DECREF(item); | 
 |             result = temp; | 
 |             if (result == NULL) { | 
 |                 Py_DECREF(iter); | 
 |                 return NULL; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /* Fast paths for floats keeping temporary products in C. | 
 |      * Assumes all inputs are the same type. | 
 |      * If the assumption fails, default to use PyObjects instead. | 
 |     */ | 
 |     if (PyFloat_CheckExact(result)) { | 
 |         double f_result = PyFloat_AS_DOUBLE(result); | 
 |         Py_SETREF(result, NULL); | 
 |         while(result == NULL) { | 
 |             item = PyIter_Next(iter); | 
 |             if (item == NULL) { | 
 |                 Py_DECREF(iter); | 
 |                 if (PyErr_Occurred()) { | 
 |                     return NULL; | 
 |                 } | 
 |                 return PyFloat_FromDouble(f_result); | 
 |             } | 
 |             if (PyFloat_CheckExact(item)) { | 
 |                 f_result *= PyFloat_AS_DOUBLE(item); | 
 |                 Py_DECREF(item); | 
 |                 continue; | 
 |             } | 
 |             if (PyLong_CheckExact(item)) { | 
 |                 long value; | 
 |                 int overflow; | 
 |                 value = PyLong_AsLongAndOverflow(item, &overflow); | 
 |                 if (!overflow) { | 
 |                     f_result *= (double)value; | 
 |                     Py_DECREF(item); | 
 |                     continue; | 
 |                 } | 
 |             } | 
 |             result = PyFloat_FromDouble(f_result); | 
 |             if (result == NULL) { | 
 |                 Py_DECREF(item); | 
 |                 Py_DECREF(iter); | 
 |                 return NULL; | 
 |             } | 
 |             temp = PyNumber_Multiply(result, item); | 
 |             Py_DECREF(result); | 
 |             Py_DECREF(item); | 
 |             result = temp; | 
 |             if (result == NULL) { | 
 |                 Py_DECREF(iter); | 
 |                 return NULL; | 
 |             } | 
 |         } | 
 |     } | 
 | #endif | 
 |     /* Consume rest of the iterable (if any) that could not be handled | 
 |      * by specialized functions above.*/ | 
 |     for(;;) { | 
 |         item = PyIter_Next(iter); | 
 |         if (item == NULL) { | 
 |             /* error, or end-of-sequence */ | 
 |             if (PyErr_Occurred()) { | 
 |                 Py_SETREF(result, NULL); | 
 |             } | 
 |             break; | 
 |         } | 
 |         temp = PyNumber_Multiply(result, item); | 
 |         Py_DECREF(result); | 
 |         Py_DECREF(item); | 
 |         result = temp; | 
 |         if (result == NULL) | 
 |             break; | 
 |     } | 
 |     Py_DECREF(iter); | 
 |     return result; | 
 | } | 
 |  | 
 |  | 
 | /* least significant 64 bits of the odd part of factorial(n), for n in range(128). | 
 |  | 
 | Python code to generate the values: | 
 |  | 
 |     import math | 
 |  | 
 |     for n in range(128): | 
 |         fac = math.factorial(n) | 
 |         fac_odd_part = fac // (fac & -fac) | 
 |         reduced_fac_odd_part = fac_odd_part % (2**64) | 
 |         print(f"{reduced_fac_odd_part:#018x}u") | 
 | */ | 
 | static const uint64_t reduced_factorial_odd_part[] = { | 
 |     0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u, | 
 |     0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu, | 
 |     0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u, | 
 |     0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu, | 
 |     0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u, | 
 |     0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du, | 
 |     0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u, | 
 |     0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu, | 
 |     0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u, | 
 |     0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u, | 
 |     0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu, | 
 |     0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu, | 
 |     0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du, | 
 |     0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u, | 
 |     0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u, | 
 |     0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu, | 
 |     0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u, | 
 |     0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u, | 
 |     0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu, | 
 |     0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u, | 
 |     0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u, | 
 |     0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u, | 
 |     0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u, | 
 |     0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu, | 
 |     0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u, | 
 |     0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u, | 
 |     0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu, | 
 |     0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u, | 
 |     0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u, | 
 |     0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u, | 
 |     0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u, | 
 |     0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu, | 
 | }; | 
 |  | 
 | /* inverses of reduced_factorial_odd_part values modulo 2**64. | 
 |  | 
 | Python code to generate the values: | 
 |  | 
 |     import math | 
 |  | 
 |     for n in range(128): | 
 |         fac = math.factorial(n) | 
 |         fac_odd_part = fac // (fac & -fac) | 
 |         inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64) | 
 |         print(f"{inverted_fac_odd_part:#018x}u") | 
 | */ | 
 | static const uint64_t inverted_factorial_odd_part[] = { | 
 |     0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu, | 
 |     0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u, | 
 |     0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du, | 
 |     0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u, | 
 |     0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u, | 
 |     0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u, | 
 |     0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u, | 
 |     0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u, | 
 |     0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u, | 
 |     0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u, | 
 |     0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u, | 
 |     0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u, | 
 |     0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u, | 
 |     0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u, | 
 |     0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u, | 
 |     0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u, | 
 |     0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u, | 
 |     0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u, | 
 |     0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu, | 
 |     0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u, | 
 |     0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u, | 
 |     0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu, | 
 |     0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u, | 
 |     0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u, | 
 |     0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du, | 
 |     0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu, | 
 |     0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu, | 
 |     0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u, | 
 |     0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du, | 
 |     0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u, | 
 |     0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u, | 
 |     0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u, | 
 | }; | 
 |  | 
 | /* exponent of the largest power of 2 dividing factorial(n), for n in range(68) | 
 |  | 
 | Python code to generate the values: | 
 |  | 
 | import math | 
 |  | 
 | for n in range(128): | 
 |     fac = math.factorial(n) | 
 |     fac_trailing_zeros = (fac & -fac).bit_length() - 1 | 
 |     print(fac_trailing_zeros) | 
 | */ | 
 |  | 
 | static const uint8_t factorial_trailing_zeros[] = { | 
 |      0,  0,  1,  1,  3,  3,  4,  4,  7,  7,  8,  8, 10, 10, 11, 11,  //  0-15 | 
 |     15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26,  // 16-31 | 
 |     31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42,  // 32-47 | 
 |     46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57,  // 48-63 | 
 |     63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74,  // 64-79 | 
 |     78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89,  // 80-95 | 
 |     94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105,  // 96-111 | 
 |     109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120,  // 112-127 | 
 | }; | 
 |  | 
 | /* Number of permutations and combinations. | 
 |  * P(n, k) = n! / (n-k)! | 
 |  * C(n, k) = P(n, k) / k! | 
 |  */ | 
 |  | 
 | /* Calculate C(n, k) for n in the 63-bit range. */ | 
 | static PyObject * | 
 | perm_comb_small(unsigned long long n, unsigned long long k, int iscomb) | 
 | { | 
 |     if (k == 0) { | 
 |         return PyLong_FromLong(1); | 
 |     } | 
 |  | 
 |     /* For small enough n and k the result fits in the 64-bit range and can | 
 |      * be calculated without allocating intermediate PyLong objects. */ | 
 |     if (iscomb) { | 
 |         /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k) | 
 |          * fits into a uint64_t.  Exclude k = 1, because the second fast | 
 |          * path is faster for this case.*/ | 
 |         static const unsigned char fast_comb_limits1[] = { | 
 |             0, 0, 127, 127, 127, 127, 127, 127,  // 0-7 | 
 |             127, 127, 127, 127, 127, 127, 127, 127,  // 8-15 | 
 |             116, 105, 97, 91, 86, 82, 78, 76,  // 16-23 | 
 |             74, 72, 71, 70, 69, 68, 68, 67,  // 24-31 | 
 |             67, 67, 67,  // 32-34 | 
 |         }; | 
 |         if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) { | 
 |             /* | 
 |                 comb(n, k) fits into a uint64_t. We compute it as | 
 |  | 
 |                     comb_odd_part << shift | 
 |  | 
 |                 where 2**shift is the largest power of two dividing comb(n, k) | 
 |                 and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be | 
 |                 calculated efficiently via arithmetic modulo 2**64, using three | 
 |                 lookups and two uint64_t multiplications. | 
 |             */ | 
 |             uint64_t comb_odd_part = reduced_factorial_odd_part[n] | 
 |                                    * inverted_factorial_odd_part[k] | 
 |                                    * inverted_factorial_odd_part[n - k]; | 
 |             int shift = factorial_trailing_zeros[n] | 
 |                       - factorial_trailing_zeros[k] | 
 |                       - factorial_trailing_zeros[n - k]; | 
 |             return PyLong_FromUnsignedLongLong(comb_odd_part << shift); | 
 |         } | 
 |  | 
 |         /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k | 
 |          * fits into a long long (which is at least 64 bit).  Only contains | 
 |          * items larger than in fast_comb_limits1. */ | 
 |         static const unsigned long long fast_comb_limits2[] = { | 
 |             0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449,  // 0-7 | 
 |             746, 453, 308, 227, 178, 147,  // 8-13 | 
 |         }; | 
 |         if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) { | 
 |             /* C(n, k) = C(n, k-1) * (n-k+1) / k */ | 
 |             unsigned long long result = n; | 
 |             for (unsigned long long i = 1; i < k;) { | 
 |                 result *= --n; | 
 |                 result /= ++i; | 
 |             } | 
 |             return PyLong_FromUnsignedLongLong(result); | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* Maps k to the maximal n so that k <= n and P(n, k) | 
 |          * fits into a long long (which is at least 64 bit). */ | 
 |         static const unsigned long long fast_perm_limits[] = { | 
 |             0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568,  // 0-7 | 
 |             259, 142, 88, 61, 45, 36, 30, 26,  // 8-15 | 
 |             24, 22, 21, 20, 20,  // 16-20 | 
 |         }; | 
 |         if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) { | 
 |             if (n <= 127) { | 
 |                 /* P(n, k) fits into a uint64_t. */ | 
 |                 uint64_t perm_odd_part = reduced_factorial_odd_part[n] | 
 |                                        * inverted_factorial_odd_part[n - k]; | 
 |                 int shift = factorial_trailing_zeros[n] | 
 |                           - factorial_trailing_zeros[n - k]; | 
 |                 return PyLong_FromUnsignedLongLong(perm_odd_part << shift); | 
 |             } | 
 |  | 
 |             /* P(n, k) = P(n, k-1) * (n-k+1) */ | 
 |             unsigned long long result = n; | 
 |             for (unsigned long long i = 1; i < k;) { | 
 |                 result *= --n; | 
 |                 ++i; | 
 |             } | 
 |             return PyLong_FromUnsignedLongLong(result); | 
 |         } | 
 |     } | 
 |  | 
 |     /* For larger n use recursive formulas: | 
 |      * | 
 |      *   P(n, k) = P(n, j) * P(n-j, k-j) | 
 |      *   C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) | 
 |      */ | 
 |     unsigned long long j = k / 2; | 
 |     PyObject *a, *b; | 
 |     a = perm_comb_small(n, j, iscomb); | 
 |     if (a == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     b = perm_comb_small(n - j, k - j, iscomb); | 
 |     if (b == NULL) { | 
 |         goto error; | 
 |     } | 
 |     Py_SETREF(a, PyNumber_Multiply(a, b)); | 
 |     Py_DECREF(b); | 
 |     if (iscomb && a != NULL) { | 
 |         b = perm_comb_small(k, j, 1); | 
 |         if (b == NULL) { | 
 |             goto error; | 
 |         } | 
 |         Py_SETREF(a, PyNumber_FloorDivide(a, b)); | 
 |         Py_DECREF(b); | 
 |     } | 
 |     return a; | 
 |  | 
 | error: | 
 |     Py_DECREF(a); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* Calculate P(n, k) or C(n, k) using recursive formulas. | 
 |  * It is more efficient than sequential multiplication thanks to | 
 |  * Karatsuba multiplication. | 
 |  */ | 
 | static PyObject * | 
 | perm_comb(PyObject *n, unsigned long long k, int iscomb) | 
 | { | 
 |     if (k == 0) { | 
 |         return PyLong_FromLong(1); | 
 |     } | 
 |     if (k == 1) { | 
 |         return Py_NewRef(n); | 
 |     } | 
 |  | 
 |     /* P(n, k) = P(n, j) * P(n-j, k-j) */ | 
 |     /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */ | 
 |     unsigned long long j = k / 2; | 
 |     PyObject *a, *b; | 
 |     a = perm_comb(n, j, iscomb); | 
 |     if (a == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     PyObject *t = PyLong_FromUnsignedLongLong(j); | 
 |     if (t == NULL) { | 
 |         goto error; | 
 |     } | 
 |     n = PyNumber_Subtract(n, t); | 
 |     Py_DECREF(t); | 
 |     if (n == NULL) { | 
 |         goto error; | 
 |     } | 
 |     b = perm_comb(n, k - j, iscomb); | 
 |     Py_DECREF(n); | 
 |     if (b == NULL) { | 
 |         goto error; | 
 |     } | 
 |     Py_SETREF(a, PyNumber_Multiply(a, b)); | 
 |     Py_DECREF(b); | 
 |     if (iscomb && a != NULL) { | 
 |         b = perm_comb_small(k, j, 1); | 
 |         if (b == NULL) { | 
 |             goto error; | 
 |         } | 
 |         Py_SETREF(a, PyNumber_FloorDivide(a, b)); | 
 |         Py_DECREF(b); | 
 |     } | 
 |     return a; | 
 |  | 
 | error: | 
 |     Py_DECREF(a); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | math.perm | 
 |  | 
 |     n: object | 
 |     k: object = None | 
 |     / | 
 |  | 
 | Number of ways to choose k items from n items without repetition and with order. | 
 |  | 
 | Evaluates to n! / (n - k)! when k <= n and evaluates | 
 | to zero when k > n. | 
 |  | 
 | If k is not specified or is None, then k defaults to n | 
 | and the function returns n!. | 
 |  | 
 | Raises TypeError if either of the arguments are not integers. | 
 | Raises ValueError if either of the arguments are negative. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_perm_impl(PyObject *module, PyObject *n, PyObject *k) | 
 | /*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/ | 
 | { | 
 |     PyObject *result = NULL; | 
 |     int overflow, cmp; | 
 |     long long ki, ni; | 
 |  | 
 |     if (k == Py_None) { | 
 |         return math_factorial(module, n); | 
 |     } | 
 |     n = PyNumber_Index(n); | 
 |     if (n == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     k = PyNumber_Index(k); | 
 |     if (k == NULL) { | 
 |         Py_DECREF(n); | 
 |         return NULL; | 
 |     } | 
 |     assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); | 
 |  | 
 |     if (Py_SIZE(n) < 0) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "n must be a non-negative integer"); | 
 |         goto error; | 
 |     } | 
 |     if (Py_SIZE(k) < 0) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "k must be a non-negative integer"); | 
 |         goto error; | 
 |     } | 
 |  | 
 |     cmp = PyObject_RichCompareBool(n, k, Py_LT); | 
 |     if (cmp != 0) { | 
 |         if (cmp > 0) { | 
 |             result = PyLong_FromLong(0); | 
 |             goto done; | 
 |         } | 
 |         goto error; | 
 |     } | 
 |  | 
 |     ki = PyLong_AsLongLongAndOverflow(k, &overflow); | 
 |     assert(overflow >= 0 && !PyErr_Occurred()); | 
 |     if (overflow > 0) { | 
 |         PyErr_Format(PyExc_OverflowError, | 
 |                      "k must not exceed %lld", | 
 |                      LLONG_MAX); | 
 |         goto error; | 
 |     } | 
 |     assert(ki >= 0); | 
 |  | 
 |     ni = PyLong_AsLongLongAndOverflow(n, &overflow); | 
 |     assert(overflow >= 0 && !PyErr_Occurred()); | 
 |     if (!overflow && ki > 1) { | 
 |         assert(ni >= 0); | 
 |         result = perm_comb_small((unsigned long long)ni, | 
 |                                  (unsigned long long)ki, 0); | 
 |     } | 
 |     else { | 
 |         result = perm_comb(n, (unsigned long long)ki, 0); | 
 |     } | 
 |  | 
 | done: | 
 |     Py_DECREF(n); | 
 |     Py_DECREF(k); | 
 |     return result; | 
 |  | 
 | error: | 
 |     Py_DECREF(n); | 
 |     Py_DECREF(k); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | math.comb | 
 |  | 
 |     n: object | 
 |     k: object | 
 |     / | 
 |  | 
 | Number of ways to choose k items from n items without repetition and without order. | 
 |  | 
 | Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates | 
 | to zero when k > n. | 
 |  | 
 | Also called the binomial coefficient because it is equivalent | 
 | to the coefficient of k-th term in polynomial expansion of the | 
 | expression (1 + x)**n. | 
 |  | 
 | Raises TypeError if either of the arguments are not integers. | 
 | Raises ValueError if either of the arguments are negative. | 
 |  | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | 
 | /*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/ | 
 | { | 
 |     PyObject *result = NULL, *temp; | 
 |     int overflow, cmp; | 
 |     long long ki, ni; | 
 |  | 
 |     n = PyNumber_Index(n); | 
 |     if (n == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     k = PyNumber_Index(k); | 
 |     if (k == NULL) { | 
 |         Py_DECREF(n); | 
 |         return NULL; | 
 |     } | 
 |     assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); | 
 |  | 
 |     if (Py_SIZE(n) < 0) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "n must be a non-negative integer"); | 
 |         goto error; | 
 |     } | 
 |     if (Py_SIZE(k) < 0) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "k must be a non-negative integer"); | 
 |         goto error; | 
 |     } | 
 |  | 
 |     ni = PyLong_AsLongLongAndOverflow(n, &overflow); | 
 |     assert(overflow >= 0 && !PyErr_Occurred()); | 
 |     if (!overflow) { | 
 |         assert(ni >= 0); | 
 |         ki = PyLong_AsLongLongAndOverflow(k, &overflow); | 
 |         assert(overflow >= 0 && !PyErr_Occurred()); | 
 |         if (overflow || ki > ni) { | 
 |             result = PyLong_FromLong(0); | 
 |             goto done; | 
 |         } | 
 |         assert(ki >= 0); | 
 |  | 
 |         ki = Py_MIN(ki, ni - ki); | 
 |         if (ki > 1) { | 
 |             result = perm_comb_small((unsigned long long)ni, | 
 |                                      (unsigned long long)ki, 1); | 
 |             goto done; | 
 |         } | 
 |         /* For k == 1 just return the original n in perm_comb(). */ | 
 |     } | 
 |     else { | 
 |         /* k = min(k, n - k) */ | 
 |         temp = PyNumber_Subtract(n, k); | 
 |         if (temp == NULL) { | 
 |             goto error; | 
 |         } | 
 |         if (Py_SIZE(temp) < 0) { | 
 |             Py_DECREF(temp); | 
 |             result = PyLong_FromLong(0); | 
 |             goto done; | 
 |         } | 
 |         cmp = PyObject_RichCompareBool(temp, k, Py_LT); | 
 |         if (cmp > 0) { | 
 |             Py_SETREF(k, temp); | 
 |         } | 
 |         else { | 
 |             Py_DECREF(temp); | 
 |             if (cmp < 0) { | 
 |                 goto error; | 
 |             } | 
 |         } | 
 |  | 
 |         ki = PyLong_AsLongLongAndOverflow(k, &overflow); | 
 |         assert(overflow >= 0 && !PyErr_Occurred()); | 
 |         if (overflow) { | 
 |             PyErr_Format(PyExc_OverflowError, | 
 |                          "min(n - k, k) must not exceed %lld", | 
 |                          LLONG_MAX); | 
 |             goto error; | 
 |         } | 
 |         assert(ki >= 0); | 
 |     } | 
 |  | 
 |     result = perm_comb(n, (unsigned long long)ki, 1); | 
 |  | 
 | done: | 
 |     Py_DECREF(n); | 
 |     Py_DECREF(k); | 
 |     return result; | 
 |  | 
 | error: | 
 |     Py_DECREF(n); | 
 |     Py_DECREF(k); | 
 |     return NULL; | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.nextafter | 
 |  | 
 |     x: double | 
 |     y: double | 
 |     / | 
 |  | 
 | Return the next floating-point value after x towards y. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | math_nextafter_impl(PyObject *module, double x, double y) | 
 | /*[clinic end generated code: output=750c8266c1c540ce input=02b2d50cd1d9f9b6]*/ | 
 | { | 
 | #if defined(_AIX) | 
 |     if (x == y) { | 
 |         /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0. | 
 |            Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */ | 
 |         return PyFloat_FromDouble(y); | 
 |     } | 
 |     if (Py_IS_NAN(x)) { | 
 |         return PyFloat_FromDouble(x); | 
 |     } | 
 |     if (Py_IS_NAN(y)) { | 
 |         return PyFloat_FromDouble(y); | 
 |     } | 
 | #endif | 
 |     return PyFloat_FromDouble(nextafter(x, y)); | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | math.ulp -> double | 
 |  | 
 |     x: double | 
 |     / | 
 |  | 
 | Return the value of the least significant bit of the float x. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static double | 
 | math_ulp_impl(PyObject *module, double x) | 
 | /*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/ | 
 | { | 
 |     if (Py_IS_NAN(x)) { | 
 |         return x; | 
 |     } | 
 |     x = fabs(x); | 
 |     if (Py_IS_INFINITY(x)) { | 
 |         return x; | 
 |     } | 
 |     double inf = m_inf(); | 
 |     double x2 = nextafter(x, inf); | 
 |     if (Py_IS_INFINITY(x2)) { | 
 |         /* special case: x is the largest positive representable float */ | 
 |         x2 = nextafter(x, -inf); | 
 |         return x - x2; | 
 |     } | 
 |     return x2 - x; | 
 | } | 
 |  | 
 | static int | 
 | math_exec(PyObject *module) | 
 | { | 
 |  | 
 |     math_module_state *state = get_math_module_state(module); | 
 |     state->str___ceil__ = PyUnicode_InternFromString("__ceil__"); | 
 |     if (state->str___ceil__ == NULL) { | 
 |         return -1; | 
 |     } | 
 |     state->str___floor__ = PyUnicode_InternFromString("__floor__"); | 
 |     if (state->str___floor__ == NULL) { | 
 |         return -1; | 
 |     } | 
 |     state->str___trunc__ = PyUnicode_InternFromString("__trunc__"); | 
 |     if (state->str___trunc__ == NULL) { | 
 |         return -1; | 
 |     } | 
 |     if (PyModule_AddObject(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) { | 
 |         return -1; | 
 |     } | 
 |     if (PyModule_AddObject(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) { | 
 |         return -1; | 
 |     } | 
 |     // 2pi | 
 |     if (PyModule_AddObject(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) { | 
 |         return -1; | 
 |     } | 
 |     if (PyModule_AddObject(module, "inf", PyFloat_FromDouble(m_inf())) < 0) { | 
 |         return -1; | 
 |     } | 
 | #if _PY_SHORT_FLOAT_REPR == 1 | 
 |     if (PyModule_AddObject(module, "nan", PyFloat_FromDouble(m_nan())) < 0) { | 
 |         return -1; | 
 |     } | 
 | #endif | 
 |     return 0; | 
 | } | 
 |  | 
 | static int | 
 | math_clear(PyObject *module) | 
 | { | 
 |     math_module_state *state = get_math_module_state(module); | 
 |     Py_CLEAR(state->str___ceil__); | 
 |     Py_CLEAR(state->str___floor__); | 
 |     Py_CLEAR(state->str___trunc__); | 
 |     return 0; | 
 | } | 
 |  | 
 | static void | 
 | math_free(void *module) | 
 | { | 
 |     math_clear((PyObject *)module); | 
 | } | 
 |  | 
 | static PyMethodDef math_methods[] = { | 
 |     {"acos",            math_acos,      METH_O,         math_acos_doc}, | 
 |     {"acosh",           math_acosh,     METH_O,         math_acosh_doc}, | 
 |     {"asin",            math_asin,      METH_O,         math_asin_doc}, | 
 |     {"asinh",           math_asinh,     METH_O,         math_asinh_doc}, | 
 |     {"atan",            math_atan,      METH_O,         math_atan_doc}, | 
 |     {"atan2",           _PyCFunction_CAST(math_atan2),     METH_FASTCALL,  math_atan2_doc}, | 
 |     {"atanh",           math_atanh,     METH_O,         math_atanh_doc}, | 
 |     {"cbrt",            math_cbrt,      METH_O,         math_cbrt_doc}, | 
 |     MATH_CEIL_METHODDEF | 
 |     {"copysign",        _PyCFunction_CAST(math_copysign),  METH_FASTCALL,  math_copysign_doc}, | 
 |     {"cos",             math_cos,       METH_O,         math_cos_doc}, | 
 |     {"cosh",            math_cosh,      METH_O,         math_cosh_doc}, | 
 |     MATH_DEGREES_METHODDEF | 
 |     MATH_DIST_METHODDEF | 
 |     {"erf",             math_erf,       METH_O,         math_erf_doc}, | 
 |     {"erfc",            math_erfc,      METH_O,         math_erfc_doc}, | 
 |     {"exp",             math_exp,       METH_O,         math_exp_doc}, | 
 |     {"exp2",            math_exp2,      METH_O,         math_exp2_doc}, | 
 |     {"expm1",           math_expm1,     METH_O,         math_expm1_doc}, | 
 |     {"fabs",            math_fabs,      METH_O,         math_fabs_doc}, | 
 |     MATH_FACTORIAL_METHODDEF | 
 |     MATH_FLOOR_METHODDEF | 
 |     MATH_FMOD_METHODDEF | 
 |     MATH_FREXP_METHODDEF | 
 |     MATH_FSUM_METHODDEF | 
 |     {"gamma",           math_gamma,     METH_O,         math_gamma_doc}, | 
 |     {"gcd",             _PyCFunction_CAST(math_gcd),       METH_FASTCALL,  math_gcd_doc}, | 
 |     {"hypot",           _PyCFunction_CAST(math_hypot),     METH_FASTCALL,  math_hypot_doc}, | 
 |     MATH_ISCLOSE_METHODDEF | 
 |     MATH_ISFINITE_METHODDEF | 
 |     MATH_ISINF_METHODDEF | 
 |     MATH_ISNAN_METHODDEF | 
 |     MATH_ISQRT_METHODDEF | 
 |     {"lcm",             _PyCFunction_CAST(math_lcm),       METH_FASTCALL,  math_lcm_doc}, | 
 |     MATH_LDEXP_METHODDEF | 
 |     {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc}, | 
 |     MATH_LOG_METHODDEF | 
 |     {"log1p",           math_log1p,     METH_O,         math_log1p_doc}, | 
 |     MATH_LOG10_METHODDEF | 
 |     MATH_LOG2_METHODDEF | 
 |     MATH_MODF_METHODDEF | 
 |     MATH_POW_METHODDEF | 
 |     MATH_RADIANS_METHODDEF | 
 |     {"remainder",       _PyCFunction_CAST(math_remainder), METH_FASTCALL,  math_remainder_doc}, | 
 |     {"sin",             math_sin,       METH_O,         math_sin_doc}, | 
 |     {"sinh",            math_sinh,      METH_O,         math_sinh_doc}, | 
 |     {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc}, | 
 |     {"tan",             math_tan,       METH_O,         math_tan_doc}, | 
 |     {"tanh",            math_tanh,      METH_O,         math_tanh_doc}, | 
 |     MATH_SUMPROD_METHODDEF | 
 |     MATH_TRUNC_METHODDEF | 
 |     MATH_PROD_METHODDEF | 
 |     MATH_PERM_METHODDEF | 
 |     MATH_COMB_METHODDEF | 
 |     MATH_NEXTAFTER_METHODDEF | 
 |     MATH_ULP_METHODDEF | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 | static PyModuleDef_Slot math_slots[] = { | 
 |     {Py_mod_exec, math_exec}, | 
 |     {0, NULL} | 
 | }; | 
 |  | 
 | PyDoc_STRVAR(module_doc, | 
 | "This module provides access to the mathematical functions\n" | 
 | "defined by the C standard."); | 
 |  | 
 | static struct PyModuleDef mathmodule = { | 
 |     PyModuleDef_HEAD_INIT, | 
 |     .m_name = "math", | 
 |     .m_doc = module_doc, | 
 |     .m_size = sizeof(math_module_state), | 
 |     .m_methods = math_methods, | 
 |     .m_slots = math_slots, | 
 |     .m_clear = math_clear, | 
 |     .m_free = math_free, | 
 | }; | 
 |  | 
 | PyMODINIT_FUNC | 
 | PyInit_math(void) | 
 | { | 
 |     return PyModuleDef_Init(&mathmodule); | 
 | } |