| """ |
| List sort performance test. |
| |
| To install `pyperf` you would need to: |
| |
| python3 -m pip install pyperf |
| |
| To run: |
| |
| python3 Tools/scripts/sortperf |
| |
| Options: |
| |
| * `benchmark` name to run |
| * `--rnd-seed` to set random seed |
| * `--size` to set the sorted list size |
| |
| Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py |
| """ |
| |
| from __future__ import annotations |
| |
| import argparse |
| import time |
| import random |
| |
| |
| # =============== |
| # Data generation |
| # =============== |
| |
| def _random_data(size: int, rand: random.Random) -> list[float]: |
| result = [rand.random() for _ in range(size)] |
| # Shuffle it a bit... |
| for i in range(10): |
| i = rand.randrange(size) |
| temp = result[:i] |
| del result[:i] |
| temp.reverse() |
| result.extend(temp) |
| del temp |
| assert len(result) == size |
| return result |
| |
| |
| def list_sort(size: int, rand: random.Random) -> list[float]: |
| return _random_data(size, rand) |
| |
| |
| def list_sort_descending(size: int, rand: random.Random) -> list[float]: |
| return list(reversed(list_sort_ascending(size, rand))) |
| |
| |
| def list_sort_ascending(size: int, rand: random.Random) -> list[float]: |
| return sorted(_random_data(size, rand)) |
| |
| |
| def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]: |
| result = list_sort_ascending(size, rand) |
| # Do 3 random exchanges. |
| for _ in range(3): |
| i1 = rand.randrange(size) |
| i2 = rand.randrange(size) |
| result[i1], result[i2] = result[i2], result[i1] |
| return result |
| |
| |
| def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]: |
| assert size >= 10, "This benchmark requires size to be >= 10" |
| result = list_sort_ascending(size, rand) |
| # Replace the last 10 with random floats. |
| result[-10:] = [rand.random() for _ in range(10)] |
| return result |
| |
| |
| def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]: |
| result = list_sort_ascending(size, rand) |
| # Replace 1% of the elements at random. |
| for _ in range(size // 100): |
| result[rand.randrange(size)] = rand.random() |
| return result |
| |
| |
| def list_sort_duplicates(size: int, rand: random.Random) -> list[float]: |
| assert size >= 4 |
| result = list_sort_ascending(4, rand) |
| # Arrange for lots of duplicates. |
| result = result * (size // 4) |
| # Force the elements to be distinct objects, else timings can be |
| # artificially low. |
| return list(map(abs, result)) |
| |
| |
| def list_sort_equal(size: int, rand: random.Random) -> list[float]: |
| # All equal. Again, force the elements to be distinct objects. |
| return list(map(abs, [-0.519012] * size)) |
| |
| |
| def list_sort_worst_case(size: int, rand: random.Random) -> list[float]: |
| # This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case |
| # for an older implementation of quicksort, which used the median |
| # of the first, last and middle elements as the pivot. |
| half = size // 2 |
| result = list(range(half - 1, -1, -1)) |
| result.extend(range(half)) |
| # Force to float, so that the timings are comparable. This is |
| # significantly faster if we leave them as ints. |
| return list(map(float, result)) |
| |
| |
| # ========= |
| # Benchmark |
| # ========= |
| |
| class Benchmark: |
| def __init__(self, name: str, size: int, seed: int) -> None: |
| self._name = name |
| self._size = size |
| self._seed = seed |
| self._random = random.Random(self._seed) |
| |
| def run(self, loops: int) -> float: |
| all_data = self._prepare_data(loops) |
| start = time.perf_counter() |
| |
| for data in all_data: |
| data.sort() # Benching this method! |
| |
| return time.perf_counter() - start |
| |
| def _prepare_data(self, loops: int) -> list[float]: |
| bench = BENCHMARKS[self._name] |
| data = bench(self._size, self._random) |
| return [data.copy() for _ in range(loops)] |
| |
| |
| def add_cmdline_args(cmd: list[str], args) -> None: |
| if args.benchmark: |
| cmd.append(args.benchmark) |
| cmd.append(f"--size={args.size}") |
| cmd.append(f"--rng-seed={args.rng_seed}") |
| |
| |
| def add_parser_args(parser: argparse.ArgumentParser) -> None: |
| parser.add_argument( |
| "benchmark", |
| choices=BENCHMARKS, |
| nargs="?", |
| help="Can be any of: {0}".format(", ".join(BENCHMARKS)), |
| ) |
| parser.add_argument( |
| "--size", |
| type=int, |
| default=DEFAULT_SIZE, |
| help=f"Size of the lists to sort (default: {DEFAULT_SIZE})", |
| ) |
| parser.add_argument( |
| "--rng-seed", |
| type=int, |
| default=DEFAULT_RANDOM_SEED, |
| help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})", |
| ) |
| |
| |
| DEFAULT_SIZE = 1 << 14 |
| DEFAULT_RANDOM_SEED = 0 |
| BENCHMARKS = { |
| "list_sort": list_sort, |
| "list_sort_descending": list_sort_descending, |
| "list_sort_ascending": list_sort_ascending, |
| "list_sort_ascending_exchanged": list_sort_ascending_exchanged, |
| "list_sort_ascending_random": list_sort_ascending_random, |
| "list_sort_ascending_one_percent": list_sort_ascending_one_percent, |
| "list_sort_duplicates": list_sort_duplicates, |
| "list_sort_equal": list_sort_equal, |
| "list_sort_worst_case": list_sort_worst_case, |
| } |
| |
| if __name__ == "__main__": |
| # This needs `pyperf` 3rd party library: |
| import pyperf |
| |
| runner = pyperf.Runner(add_cmdline_args=add_cmdline_args) |
| add_parser_args(runner.argparser) |
| args = runner.parse_args() |
| |
| runner.metadata["description"] = "Test `list.sort()` with different data" |
| runner.metadata["list_sort_size"] = args.size |
| runner.metadata["list_sort_random_seed"] = args.rng_seed |
| |
| if args.benchmark: |
| benchmarks = (args.benchmark,) |
| else: |
| benchmarks = sorted(BENCHMARKS) |
| for bench in benchmarks: |
| benchmark = Benchmark(bench, args.size, args.rng_seed) |
| runner.bench_time_func(bench, benchmark.run) |