blob: 18cc2f30ce559b54687e073c8a74cfbc1dde249f [file] [log] [blame]
import enum
import doctest
import inspect
import os
import pydoc
import sys
import unittest
import threading
import builtins as bltns
from collections import OrderedDict
from datetime import date
from enum import Enum, IntEnum, StrEnum, EnumType, Flag, IntFlag, unique, auto
from enum import STRICT, CONFORM, EJECT, KEEP, _simple_enum, _test_simple_enum
from enum import verify, UNIQUE, CONTINUOUS, NAMED_FLAGS, ReprEnum
from io import StringIO
from pickle import dumps, loads, PicklingError, HIGHEST_PROTOCOL
from test import support
from test.support import ALWAYS_EQ
from test.support import threading_helper
from textwrap import dedent
from datetime import timedelta
python_version = sys.version_info[:2]
def load_tests(loader, tests, ignore):
tests.addTests(doctest.DocTestSuite(enum))
if os.path.exists('Doc/library/enum.rst'):
tests.addTests(doctest.DocFileSuite(
'../../Doc/library/enum.rst',
optionflags=doctest.ELLIPSIS|doctest.NORMALIZE_WHITESPACE,
))
return tests
MODULE = __name__
SHORT_MODULE = MODULE.split('.')[-1]
# for pickle tests
try:
class Stooges(Enum):
LARRY = 1
CURLY = 2
MOE = 3
except Exception as exc:
Stooges = exc
try:
class IntStooges(int, Enum):
LARRY = 1
CURLY = 2
MOE = 3
except Exception as exc:
IntStooges = exc
try:
class FloatStooges(float, Enum):
LARRY = 1.39
CURLY = 2.72
MOE = 3.142596
except Exception as exc:
FloatStooges = exc
try:
class FlagStooges(Flag):
LARRY = 1
CURLY = 2
MOE = 3
except Exception as exc:
FlagStooges = exc
# for pickle test and subclass tests
class Name(StrEnum):
BDFL = 'Guido van Rossum'
FLUFL = 'Barry Warsaw'
try:
Question = Enum('Question', 'who what when where why', module=__name__)
except Exception as exc:
Question = exc
try:
Answer = Enum('Answer', 'him this then there because')
except Exception as exc:
Answer = exc
try:
Theory = Enum('Theory', 'rule law supposition', qualname='spanish_inquisition')
except Exception as exc:
Theory = exc
# for doctests
try:
class Fruit(Enum):
TOMATO = 1
BANANA = 2
CHERRY = 3
except Exception:
pass
def test_pickle_dump_load(assertion, source, target=None):
if target is None:
target = source
for protocol in range(HIGHEST_PROTOCOL + 1):
assertion(loads(dumps(source, protocol=protocol)), target)
def test_pickle_exception(assertion, exception, obj):
for protocol in range(HIGHEST_PROTOCOL + 1):
with assertion(exception):
dumps(obj, protocol=protocol)
class TestHelpers(unittest.TestCase):
# _is_descriptor, _is_sunder, _is_dunder
sunder_names = '_bad_', '_good_', '_what_ho_'
dunder_names = '__mal__', '__bien__', '__que_que__'
private_names = '_MyEnum__private', '_MyEnum__still_private'
private_and_sunder_names = '_MyEnum__private_', '_MyEnum__also_private_'
random_names = 'okay', '_semi_private', '_weird__', '_MyEnum__'
def test_is_descriptor(self):
class foo:
pass
for attr in ('__get__','__set__','__delete__'):
obj = foo()
self.assertFalse(enum._is_descriptor(obj))
setattr(obj, attr, 1)
self.assertTrue(enum._is_descriptor(obj))
def test_sunder(self):
for name in self.sunder_names + self.private_and_sunder_names:
self.assertTrue(enum._is_sunder(name), '%r is a not sunder name?' % name)
for name in self.dunder_names + self.private_names + self.random_names:
self.assertFalse(enum._is_sunder(name), '%r is a sunder name?' % name)
for s in ('_a_', '_aa_'):
self.assertTrue(enum._is_sunder(s))
for s in ('a', 'a_', '_a', '__a', 'a__', '__a__', '_a__', '__a_', '_',
'__', '___', '____', '_____',):
self.assertFalse(enum._is_sunder(s))
def test_dunder(self):
for name in self.dunder_names:
self.assertTrue(enum._is_dunder(name), '%r is a not dunder name?' % name)
for name in self.sunder_names + self.private_names + self.private_and_sunder_names + self.random_names:
self.assertFalse(enum._is_dunder(name), '%r is a dunder name?' % name)
for s in ('__a__', '__aa__'):
self.assertTrue(enum._is_dunder(s))
for s in ('a', 'a_', '_a', '__a', 'a__', '_a_', '_a__', '__a_', '_',
'__', '___', '____', '_____',):
self.assertFalse(enum._is_dunder(s))
def test_is_private(self):
for name in self.private_names + self.private_and_sunder_names:
self.assertTrue(enum._is_private('MyEnum', name), '%r is a not private name?')
for name in self.sunder_names + self.dunder_names + self.random_names:
self.assertFalse(enum._is_private('MyEnum', name), '%r is a private name?')
# for subclassing tests
class classproperty:
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:
doc = fget.__doc__
self.__doc__ = doc
def __get__(self, instance, ownerclass):
return self.fget(ownerclass)
# for global repr tests
@enum.global_enum
class HeadlightsK(IntFlag, boundary=enum.KEEP):
OFF_K = 0
LOW_BEAM_K = auto()
HIGH_BEAM_K = auto()
FOG_K = auto()
@enum.global_enum
class HeadlightsC(IntFlag, boundary=enum.CONFORM):
OFF_C = 0
LOW_BEAM_C = auto()
HIGH_BEAM_C = auto()
FOG_C = auto()
# tests
class _EnumTests:
"""
Test for behavior that is the same across the different types of enumerations.
"""
values = None
def setUp(self):
class BaseEnum(self.enum_type):
@enum.property
def first(self):
return '%s is first!' % self.name
class MainEnum(BaseEnum):
first = auto()
second = auto()
third = auto()
if issubclass(self.enum_type, Flag):
dupe = 3
else:
dupe = third
self.MainEnum = MainEnum
#
class NewStrEnum(self.enum_type):
def __str__(self):
return self.name.upper()
first = auto()
self.NewStrEnum = NewStrEnum
#
class NewFormatEnum(self.enum_type):
def __format__(self, spec):
return self.name.upper()
first = auto()
self.NewFormatEnum = NewFormatEnum
#
class NewStrFormatEnum(self.enum_type):
def __str__(self):
return self.name.title()
def __format__(self, spec):
return ''.join(reversed(self.name))
first = auto()
self.NewStrFormatEnum = NewStrFormatEnum
#
class NewBaseEnum(self.enum_type):
def __str__(self):
return self.name.title()
def __format__(self, spec):
return ''.join(reversed(self.name))
class NewSubEnum(NewBaseEnum):
first = auto()
self.NewSubEnum = NewSubEnum
#
self.is_flag = False
self.names = ['first', 'second', 'third']
if issubclass(MainEnum, StrEnum):
self.values = self.names
elif MainEnum._member_type_ is str:
self.values = ['1', '2', '3']
elif issubclass(self.enum_type, Flag):
self.values = [1, 2, 4]
self.is_flag = True
self.dupe2 = MainEnum(5)
else:
self.values = self.values or [1, 2, 3]
#
if not getattr(self, 'source_values', False):
self.source_values = self.values
def assertFormatIsValue(self, spec, member):
self.assertEqual(spec.format(member), spec.format(member.value))
def assertFormatIsStr(self, spec, member):
self.assertEqual(spec.format(member), spec.format(str(member)))
def test_attribute_deletion(self):
class Season(self.enum_type):
SPRING = auto()
SUMMER = auto()
AUTUMN = auto()
#
def spam(cls):
pass
#
self.assertTrue(hasattr(Season, 'spam'))
del Season.spam
self.assertFalse(hasattr(Season, 'spam'))
#
with self.assertRaises(AttributeError):
del Season.SPRING
with self.assertRaises(AttributeError):
del Season.DRY
with self.assertRaises(AttributeError):
del Season.SPRING.name
def test_basics(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(repr(TE), "<flag 'MainEnum'>")
self.assertEqual(str(TE), "<flag 'MainEnum'>")
self.assertEqual(format(TE), "<flag 'MainEnum'>")
self.assertTrue(TE(5) is self.dupe2)
else:
self.assertEqual(repr(TE), "<enum 'MainEnum'>")
self.assertEqual(str(TE), "<enum 'MainEnum'>")
self.assertEqual(format(TE), "<enum 'MainEnum'>")
self.assertEqual(list(TE), [TE.first, TE.second, TE.third])
self.assertEqual(
[m.name for m in TE],
self.names,
)
self.assertEqual(
[m.value for m in TE],
self.values,
)
self.assertEqual(
[m.first for m in TE],
['first is first!', 'second is first!', 'third is first!']
)
for member, name in zip(TE, self.names, strict=True):
self.assertIs(TE[name], member)
for member, value in zip(TE, self.values, strict=True):
self.assertIs(TE(value), member)
if issubclass(TE, StrEnum):
self.assertTrue(TE.dupe is TE('third') is TE['dupe'])
elif TE._member_type_ is str:
self.assertTrue(TE.dupe is TE('3') is TE['dupe'])
elif issubclass(TE, Flag):
self.assertTrue(TE.dupe is TE(3) is TE['dupe'])
else:
self.assertTrue(TE.dupe is TE(self.values[2]) is TE['dupe'])
def test_bool_is_true(self):
class Empty(self.enum_type):
pass
self.assertTrue(Empty)
#
self.assertTrue(self.MainEnum)
for member in self.MainEnum:
self.assertTrue(member)
def test_changing_member_fails(self):
MainEnum = self.MainEnum
with self.assertRaises(AttributeError):
self.MainEnum.second = 'really first'
@unittest.skipIf(
python_version >= (3, 12),
'__contains__ now returns True/False for all inputs',
)
def test_contains_er(self):
MainEnum = self.MainEnum
self.assertIn(MainEnum.third, MainEnum)
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
self.source_values[1] in MainEnum
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
'first' in MainEnum
val = MainEnum.dupe
self.assertIn(val, MainEnum)
#
class OtherEnum(Enum):
one = auto()
two = auto()
self.assertNotIn(OtherEnum.two, MainEnum)
@unittest.skipIf(
python_version < (3, 12),
'__contains__ works only with enum memmbers before 3.12',
)
def test_contains_tf(self):
MainEnum = self.MainEnum
self.assertIn(MainEnum.first, MainEnum)
self.assertTrue(self.source_values[0] in MainEnum)
self.assertFalse('first' in MainEnum)
val = MainEnum.dupe
self.assertIn(val, MainEnum)
#
class OtherEnum(Enum):
one = auto()
two = auto()
self.assertNotIn(OtherEnum.two, MainEnum)
def test_dir_on_class(self):
TE = self.MainEnum
self.assertEqual(set(dir(TE)), set(enum_dir(TE)))
def test_dir_on_item(self):
TE = self.MainEnum
self.assertEqual(set(dir(TE.first)), set(member_dir(TE.first)))
def test_dir_with_added_behavior(self):
class Test(self.enum_type):
this = auto()
these = auto()
def wowser(self):
return ("Wowser! I'm %s!" % self.name)
self.assertTrue('wowser' not in dir(Test))
self.assertTrue('wowser' in dir(Test.this))
def test_dir_on_sub_with_behavior_on_super(self):
# see issue22506
class SuperEnum(self.enum_type):
def invisible(self):
return "did you see me?"
class SubEnum(SuperEnum):
sample = auto()
self.assertTrue('invisible' not in dir(SubEnum))
self.assertTrue('invisible' in dir(SubEnum.sample))
def test_dir_on_sub_with_behavior_including_instance_dict_on_super(self):
# see issue40084
class SuperEnum(self.enum_type):
def __new__(cls, *value, **kwds):
new = self.enum_type._member_type_.__new__
if self.enum_type._member_type_ is object:
obj = new(cls)
else:
if isinstance(value[0], tuple):
create_value ,= value[0]
else:
create_value = value
obj = new(cls, *create_value)
obj._value_ = value[0] if len(value) == 1 else value
obj.description = 'test description'
return obj
class SubEnum(SuperEnum):
sample = self.source_values[1]
self.assertTrue('description' not in dir(SubEnum))
self.assertTrue('description' in dir(SubEnum.sample), dir(SubEnum.sample))
def test_enum_in_enum_out(self):
Main = self.MainEnum
self.assertIs(Main(Main.first), Main.first)
def test_hash(self):
MainEnum = self.MainEnum
mapping = {}
mapping[MainEnum.first] = '1225'
mapping[MainEnum.second] = '0315'
mapping[MainEnum.third] = '0704'
self.assertEqual(mapping[MainEnum.second], '0315')
def test_invalid_names(self):
with self.assertRaises(ValueError):
class Wrong(self.enum_type):
mro = 9
with self.assertRaises(ValueError):
class Wrong(self.enum_type):
_create_= 11
with self.assertRaises(ValueError):
class Wrong(self.enum_type):
_get_mixins_ = 9
with self.assertRaises(ValueError):
class Wrong(self.enum_type):
_find_new_ = 1
with self.assertRaises(ValueError):
class Wrong(self.enum_type):
_any_name_ = 9
def test_object_str_override(self):
"check that setting __str__ to object's is not reset to Enum's"
class Generic(self.enum_type):
item = self.source_values[2]
def __repr__(self):
return "%s.test" % (self._name_, )
__str__ = object.__str__
self.assertEqual(str(Generic.item), 'item.test')
def test_overridden_str(self):
NS = self.NewStrEnum
self.assertEqual(str(NS.first), NS.first.name.upper())
self.assertEqual(format(NS.first), NS.first.name.upper())
def test_overridden_str_format(self):
NSF = self.NewStrFormatEnum
self.assertEqual(str(NSF.first), NSF.first.name.title())
self.assertEqual(format(NSF.first), ''.join(reversed(NSF.first.name)))
def test_overridden_str_format_inherited(self):
NSE = self.NewSubEnum
self.assertEqual(str(NSE.first), NSE.first.name.title())
self.assertEqual(format(NSE.first), ''.join(reversed(NSE.first.name)))
def test_programmatic_function_string(self):
MinorEnum = self.enum_type('MinorEnum', 'june july august')
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
values = self.values
if self.enum_type is StrEnum:
values = ['june','july','august']
for month, av in zip('june july august'.split(), values):
e = MinorEnum[month]
self.assertEqual(e.value, av, list(MinorEnum))
self.assertEqual(e.name, month)
if MinorEnum._member_type_ is not object and issubclass(MinorEnum, MinorEnum._member_type_):
self.assertEqual(e, av)
else:
self.assertNotEqual(e, av)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
self.assertIs(e, MinorEnum(av))
def test_programmatic_function_string_list(self):
MinorEnum = self.enum_type('MinorEnum', ['june', 'july', 'august'])
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
values = self.values
if self.enum_type is StrEnum:
values = ['june','july','august']
for month, av in zip('june july august'.split(), values):
e = MinorEnum[month]
self.assertEqual(e.value, av)
self.assertEqual(e.name, month)
if MinorEnum._member_type_ is not object and issubclass(MinorEnum, MinorEnum._member_type_):
self.assertEqual(e, av)
else:
self.assertNotEqual(e, av)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
self.assertIs(e, MinorEnum(av))
def test_programmatic_function_iterable(self):
MinorEnum = self.enum_type(
'MinorEnum',
(('june', self.source_values[0]), ('july', self.source_values[1]), ('august', self.source_values[2]))
)
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for month, av in zip('june july august'.split(), self.values):
e = MinorEnum[month]
self.assertEqual(e.value, av)
self.assertEqual(e.name, month)
if MinorEnum._member_type_ is not object and issubclass(MinorEnum, MinorEnum._member_type_):
self.assertEqual(e, av)
else:
self.assertNotEqual(e, av)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
self.assertIs(e, MinorEnum(av))
def test_programmatic_function_from_dict(self):
MinorEnum = self.enum_type(
'MinorEnum',
OrderedDict((('june', self.source_values[0]), ('july', self.source_values[1]), ('august', self.source_values[2])))
)
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for month, av in zip('june july august'.split(), self.values):
e = MinorEnum[month]
if MinorEnum._member_type_ is not object and issubclass(MinorEnum, MinorEnum._member_type_):
self.assertEqual(e, av)
else:
self.assertNotEqual(e, av)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
self.assertIs(e, MinorEnum(av))
def test_repr(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(repr(TE(0)), "<MainEnum: 0>")
self.assertEqual(repr(TE.dupe), "<MainEnum.dupe: 3>")
self.assertEqual(repr(self.dupe2), "<MainEnum.first|third: 5>")
elif issubclass(TE, StrEnum):
self.assertEqual(repr(TE.dupe), "<MainEnum.third: 'third'>")
else:
self.assertEqual(repr(TE.dupe), "<MainEnum.third: %r>" % (self.values[2], ), TE._value_repr_)
for name, value, member in zip(self.names, self.values, TE, strict=True):
self.assertEqual(repr(member), "<MainEnum.%s: %r>" % (member.name, member.value))
def test_repr_override(self):
class Generic(self.enum_type):
first = auto()
second = auto()
third = auto()
def __repr__(self):
return "don't you just love shades of %s?" % self.name
self.assertEqual(
repr(Generic.third),
"don't you just love shades of third?",
)
def test_inherited_repr(self):
class MyEnum(self.enum_type):
def __repr__(self):
return "My name is %s." % self.name
class MySubEnum(MyEnum):
this = auto()
that = auto()
theother = auto()
self.assertEqual(repr(MySubEnum.that), "My name is that.")
def test_reversed_iteration_order(self):
self.assertEqual(
list(reversed(self.MainEnum)),
[self.MainEnum.third, self.MainEnum.second, self.MainEnum.first],
)
class _PlainOutputTests:
def test_str(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(str(TE.dupe), "MainEnum.dupe")
self.assertEqual(str(self.dupe2), "MainEnum.first|third")
else:
self.assertEqual(str(TE.dupe), "MainEnum.third")
for name, value, member in zip(self.names, self.values, TE, strict=True):
self.assertEqual(str(member), "MainEnum.%s" % (member.name, ))
def test_format(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(format(TE.dupe), "MainEnum.dupe")
self.assertEqual(format(self.dupe2), "MainEnum.first|third")
else:
self.assertEqual(format(TE.dupe), "MainEnum.third")
for name, value, member in zip(self.names, self.values, TE, strict=True):
self.assertEqual(format(member), "MainEnum.%s" % (member.name, ))
def test_overridden_format(self):
NF = self.NewFormatEnum
self.assertEqual(str(NF.first), "NewFormatEnum.first", '%s %r' % (NF.__str__, NF.first))
self.assertEqual(format(NF.first), "FIRST")
def test_format_specs(self):
TE = self.MainEnum
self.assertFormatIsStr('{}', TE.second)
self.assertFormatIsStr('{:}', TE.second)
self.assertFormatIsStr('{:20}', TE.second)
self.assertFormatIsStr('{:^20}', TE.second)
self.assertFormatIsStr('{:>20}', TE.second)
self.assertFormatIsStr('{:<20}', TE.second)
self.assertFormatIsStr('{:5.2}', TE.second)
class _MixedOutputTests:
def test_str(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(str(TE.dupe), "MainEnum.dupe")
self.assertEqual(str(self.dupe2), "MainEnum.first|third")
else:
self.assertEqual(str(TE.dupe), "MainEnum.third")
for name, value, member in zip(self.names, self.values, TE, strict=True):
self.assertEqual(str(member), "MainEnum.%s" % (member.name, ))
def test_format(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(format(TE.dupe), "MainEnum.dupe")
self.assertEqual(format(self.dupe2), "MainEnum.first|third")
else:
self.assertEqual(format(TE.dupe), "MainEnum.third")
for name, value, member in zip(self.names, self.values, TE, strict=True):
self.assertEqual(format(member), "MainEnum.%s" % (member.name, ))
def test_overridden_format(self):
NF = self.NewFormatEnum
self.assertEqual(str(NF.first), "NewFormatEnum.first")
self.assertEqual(format(NF.first), "FIRST")
def test_format_specs(self):
TE = self.MainEnum
self.assertFormatIsStr('{}', TE.first)
self.assertFormatIsStr('{:}', TE.first)
self.assertFormatIsStr('{:20}', TE.first)
self.assertFormatIsStr('{:^20}', TE.first)
self.assertFormatIsStr('{:>20}', TE.first)
self.assertFormatIsStr('{:<20}', TE.first)
self.assertFormatIsStr('{:5.2}', TE.first)
class _MinimalOutputTests:
def test_str(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(str(TE.dupe), "3")
self.assertEqual(str(self.dupe2), "5")
else:
self.assertEqual(str(TE.dupe), str(self.values[2]))
for name, value, member in zip(self.names, self.values, TE, strict=True):
self.assertEqual(str(member), str(value))
def test_format(self):
TE = self.MainEnum
if self.is_flag:
self.assertEqual(format(TE.dupe), "3")
self.assertEqual(format(self.dupe2), "5")
else:
self.assertEqual(format(TE.dupe), format(self.values[2]))
for name, value, member in zip(self.names, self.values, TE, strict=True):
self.assertEqual(format(member), format(value))
def test_overridden_format(self):
NF = self.NewFormatEnum
self.assertEqual(str(NF.first), str(self.values[0]))
self.assertEqual(format(NF.first), "FIRST")
def test_format_specs(self):
TE = self.MainEnum
self.assertFormatIsValue('{}', TE.third)
self.assertFormatIsValue('{:}', TE.third)
self.assertFormatIsValue('{:20}', TE.third)
self.assertFormatIsValue('{:^20}', TE.third)
self.assertFormatIsValue('{:>20}', TE.third)
self.assertFormatIsValue('{:<20}', TE.third)
if TE._member_type_ is float:
self.assertFormatIsValue('{:n}', TE.third)
self.assertFormatIsValue('{:5.2}', TE.third)
self.assertFormatIsValue('{:f}', TE.third)
class _FlagTests:
def test_default_missing_with_wrong_type_value(self):
with self.assertRaisesRegex(
ValueError,
"'RED' is not a valid TestFlag.Color",
) as ctx:
self.MainEnum('RED')
self.assertIs(ctx.exception.__context__, None)
class TestPlainEnum(_EnumTests, _PlainOutputTests, unittest.TestCase):
enum_type = Enum
class TestPlainFlag(_EnumTests, _PlainOutputTests, unittest.TestCase):
enum_type = Flag
class TestIntEnum(_EnumTests, _MinimalOutputTests, unittest.TestCase):
enum_type = IntEnum
class TestStrEnum(_EnumTests, _MinimalOutputTests, unittest.TestCase):
enum_type = StrEnum
class TestIntFlag(_EnumTests, _MinimalOutputTests, unittest.TestCase):
enum_type = IntFlag
class TestMixedInt(_EnumTests, _MixedOutputTests, unittest.TestCase):
class enum_type(int, Enum): pass
class TestMixedStr(_EnumTests, _MixedOutputTests, unittest.TestCase):
class enum_type(str, Enum): pass
class TestMixedIntFlag(_EnumTests, _MixedOutputTests, unittest.TestCase):
class enum_type(int, Flag): pass
class TestMixedDate(_EnumTests, _MixedOutputTests, unittest.TestCase):
values = [date(2021, 12, 25), date(2020, 3, 15), date(2019, 11, 27)]
source_values = [(2021, 12, 25), (2020, 3, 15), (2019, 11, 27)]
class enum_type(date, Enum):
def _generate_next_value_(name, start, count, last_values):
values = [(2021, 12, 25), (2020, 3, 15), (2019, 11, 27)]
return values[count]
class TestMinimalDate(_EnumTests, _MinimalOutputTests, unittest.TestCase):
values = [date(2023, 12, 1), date(2016, 2, 29), date(2009, 1, 1)]
source_values = [(2023, 12, 1), (2016, 2, 29), (2009, 1, 1)]
class enum_type(date, ReprEnum):
def _generate_next_value_(name, start, count, last_values):
values = [(2023, 12, 1), (2016, 2, 29), (2009, 1, 1)]
return values[count]
class TestMixedFloat(_EnumTests, _MixedOutputTests, unittest.TestCase):
values = [1.1, 2.2, 3.3]
class enum_type(float, Enum):
def _generate_next_value_(name, start, count, last_values):
values = [1.1, 2.2, 3.3]
return values[count]
class TestMinimalFloat(_EnumTests, _MinimalOutputTests, unittest.TestCase):
values = [4.4, 5.5, 6.6]
class enum_type(float, ReprEnum):
def _generate_next_value_(name, start, count, last_values):
values = [4.4, 5.5, 6.6]
return values[count]
class TestSpecial(unittest.TestCase):
"""
various operations that are not attributable to every possible enum
"""
def setUp(self):
class Season(Enum):
SPRING = 1
SUMMER = 2
AUTUMN = 3
WINTER = 4
self.Season = Season
#
class Grades(IntEnum):
A = 5
B = 4
C = 3
D = 2
F = 0
self.Grades = Grades
#
class Directional(str, Enum):
EAST = 'east'
WEST = 'west'
NORTH = 'north'
SOUTH = 'south'
self.Directional = Directional
#
from datetime import date
class Holiday(date, Enum):
NEW_YEAR = 2013, 1, 1
IDES_OF_MARCH = 2013, 3, 15
self.Holiday = Holiday
def test_bool(self):
# plain Enum members are always True
class Logic(Enum):
true = True
false = False
self.assertTrue(Logic.true)
self.assertTrue(Logic.false)
# unless overridden
class RealLogic(Enum):
true = True
false = False
def __bool__(self):
return bool(self._value_)
self.assertTrue(RealLogic.true)
self.assertFalse(RealLogic.false)
# mixed Enums depend on mixed-in type
class IntLogic(int, Enum):
true = 1
false = 0
self.assertTrue(IntLogic.true)
self.assertFalse(IntLogic.false)
def test_comparisons(self):
Season = self.Season
with self.assertRaises(TypeError):
Season.SPRING < Season.WINTER
with self.assertRaises(TypeError):
Season.SPRING > 4
#
self.assertNotEqual(Season.SPRING, 1)
#
class Part(Enum):
SPRING = 1
CLIP = 2
BARREL = 3
#
self.assertNotEqual(Season.SPRING, Part.SPRING)
with self.assertRaises(TypeError):
Season.SPRING < Part.CLIP
def test_dir_with_custom_dunders(self):
class PlainEnum(Enum):
pass
cls_dir = dir(PlainEnum)
self.assertNotIn('__repr__', cls_dir)
self.assertNotIn('__str__', cls_dir)
self.assertNotIn('__repr__', cls_dir)
self.assertNotIn('__repr__', cls_dir)
#
class MyEnum(Enum):
def __repr__(self):
return object.__repr__(self)
def __str__(self):
return object.__repr__(self)
def __format__(self):
return object.__repr__(self)
def __init__(self):
pass
cls_dir = dir(MyEnum)
self.assertIn('__repr__', cls_dir)
self.assertIn('__str__', cls_dir)
self.assertIn('__repr__', cls_dir)
self.assertIn('__repr__', cls_dir)
def test_duplicate_name_error(self):
with self.assertRaises(TypeError):
class Color(Enum):
red = 1
green = 2
blue = 3
red = 4
#
with self.assertRaises(TypeError):
class Color(Enum):
red = 1
green = 2
blue = 3
def red(self):
return 'red'
#
with self.assertRaises(TypeError):
class Color(Enum):
@enum.property
def red(self):
return 'redder'
red = 1
green = 2
blue = 3
def test_enum_function_with_qualname(self):
if isinstance(Theory, Exception):
raise Theory
self.assertEqual(Theory.__qualname__, 'spanish_inquisition')
def test_enum_with_value_name(self):
class Huh(Enum):
name = 1
value = 2
self.assertEqual(list(Huh), [Huh.name, Huh.value])
self.assertIs(type(Huh.name), Huh)
self.assertEqual(Huh.name.name, 'name')
self.assertEqual(Huh.name.value, 1)
def test_inherited_data_type(self):
class HexInt(int):
__qualname__ = 'HexInt'
def __repr__(self):
return hex(self)
class MyEnum(HexInt, enum.Enum):
__qualname__ = 'MyEnum'
A = 1
B = 2
C = 3
self.assertEqual(repr(MyEnum.A), '<MyEnum.A: 0x1>')
globals()['HexInt'] = HexInt
globals()['MyEnum'] = MyEnum
test_pickle_dump_load(self.assertIs, MyEnum.A)
test_pickle_dump_load(self.assertIs, MyEnum)
#
class SillyInt(HexInt):
__qualname__ = 'SillyInt'
pass
class MyOtherEnum(SillyInt, enum.Enum):
__qualname__ = 'MyOtherEnum'
D = 4
E = 5
F = 6
self.assertIs(MyOtherEnum._member_type_, SillyInt)
globals()['SillyInt'] = SillyInt
globals()['MyOtherEnum'] = MyOtherEnum
test_pickle_dump_load(self.assertIs, MyOtherEnum.E)
test_pickle_dump_load(self.assertIs, MyOtherEnum)
#
# This did not work in 3.10, but does now with pickling by name
class UnBrokenInt(int):
__qualname__ = 'UnBrokenInt'
def __new__(cls, value):
return int.__new__(cls, value)
class MyUnBrokenEnum(UnBrokenInt, Enum):
__qualname__ = 'MyUnBrokenEnum'
G = 7
H = 8
I = 9
self.assertIs(MyUnBrokenEnum._member_type_, UnBrokenInt)
self.assertIs(MyUnBrokenEnum(7), MyUnBrokenEnum.G)
globals()['UnBrokenInt'] = UnBrokenInt
globals()['MyUnBrokenEnum'] = MyUnBrokenEnum
test_pickle_dump_load(self.assertIs, MyUnBrokenEnum.I)
test_pickle_dump_load(self.assertIs, MyUnBrokenEnum)
def test_floatenum_fromhex(self):
h = float.hex(FloatStooges.MOE.value)
self.assertIs(FloatStooges.fromhex(h), FloatStooges.MOE)
h = float.hex(FloatStooges.MOE.value + 0.01)
with self.assertRaises(ValueError):
FloatStooges.fromhex(h)
def test_programmatic_function_type(self):
MinorEnum = Enum('MinorEnum', 'june july august', type=int)
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for i, month in enumerate('june july august'.split(), 1):
e = MinorEnum(i)
self.assertEqual(e, i)
self.assertEqual(e.name, month)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
def test_programmatic_function_string_with_start(self):
MinorEnum = Enum('MinorEnum', 'june july august', start=10)
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for i, month in enumerate('june july august'.split(), 10):
e = MinorEnum(i)
self.assertEqual(int(e.value), i)
self.assertNotEqual(e, i)
self.assertEqual(e.name, month)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
def test_programmatic_function_type_with_start(self):
MinorEnum = Enum('MinorEnum', 'june july august', type=int, start=30)
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for i, month in enumerate('june july august'.split(), 30):
e = MinorEnum(i)
self.assertEqual(e, i)
self.assertEqual(e.name, month)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
def test_programmatic_function_string_list_with_start(self):
MinorEnum = Enum('MinorEnum', ['june', 'july', 'august'], start=20)
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for i, month in enumerate('june july august'.split(), 20):
e = MinorEnum(i)
self.assertEqual(int(e.value), i)
self.assertNotEqual(e, i)
self.assertEqual(e.name, month)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
def test_programmatic_function_type_from_subclass(self):
MinorEnum = IntEnum('MinorEnum', 'june july august')
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for i, month in enumerate('june july august'.split(), 1):
e = MinorEnum(i)
self.assertEqual(e, i)
self.assertEqual(e.name, month)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
def test_programmatic_function_type_from_subclass_with_start(self):
MinorEnum = IntEnum('MinorEnum', 'june july august', start=40)
lst = list(MinorEnum)
self.assertEqual(len(lst), len(MinorEnum))
self.assertEqual(len(MinorEnum), 3, MinorEnum)
self.assertEqual(
[MinorEnum.june, MinorEnum.july, MinorEnum.august],
lst,
)
for i, month in enumerate('june july august'.split(), 40):
e = MinorEnum(i)
self.assertEqual(e, i)
self.assertEqual(e.name, month)
self.assertIn(e, MinorEnum)
self.assertIs(type(e), MinorEnum)
def test_intenum_from_bytes(self):
self.assertIs(IntStooges.from_bytes(b'\x00\x03', 'big'), IntStooges.MOE)
with self.assertRaises(ValueError):
IntStooges.from_bytes(b'\x00\x05', 'big')
def test_reserved_sunder_error(self):
with self.assertRaisesRegex(
ValueError,
'_sunder_ names, such as ._bad_., are reserved',
):
class Bad(Enum):
_bad_ = 1
def test_too_many_data_types(self):
with self.assertRaisesRegex(TypeError, 'too many data types'):
class Huh(str, int, Enum):
One = 1
class MyStr(str):
def hello(self):
return 'hello, %s' % self
class MyInt(int):
def repr(self):
return hex(self)
with self.assertRaisesRegex(TypeError, 'too many data types'):
class Huh(MyStr, MyInt, Enum):
One = 1
def test_pickle_enum(self):
if isinstance(Stooges, Exception):
raise Stooges
test_pickle_dump_load(self.assertIs, Stooges.CURLY)
test_pickle_dump_load(self.assertIs, Stooges)
def test_pickle_int(self):
if isinstance(IntStooges, Exception):
raise IntStooges
test_pickle_dump_load(self.assertIs, IntStooges.CURLY)
test_pickle_dump_load(self.assertIs, IntStooges)
def test_pickle_float(self):
if isinstance(FloatStooges, Exception):
raise FloatStooges
test_pickle_dump_load(self.assertIs, FloatStooges.CURLY)
test_pickle_dump_load(self.assertIs, FloatStooges)
def test_pickle_enum_function(self):
if isinstance(Answer, Exception):
raise Answer
test_pickle_dump_load(self.assertIs, Answer.him)
test_pickle_dump_load(self.assertIs, Answer)
def test_pickle_enum_function_with_module(self):
if isinstance(Question, Exception):
raise Question
test_pickle_dump_load(self.assertIs, Question.who)
test_pickle_dump_load(self.assertIs, Question)
def test_pickle_nested_class(self):
# would normally just have this directly in the class namespace
class NestedEnum(Enum):
twigs = 'common'
shiny = 'rare'
self.__class__.NestedEnum = NestedEnum
self.NestedEnum.__qualname__ = '%s.NestedEnum' % self.__class__.__name__
test_pickle_dump_load(self.assertIs, self.NestedEnum.twigs)
def test_pickle_by_name(self):
class ReplaceGlobalInt(IntEnum):
ONE = 1
TWO = 2
ReplaceGlobalInt.__reduce_ex__ = enum._reduce_ex_by_global_name
for proto in range(HIGHEST_PROTOCOL):
self.assertEqual(ReplaceGlobalInt.TWO.__reduce_ex__(proto), 'TWO')
def test_pickle_explodes(self):
BadPickle = Enum(
'BadPickle', 'dill sweet bread-n-butter', module=__name__)
globals()['BadPickle'] = BadPickle
# now break BadPickle to test exception raising
enum._make_class_unpicklable(BadPickle)
test_pickle_exception(self.assertRaises, TypeError, BadPickle.dill)
test_pickle_exception(self.assertRaises, PicklingError, BadPickle)
def test_string_enum(self):
class SkillLevel(str, Enum):
master = 'what is the sound of one hand clapping?'
journeyman = 'why did the chicken cross the road?'
apprentice = 'knock, knock!'
self.assertEqual(SkillLevel.apprentice, 'knock, knock!')
def test_getattr_getitem(self):
class Period(Enum):
morning = 1
noon = 2
evening = 3
night = 4
self.assertIs(Period(2), Period.noon)
self.assertIs(getattr(Period, 'night'), Period.night)
self.assertIs(Period['morning'], Period.morning)
def test_getattr_dunder(self):
Season = self.Season
self.assertTrue(getattr(Season, '__eq__'))
def test_iteration_order(self):
class Season(Enum):
SUMMER = 2
WINTER = 4
AUTUMN = 3
SPRING = 1
self.assertEqual(
list(Season),
[Season.SUMMER, Season.WINTER, Season.AUTUMN, Season.SPRING],
)
def test_subclassing(self):
if isinstance(Name, Exception):
raise Name
self.assertEqual(Name.BDFL, 'Guido van Rossum')
self.assertTrue(Name.BDFL, Name('Guido van Rossum'))
self.assertIs(Name.BDFL, getattr(Name, 'BDFL'))
test_pickle_dump_load(self.assertIs, Name.BDFL)
def test_extending(self):
class Color(Enum):
red = 1
green = 2
blue = 3
#
with self.assertRaises(TypeError):
class MoreColor(Color):
cyan = 4
magenta = 5
yellow = 6
#
with self.assertRaisesRegex(TypeError, "<enum .EvenMoreColor.> cannot extend <enum .Color.>"):
class EvenMoreColor(Color, IntEnum):
chartruese = 7
#
with self.assertRaisesRegex(TypeError, "<enum .Foo.> cannot extend <enum .Color.>"):
Color('Foo', ('pink', 'black'))
def test_exclude_methods(self):
class whatever(Enum):
this = 'that'
these = 'those'
def really(self):
return 'no, not %s' % self.value
self.assertIsNot(type(whatever.really), whatever)
self.assertEqual(whatever.this.really(), 'no, not that')
def test_wrong_inheritance_order(self):
with self.assertRaises(TypeError):
class Wrong(Enum, str):
NotHere = 'error before this point'
def test_intenum_transitivity(self):
class number(IntEnum):
one = 1
two = 2
three = 3
class numero(IntEnum):
uno = 1
dos = 2
tres = 3
self.assertEqual(number.one, numero.uno)
self.assertEqual(number.two, numero.dos)
self.assertEqual(number.three, numero.tres)
def test_wrong_enum_in_call(self):
class Monochrome(Enum):
black = 0
white = 1
class Gender(Enum):
male = 0
female = 1
self.assertRaises(ValueError, Monochrome, Gender.male)
def test_wrong_enum_in_mixed_call(self):
class Monochrome(IntEnum):
black = 0
white = 1
class Gender(Enum):
male = 0
female = 1
self.assertRaises(ValueError, Monochrome, Gender.male)
def test_mixed_enum_in_call_1(self):
class Monochrome(IntEnum):
black = 0
white = 1
class Gender(IntEnum):
male = 0
female = 1
self.assertIs(Monochrome(Gender.female), Monochrome.white)
def test_mixed_enum_in_call_2(self):
class Monochrome(Enum):
black = 0
white = 1
class Gender(IntEnum):
male = 0
female = 1
self.assertIs(Monochrome(Gender.male), Monochrome.black)
def test_flufl_enum(self):
class Fluflnum(Enum):
def __int__(self):
return int(self.value)
class MailManOptions(Fluflnum):
option1 = 1
option2 = 2
option3 = 3
self.assertEqual(int(MailManOptions.option1), 1)
def test_introspection(self):
class Number(IntEnum):
one = 100
two = 200
self.assertIs(Number.one._member_type_, int)
self.assertIs(Number._member_type_, int)
class String(str, Enum):
yarn = 'soft'
rope = 'rough'
wire = 'hard'
self.assertIs(String.yarn._member_type_, str)
self.assertIs(String._member_type_, str)
class Plain(Enum):
vanilla = 'white'
one = 1
self.assertIs(Plain.vanilla._member_type_, object)
self.assertIs(Plain._member_type_, object)
def test_no_such_enum_member(self):
class Color(Enum):
red = 1
green = 2
blue = 3
with self.assertRaises(ValueError):
Color(4)
with self.assertRaises(KeyError):
Color['chartreuse']
# tests that need to be evalualted for moving
def test_multiple_mixin_mro(self):
class auto_enum(type(Enum)):
def __new__(metacls, cls, bases, classdict):
temp = type(classdict)()
temp._cls_name = cls
names = set(classdict._member_names)
i = 0
for k in classdict._member_names:
v = classdict[k]
if v is Ellipsis:
v = i
else:
i = v
i += 1
temp[k] = v
for k, v in classdict.items():
if k not in names:
temp[k] = v
return super(auto_enum, metacls).__new__(
metacls, cls, bases, temp)
class AutoNumberedEnum(Enum, metaclass=auto_enum):
pass
class AutoIntEnum(IntEnum, metaclass=auto_enum):
pass
class TestAutoNumber(AutoNumberedEnum):
a = ...
b = 3
c = ...
class TestAutoInt(AutoIntEnum):
a = ...
b = 3
c = ...
def test_subclasses_with_getnewargs(self):
class NamedInt(int):
__qualname__ = 'NamedInt' # needed for pickle protocol 4
def __new__(cls, *args):
_args = args
name, *args = args
if len(args) == 0:
raise TypeError("name and value must be specified")
self = int.__new__(cls, *args)
self._intname = name
self._args = _args
return self
def __getnewargs__(self):
return self._args
@bltns.property
def __name__(self):
return self._intname
def __repr__(self):
# repr() is updated to include the name and type info
return "{}({!r}, {})".format(
type(self).__name__,
self.__name__,
int.__repr__(self),
)
def __str__(self):
# str() is unchanged, even if it relies on the repr() fallback
base = int
base_str = base.__str__
if base_str.__objclass__ is object:
return base.__repr__(self)
return base_str(self)
# for simplicity, we only define one operator that
# propagates expressions
def __add__(self, other):
temp = int(self) + int( other)
if isinstance(self, NamedInt) and isinstance(other, NamedInt):
return NamedInt(
'({0} + {1})'.format(self.__name__, other.__name__),
temp,
)
else:
return temp
class NEI(NamedInt, Enum):
__qualname__ = 'NEI' # needed for pickle protocol 4
x = ('the-x', 1)
y = ('the-y', 2)
self.assertIs(NEI.__new__, Enum.__new__)
self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)")
globals()['NamedInt'] = NamedInt
globals()['NEI'] = NEI
NI5 = NamedInt('test', 5)
self.assertEqual(NI5, 5)
test_pickle_dump_load(self.assertEqual, NI5, 5)
self.assertEqual(NEI.y.value, 2)
test_pickle_dump_load(self.assertIs, NEI.y)
test_pickle_dump_load(self.assertIs, NEI)
def test_subclasses_with_getnewargs_ex(self):
class NamedInt(int):
__qualname__ = 'NamedInt' # needed for pickle protocol 4
def __new__(cls, *args):
_args = args
name, *args = args
if len(args) == 0:
raise TypeError("name and value must be specified")
self = int.__new__(cls, *args)
self._intname = name
self._args = _args
return self
def __getnewargs_ex__(self):
return self._args, {}
@bltns.property
def __name__(self):
return self._intname
def __repr__(self):
# repr() is updated to include the name and type info
return "{}({!r}, {})".format(
type(self).__name__,
self.__name__,
int.__repr__(self),
)
def __str__(self):
# str() is unchanged, even if it relies on the repr() fallback
base = int
base_str = base.__str__
if base_str.__objclass__ is object:
return base.__repr__(self)
return base_str(self)
# for simplicity, we only define one operator that
# propagates expressions
def __add__(self, other):
temp = int(self) + int( other)
if isinstance(self, NamedInt) and isinstance(other, NamedInt):
return NamedInt(
'({0} + {1})'.format(self.__name__, other.__name__),
temp,
)
else:
return temp
class NEI(NamedInt, Enum):
__qualname__ = 'NEI' # needed for pickle protocol 4
x = ('the-x', 1)
y = ('the-y', 2)
self.assertIs(NEI.__new__, Enum.__new__)
self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)")
globals()['NamedInt'] = NamedInt
globals()['NEI'] = NEI
NI5 = NamedInt('test', 5)
self.assertEqual(NI5, 5)
test_pickle_dump_load(self.assertEqual, NI5, 5)
self.assertEqual(NEI.y.value, 2)
test_pickle_dump_load(self.assertIs, NEI.y)
test_pickle_dump_load(self.assertIs, NEI)
def test_subclasses_with_reduce(self):
class NamedInt(int):
__qualname__ = 'NamedInt' # needed for pickle protocol 4
def __new__(cls, *args):
_args = args
name, *args = args
if len(args) == 0:
raise TypeError("name and value must be specified")
self = int.__new__(cls, *args)
self._intname = name
self._args = _args
return self
def __reduce__(self):
return self.__class__, self._args
@bltns.property
def __name__(self):
return self._intname
def __repr__(self):
# repr() is updated to include the name and type info
return "{}({!r}, {})".format(
type(self).__name__,
self.__name__,
int.__repr__(self),
)
def __str__(self):
# str() is unchanged, even if it relies on the repr() fallback
base = int
base_str = base.__str__
if base_str.__objclass__ is object:
return base.__repr__(self)
return base_str(self)
# for simplicity, we only define one operator that
# propagates expressions
def __add__(self, other):
temp = int(self) + int( other)
if isinstance(self, NamedInt) and isinstance(other, NamedInt):
return NamedInt(
'({0} + {1})'.format(self.__name__, other.__name__),
temp,
)
else:
return temp
class NEI(NamedInt, Enum):
__qualname__ = 'NEI' # needed for pickle protocol 4
x = ('the-x', 1)
y = ('the-y', 2)
self.assertIs(NEI.__new__, Enum.__new__)
self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)")
globals()['NamedInt'] = NamedInt
globals()['NEI'] = NEI
NI5 = NamedInt('test', 5)
self.assertEqual(NI5, 5)
test_pickle_dump_load(self.assertEqual, NI5, 5)
self.assertEqual(NEI.y.value, 2)
test_pickle_dump_load(self.assertIs, NEI.y)
test_pickle_dump_load(self.assertIs, NEI)
def test_subclasses_with_reduce_ex(self):
class NamedInt(int):
__qualname__ = 'NamedInt' # needed for pickle protocol 4
def __new__(cls, *args):
_args = args
name, *args = args
if len(args) == 0:
raise TypeError("name and value must be specified")
self = int.__new__(cls, *args)
self._intname = name
self._args = _args
return self
def __reduce_ex__(self, proto):
return self.__class__, self._args
@bltns.property
def __name__(self):
return self._intname
def __repr__(self):
# repr() is updated to include the name and type info
return "{}({!r}, {})".format(
type(self).__name__,
self.__name__,
int.__repr__(self),
)
def __str__(self):
# str() is unchanged, even if it relies on the repr() fallback
base = int
base_str = base.__str__
if base_str.__objclass__ is object:
return base.__repr__(self)
return base_str(self)
# for simplicity, we only define one operator that
# propagates expressions
def __add__(self, other):
temp = int(self) + int( other)
if isinstance(self, NamedInt) and isinstance(other, NamedInt):
return NamedInt(
'({0} + {1})'.format(self.__name__, other.__name__),
temp,
)
else:
return temp
class NEI(NamedInt, Enum):
__qualname__ = 'NEI' # needed for pickle protocol 4
x = ('the-x', 1)
y = ('the-y', 2)
self.assertIs(NEI.__new__, Enum.__new__)
self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)")
globals()['NamedInt'] = NamedInt
globals()['NEI'] = NEI
NI5 = NamedInt('test', 5)
self.assertEqual(NI5, 5)
test_pickle_dump_load(self.assertEqual, NI5, 5)
self.assertEqual(NEI.y.value, 2)
test_pickle_dump_load(self.assertIs, NEI.y)
test_pickle_dump_load(self.assertIs, NEI)
def test_subclasses_without_direct_pickle_support(self):
class NamedInt(int):
__qualname__ = 'NamedInt'
def __new__(cls, *args):
_args = args
name, *args = args
if len(args) == 0:
raise TypeError("name and value must be specified")
self = int.__new__(cls, *args)
self._intname = name
self._args = _args
return self
@bltns.property
def __name__(self):
return self._intname
def __repr__(self):
# repr() is updated to include the name and type info
return "{}({!r}, {})".format(
type(self).__name__,
self.__name__,
int.__repr__(self),
)
def __str__(self):
# str() is unchanged, even if it relies on the repr() fallback
base = int
base_str = base.__str__
if base_str.__objclass__ is object:
return base.__repr__(self)
return base_str(self)
# for simplicity, we only define one operator that
# propagates expressions
def __add__(self, other):
temp = int(self) + int( other)
if isinstance(self, NamedInt) and isinstance(other, NamedInt):
return NamedInt(
'({0} + {1})'.format(self.__name__, other.__name__),
temp )
else:
return temp
class NEI(NamedInt, Enum):
__qualname__ = 'NEI'
x = ('the-x', 1)
y = ('the-y', 2)
self.assertIs(NEI.__new__, Enum.__new__)
self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)")
globals()['NamedInt'] = NamedInt
globals()['NEI'] = NEI
NI5 = NamedInt('test', 5)
self.assertEqual(NI5, 5)
self.assertEqual(NEI.y.value, 2)
test_pickle_dump_load(self.assertIs, NEI.y)
test_pickle_dump_load(self.assertIs, NEI)
def test_subclasses_with_direct_pickle_support(self):
class NamedInt(int):
__qualname__ = 'NamedInt'
def __new__(cls, *args):
_args = args
name, *args = args
if len(args) == 0:
raise TypeError("name and value must be specified")
self = int.__new__(cls, *args)
self._intname = name
self._args = _args
return self
@bltns.property
def __name__(self):
return self._intname
def __repr__(self):
# repr() is updated to include the name and type info
return "{}({!r}, {})".format(
type(self).__name__,
self.__name__,
int.__repr__(self),
)
def __str__(self):
# str() is unchanged, even if it relies on the repr() fallback
base = int
base_str = base.__str__
if base_str.__objclass__ is object:
return base.__repr__(self)
return base_str(self)
# for simplicity, we only define one operator that
# propagates expressions
def __add__(self, other):
temp = int(self) + int( other)
if isinstance(self, NamedInt) and isinstance(other, NamedInt):
return NamedInt(
'({0} + {1})'.format(self.__name__, other.__name__),
temp,
)
else:
return temp
class NEI(NamedInt, Enum):
__qualname__ = 'NEI'
x = ('the-x', 1)
y = ('the-y', 2)
def __reduce_ex__(self, proto):
return getattr, (self.__class__, self._name_)
self.assertIs(NEI.__new__, Enum.__new__)
self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)")
globals()['NamedInt'] = NamedInt
globals()['NEI'] = NEI
NI5 = NamedInt('test', 5)
self.assertEqual(NI5, 5)
self.assertEqual(NEI.y.value, 2)
test_pickle_dump_load(self.assertIs, NEI.y)
test_pickle_dump_load(self.assertIs, NEI)
def test_tuple_subclass(self):
class SomeTuple(tuple, Enum):
__qualname__ = 'SomeTuple' # needed for pickle protocol 4
first = (1, 'for the money')
second = (2, 'for the show')
third = (3, 'for the music')
self.assertIs(type(SomeTuple.first), SomeTuple)
self.assertIsInstance(SomeTuple.second, tuple)
self.assertEqual(SomeTuple.third, (3, 'for the music'))
globals()['SomeTuple'] = SomeTuple
test_pickle_dump_load(self.assertIs, SomeTuple.first)
def test_duplicate_values_give_unique_enum_items(self):
class AutoNumber(Enum):
first = ()
second = ()
third = ()
def __new__(cls):
value = len(cls.__members__) + 1
obj = object.__new__(cls)
obj._value_ = value
return obj
def __int__(self):
return int(self._value_)
self.assertEqual(
list(AutoNumber),
[AutoNumber.first, AutoNumber.second, AutoNumber.third],
)
self.assertEqual(int(AutoNumber.second), 2)
self.assertEqual(AutoNumber.third.value, 3)
self.assertIs(AutoNumber(1), AutoNumber.first)
def test_inherited_new_from_enhanced_enum(self):
class AutoNumber(Enum):
def __new__(cls):
value = len(cls.__members__) + 1
obj = object.__new__(cls)
obj._value_ = value
return obj
def __int__(self):
return int(self._value_)
class Color(AutoNumber):
red = ()
green = ()
blue = ()
self.assertEqual(list(Color), [Color.red, Color.green, Color.blue])
self.assertEqual(list(map(int, Color)), [1, 2, 3])
def test_inherited_new_from_mixed_enum(self):
class AutoNumber(IntEnum):
def __new__(cls):
value = len(cls.__members__) + 1
obj = int.__new__(cls, value)
obj._value_ = value
return obj
class Color(AutoNumber):
red = ()
green = ()
blue = ()
self.assertEqual(list(Color), [Color.red, Color.green, Color.blue])
self.assertEqual(list(map(int, Color)), [1, 2, 3])
def test_equality(self):
class OrdinaryEnum(Enum):
a = 1
self.assertEqual(ALWAYS_EQ, OrdinaryEnum.a)
self.assertEqual(OrdinaryEnum.a, ALWAYS_EQ)
def test_ordered_mixin(self):
class OrderedEnum(Enum):
def __ge__(self, other):
if self.__class__ is other.__class__:
return self._value_ >= other._value_
return NotImplemented
def __gt__(self, other):
if self.__class__ is other.__class__:
return self._value_ > other._value_
return NotImplemented
def __le__(self, other):
if self.__class__ is other.__class__:
return self._value_ <= other._value_
return NotImplemented
def __lt__(self, other):
if self.__class__ is other.__class__:
return self._value_ < other._value_
return NotImplemented
class Grade(OrderedEnum):
A = 5
B = 4
C = 3
D = 2
F = 1
self.assertGreater(Grade.A, Grade.B)
self.assertLessEqual(Grade.F, Grade.C)
self.assertLess(Grade.D, Grade.A)
self.assertGreaterEqual(Grade.B, Grade.B)
self.assertEqual(Grade.B, Grade.B)
self.assertNotEqual(Grade.C, Grade.D)
def test_extending2(self):
class Shade(Enum):
def shade(self):
print(self.name)
class Color(Shade):
red = 1
green = 2
blue = 3
with self.assertRaises(TypeError):
class MoreColor(Color):
cyan = 4
magenta = 5
yellow = 6
def test_extending3(self):
class Shade(Enum):
def shade(self):
return self.name
class Color(Shade):
def hex(self):
return '%s hexlified!' % self.value
class MoreColor(Color):
cyan = 4
magenta = 5
yellow = 6
self.assertEqual(MoreColor.magenta.hex(), '5 hexlified!')
def test_subclass_duplicate_name(self):
class Base(Enum):
def test(self):
pass
class Test(Base):
test = 1
self.assertIs(type(Test.test), Test)
def test_subclass_duplicate_name_dynamic(self):
from types import DynamicClassAttribute
class Base(Enum):
@DynamicClassAttribute
def test(self):
return 'dynamic'
class Test(Base):
test = 1
self.assertEqual(Test.test.test, 'dynamic')
self.assertEqual(Test.test.value, 1)
class Base2(Enum):
@enum.property
def flash(self):
return 'flashy dynamic'
class Test(Base2):
flash = 1
self.assertEqual(Test.flash.flash, 'flashy dynamic')
self.assertEqual(Test.flash.value, 1)
def test_no_duplicates(self):
class UniqueEnum(Enum):
def __init__(self, *args):
cls = self.__class__
if any(self.value == e.value for e in cls):
a = self.name
e = cls(self.value).name
raise ValueError(
"aliases not allowed in UniqueEnum: %r --> %r"
% (a, e)
)
class Color(UniqueEnum):
red = 1
green = 2
blue = 3
with self.assertRaises(ValueError):
class Color(UniqueEnum):
red = 1
green = 2
blue = 3
grene = 2
def test_init(self):
class Planet(Enum):
MERCURY = (3.303e+23, 2.4397e6)
VENUS = (4.869e+24, 6.0518e6)
EARTH = (5.976e+24, 6.37814e6)
MARS = (6.421e+23, 3.3972e6)
JUPITER = (1.9e+27, 7.1492e7)
SATURN = (5.688e+26, 6.0268e7)
URANUS = (8.686e+25, 2.5559e7)
NEPTUNE = (1.024e+26, 2.4746e7)
def __init__(self, mass, radius):
self.mass = mass # in kilograms
self.radius = radius # in meters
@enum.property
def surface_gravity(self):
# universal gravitational constant (m3 kg-1 s-2)
G = 6.67300E-11
return G * self.mass / (self.radius * self.radius)
self.assertEqual(round(Planet.EARTH.surface_gravity, 2), 9.80)
self.assertEqual(Planet.EARTH.value, (5.976e+24, 6.37814e6))
def test_ignore(self):
class Period(timedelta, Enum):
'''
different lengths of time
'''
def __new__(cls, value, period):
obj = timedelta.__new__(cls, value)
obj._value_ = value
obj.period = period
return obj
_ignore_ = 'Period i'
Period = vars()
for i in range(13):
Period['month_%d' % i] = i*30, 'month'
for i in range(53):
Period['week_%d' % i] = i*7, 'week'
for i in range(32):
Period['day_%d' % i] = i, 'day'
OneDay = day_1
OneWeek = week_1
OneMonth = month_1
self.assertFalse(hasattr(Period, '_ignore_'))
self.assertFalse(hasattr(Period, 'Period'))
self.assertFalse(hasattr(Period, 'i'))
self.assertTrue(isinstance(Period.day_1, timedelta))
self.assertTrue(Period.month_1 is Period.day_30)
self.assertTrue(Period.week_4 is Period.day_28)
def test_nonhash_value(self):
class AutoNumberInAList(Enum):
def __new__(cls):
value = [len(cls.__members__) + 1]
obj = object.__new__(cls)
obj._value_ = value
return obj
class ColorInAList(AutoNumberInAList):
red = ()
green = ()
blue = ()
self.assertEqual(list(ColorInAList), [ColorInAList.red, ColorInAList.green, ColorInAList.blue])
for enum, value in zip(ColorInAList, range(3)):
value += 1
self.assertEqual(enum.value, [value])
self.assertIs(ColorInAList([value]), enum)
def test_conflicting_types_resolved_in_new(self):
class LabelledIntEnum(int, Enum):
def __new__(cls, *args):
value, label = args
obj = int.__new__(cls, value)
obj.label = label
obj._value_ = value
return obj
class LabelledList(LabelledIntEnum):
unprocessed = (1, "Unprocessed")
payment_complete = (2, "Payment Complete")
self.assertEqual(list(LabelledList), [LabelledList.unprocessed, LabelledList.payment_complete])
self.assertEqual(LabelledList.unprocessed, 1)
self.assertEqual(LabelledList(1), LabelledList.unprocessed)
def test_default_missing_no_chained_exception(self):
class Color(Enum):
RED = 1
GREEN = 2
BLUE = 3
try:
Color(7)
except ValueError as exc:
self.assertTrue(exc.__context__ is None)
else:
raise Exception('Exception not raised.')
def test_missing_override(self):
class Color(Enum):
red = 1
green = 2
blue = 3
@classmethod
def _missing_(cls, item):
if item == 'three':
return cls.blue
elif item == 'bad return':
# trigger internal error
return 5
elif item == 'error out':
raise ZeroDivisionError
else:
# trigger not found
return None
self.assertIs(Color('three'), Color.blue)
try:
Color(7)
except ValueError as exc:
self.assertTrue(exc.__context__ is None)
else:
raise Exception('Exception not raised.')
try:
Color('bad return')
except TypeError as exc:
self.assertTrue(isinstance(exc.__context__, ValueError))
else:
raise Exception('Exception not raised.')
try:
Color('error out')
except ZeroDivisionError as exc:
self.assertTrue(isinstance(exc.__context__, ValueError))
else:
raise Exception('Exception not raised.')
def test_missing_exceptions_reset(self):
import gc
import weakref
#
class TestEnum(enum.Enum):
VAL1 = 'val1'
VAL2 = 'val2'
#
class Class1:
def __init__(self):
# Gracefully handle an exception of our own making
try:
raise ValueError()
except ValueError:
pass
#
class Class2:
def __init__(self):
# Gracefully handle an exception of Enum's making
try:
TestEnum('invalid_value')
except ValueError:
pass
# No strong refs here so these are free to die.
class_1_ref = weakref.ref(Class1())
class_2_ref = weakref.ref(Class2())
#
# The exception raised by Enum used to create a reference loop and thus
# Class2 instances would stick around until the next garbage collection
# cycle, unlike Class1. Verify Class2 no longer does this.
gc.collect() # For PyPy or other GCs.
self.assertIs(class_1_ref(), None)
self.assertIs(class_2_ref(), None)
def test_multiple_mixin(self):
class MaxMixin:
@classproperty
def MAX(cls):
max = len(cls)
cls.MAX = max
return max
class StrMixin:
def __str__(self):
return self._name_.lower()
class SomeEnum(Enum):
def behavior(self):
return 'booyah'
class AnotherEnum(Enum):
def behavior(self):
return 'nuhuh!'
def social(self):
return "what's up?"
class Color(MaxMixin, Enum):
RED = auto()
GREEN = auto()
BLUE = auto()
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 3)
self.assertEqual(Color.MAX, 3)
self.assertEqual(str(Color.BLUE), 'Color.BLUE')
class Color(MaxMixin, StrMixin, Enum):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__ # needed as of 3.11
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 3)
self.assertEqual(Color.MAX, 3)
self.assertEqual(str(Color.BLUE), 'blue')
class Color(StrMixin, MaxMixin, Enum):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__ # needed as of 3.11
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 3)
self.assertEqual(Color.MAX, 3)
self.assertEqual(str(Color.BLUE), 'blue')
class CoolColor(StrMixin, SomeEnum, Enum):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__ # needed as of 3.11
self.assertEqual(CoolColor.RED.value, 1)
self.assertEqual(CoolColor.GREEN.value, 2)
self.assertEqual(CoolColor.BLUE.value, 3)
self.assertEqual(str(CoolColor.BLUE), 'blue')
self.assertEqual(CoolColor.RED.behavior(), 'booyah')
class CoolerColor(StrMixin, AnotherEnum, Enum):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__ # needed as of 3.11
self.assertEqual(CoolerColor.RED.value, 1)
self.assertEqual(CoolerColor.GREEN.value, 2)
self.assertEqual(CoolerColor.BLUE.value, 3)
self.assertEqual(str(CoolerColor.BLUE), 'blue')
self.assertEqual(CoolerColor.RED.behavior(), 'nuhuh!')
self.assertEqual(CoolerColor.RED.social(), "what's up?")
class CoolestColor(StrMixin, SomeEnum, AnotherEnum):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__ # needed as of 3.11
self.assertEqual(CoolestColor.RED.value, 1)
self.assertEqual(CoolestColor.GREEN.value, 2)
self.assertEqual(CoolestColor.BLUE.value, 3)
self.assertEqual(str(CoolestColor.BLUE), 'blue')
self.assertEqual(CoolestColor.RED.behavior(), 'booyah')
self.assertEqual(CoolestColor.RED.social(), "what's up?")
class ConfusedColor(StrMixin, AnotherEnum, SomeEnum):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__ # needed as of 3.11
self.assertEqual(ConfusedColor.RED.value, 1)
self.assertEqual(ConfusedColor.GREEN.value, 2)
self.assertEqual(ConfusedColor.BLUE.value, 3)
self.assertEqual(str(ConfusedColor.BLUE), 'blue')
self.assertEqual(ConfusedColor.RED.behavior(), 'nuhuh!')
self.assertEqual(ConfusedColor.RED.social(), "what's up?")
class ReformedColor(StrMixin, IntEnum, SomeEnum, AnotherEnum):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__ # needed as of 3.11
self.assertEqual(ReformedColor.RED.value, 1)
self.assertEqual(ReformedColor.GREEN.value, 2)
self.assertEqual(ReformedColor.BLUE.value, 3)
self.assertEqual(str(ReformedColor.BLUE), 'blue')
self.assertEqual(ReformedColor.RED.behavior(), 'booyah')
self.assertEqual(ConfusedColor.RED.social(), "what's up?")
self.assertTrue(issubclass(ReformedColor, int))
def test_multiple_inherited_mixin(self):
@unique
class Decision1(StrEnum):
REVERT = "REVERT"
REVERT_ALL = "REVERT_ALL"
RETRY = "RETRY"
class MyEnum(StrEnum):
pass
@unique
class Decision2(MyEnum):
REVERT = "REVERT"
REVERT_ALL = "REVERT_ALL"
RETRY = "RETRY"
def test_multiple_mixin_inherited(self):
class MyInt(int):
def __new__(cls, value):
return super().__new__(cls, value)
class HexMixin:
def __repr__(self):
return hex(self)
class MyIntEnum(HexMixin, MyInt, enum.Enum):
__repr__ = HexMixin.__repr__
class Foo(MyIntEnum):
TEST = 1
self.assertTrue(isinstance(Foo.TEST, MyInt))
self.assertEqual(Foo._member_type_, MyInt)
self.assertEqual(repr(Foo.TEST), "0x1")
class Fee(MyIntEnum):
TEST = 1
def __new__(cls, value):
value += 1
member = int.__new__(cls, value)
member._value_ = value
return member
self.assertEqual(Fee.TEST, 2)
def test_multiple_mixin_with_common_data_type(self):
class CaseInsensitiveStrEnum(str, Enum):
@classmethod
def _missing_(cls, value):
for member in cls._member_map_.values():
if member._value_.lower() == value.lower():
return member
return super()._missing_(value)
#
class LenientStrEnum(str, Enum):
def __init__(self, *args):
self._valid = True
@classmethod
def _missing_(cls, value):
unknown = cls._member_type_.__new__(cls, value)
unknown._valid = False
unknown._name_ = value.upper()
unknown._value_ = value
cls._member_map_[value] = unknown
return unknown
@enum.property
def valid(self):
return self._valid
#
class JobStatus(CaseInsensitiveStrEnum, LenientStrEnum):
ACTIVE = "active"
PENDING = "pending"
TERMINATED = "terminated"
#
JS = JobStatus
self.assertEqual(list(JobStatus), [JS.ACTIVE, JS.PENDING, JS.TERMINATED])
self.assertEqual(JS.ACTIVE, 'active')
self.assertEqual(JS.ACTIVE.value, 'active')
self.assertIs(JS('Active'), JS.ACTIVE)
self.assertTrue(JS.ACTIVE.valid)
missing = JS('missing')
self.assertEqual(list(JobStatus), [JS.ACTIVE, JS.PENDING, JS.TERMINATED])
self.assertEqual(JS.ACTIVE, 'active')
self.assertEqual(JS.ACTIVE.value, 'active')
self.assertIs(JS('Active'), JS.ACTIVE)
self.assertTrue(JS.ACTIVE.valid)
self.assertTrue(isinstance(missing, JS))
self.assertFalse(missing.valid)
def test_empty_globals(self):
# bpo-35717: sys._getframe(2).f_globals['__name__'] fails with KeyError
# when using compile and exec because f_globals is empty
code = "from enum import Enum; Enum('Animal', 'ANT BEE CAT DOG')"
code = compile(code, "<string>", "exec")
global_ns = {}
local_ls = {}
exec(code, global_ns, local_ls)
def test_strenum(self):
class GoodStrEnum(StrEnum):
one = '1'
two = '2'
three = b'3', 'ascii'
four = b'4', 'latin1', 'strict'
self.assertEqual(GoodStrEnum.one, '1')
self.assertEqual(str(GoodStrEnum.one), '1')
self.assertEqual('{}'.format(GoodStrEnum.one), '1')
self.assertEqual(GoodStrEnum.one, str(GoodStrEnum.one))
self.assertEqual(GoodStrEnum.one, '{}'.format(GoodStrEnum.one))
self.assertEqual(repr(GoodStrEnum.one), "<GoodStrEnum.one: '1'>")
#
class DumbMixin:
def __str__(self):
return "don't do this"
class DumbStrEnum(DumbMixin, StrEnum):
five = '5'
six = '6'
seven = '7'
__str__ = DumbMixin.__str__ # needed as of 3.11
self.assertEqual(DumbStrEnum.seven, '7')
self.assertEqual(str(DumbStrEnum.seven), "don't do this")
#
class EnumMixin(Enum):
def hello(self):
print('hello from %s' % (self, ))
class HelloEnum(EnumMixin, StrEnum):
eight = '8'
self.assertEqual(HelloEnum.eight, '8')
self.assertEqual(HelloEnum.eight, str(HelloEnum.eight))
#
class GoodbyeMixin:
def goodbye(self):
print('%s wishes you a fond farewell')
class GoodbyeEnum(GoodbyeMixin, EnumMixin, StrEnum):
nine = '9'
self.assertEqual(GoodbyeEnum.nine, '9')
self.assertEqual(GoodbyeEnum.nine, str(GoodbyeEnum.nine))
#
with self.assertRaisesRegex(TypeError, '1 is not a string'):
class FirstFailedStrEnum(StrEnum):
one = 1
two = '2'
with self.assertRaisesRegex(TypeError, "2 is not a string"):
class SecondFailedStrEnum(StrEnum):
one = '1'
two = 2,
three = '3'
with self.assertRaisesRegex(TypeError, '2 is not a string'):
class ThirdFailedStrEnum(StrEnum):
one = '1'
two = 2
with self.assertRaisesRegex(TypeError, 'encoding must be a string, not %r' % (sys.getdefaultencoding, )):
class ThirdFailedStrEnum(StrEnum):
one = '1'
two = b'2', sys.getdefaultencoding
with self.assertRaisesRegex(TypeError, 'errors must be a string, not 9'):
class ThirdFailedStrEnum(StrEnum):
one = '1'
two = b'2', 'ascii', 9
def test_custom_strenum(self):
class CustomStrEnum(str, Enum):
pass
class OkayEnum(CustomStrEnum):
one = '1'
two = '2'
three = b'3', 'ascii'
four = b'4', 'latin1', 'strict'
self.assertEqual(OkayEnum.one, '1')
self.assertEqual(str(OkayEnum.one), 'OkayEnum.one')
self.assertEqual('{}'.format(OkayEnum.one), 'OkayEnum.one')
self.assertEqual(repr(OkayEnum.one), "<OkayEnum.one: '1'>")
#
class DumbMixin:
def __str__(self):
return "don't do this"
class DumbStrEnum(DumbMixin, CustomStrEnum):
five = '5'
six = '6'
seven = '7'
__str__ = DumbMixin.__str__ # needed as of 3.11
self.assertEqual(DumbStrEnum.seven, '7')
self.assertEqual(str(DumbStrEnum.seven), "don't do this")
#
class EnumMixin(Enum):
def hello(self):
print('hello from %s' % (self, ))
class HelloEnum(EnumMixin, CustomStrEnum):
eight = '8'
self.assertEqual(HelloEnum.eight, '8')
self.assertEqual(str(HelloEnum.eight), 'HelloEnum.eight')
#
class GoodbyeMixin:
def goodbye(self):
print('%s wishes you a fond farewell')
class GoodbyeEnum(GoodbyeMixin, EnumMixin, CustomStrEnum):
nine = '9'
self.assertEqual(GoodbyeEnum.nine, '9')
self.assertEqual(str(GoodbyeEnum.nine), 'GoodbyeEnum.nine')
#
class FirstFailedStrEnum(CustomStrEnum):
one = 1 # this will become '1'
two = '2'
class SecondFailedStrEnum(CustomStrEnum):
one = '1'
two = 2, # this will become '2'
three = '3'
class ThirdFailedStrEnum(CustomStrEnum):
one = '1'
two = 2 # this will become '2'
with self.assertRaisesRegex(TypeError, '.encoding. must be str, not '):
class ThirdFailedStrEnum(CustomStrEnum):
one = '1'
two = b'2', sys.getdefaultencoding
with self.assertRaisesRegex(TypeError, '.errors. must be str, not '):
class ThirdFailedStrEnum(CustomStrEnum):
one = '1'
two = b'2', 'ascii', 9
def test_missing_value_error(self):
with self.assertRaisesRegex(TypeError, "_value_ not set in __new__"):
class Combined(str, Enum):
#
def __new__(cls, value, sequence):
enum = str.__new__(cls, value)
if '(' in value:
fis_name, segment = value.split('(', 1)
segment = segment.strip(' )')
else:
fis_name = value
segment = None
enum.fis_name = fis_name
enum.segment = segment
enum.sequence = sequence
return enum
#
def __repr__(self):
return "<%s.%s>" % (self.__class__.__name__, self._name_)
#
key_type = 'An$(1,2)', 0
company_id = 'An$(3,2)', 1
code = 'An$(5,1)', 2
description = 'Bn$', 3
def test_private_variable_is_normal_attribute(self):
class Private(Enum):
__corporal = 'Radar'
__major_ = 'Hoolihan'
self.assertEqual(Private._Private__corporal, 'Radar')
self.assertEqual(Private._Private__major_, 'Hoolihan')
def test_exception_for_member_from_member_access(self):
with self.assertRaisesRegex(AttributeError, "<enum .Di.> member has no attribute .NO."):
class Di(Enum):
YES = 1
NO = 0
nope = Di.YES.NO
def test_dynamic_members_with_static_methods(self):
#
foo_defines = {'FOO_CAT': 'aloof', 'BAR_DOG': 'friendly', 'FOO_HORSE': 'big'}
class Foo(Enum):
vars().update({
k: v
for k, v in foo_defines.items()
if k.startswith('FOO_')
})
def upper(self):
return self.value.upper()
self.assertEqual(list(Foo), [Foo.FOO_CAT, Foo.FOO_HORSE])
self.assertEqual(Foo.FOO_CAT.value, 'aloof')
self.assertEqual(Foo.FOO_HORSE.upper(), 'BIG')
#
with self.assertRaisesRegex(TypeError, "'FOO_CAT' already defined as 'aloof'"):
class FooBar(Enum):
vars().update({
k: v
for k, v in foo_defines.items()
if k.startswith('FOO_')
},
**{'FOO_CAT': 'small'},
)
def upper(self):
return self.value.upper()
def test_repr_with_dataclass(self):
"ensure dataclass-mixin has correct repr()"
from dataclasses import dataclass
@dataclass
class Foo:
__qualname__ = 'Foo'
a: int = 0
class Entries(Foo, Enum):
ENTRY1 = Foo(1)
self.assertEqual(repr(Entries.ENTRY1), '<Entries.ENTRY1: Foo(a=1)>')
def test_repr_with_non_data_type_mixin(self):
# non-data_type is a mixin that doesn't define __new__
class Foo:
def __init__(self, a):
self.a = a
def __repr__(self):
return f'Foo(a={self.a!r})'
class Entries(Foo, Enum):
ENTRY1 = Foo(1)
self.assertEqual(repr(Entries.ENTRY1), '<Entries.ENTRY1: Foo(a=1)>')
def test_value_backup_assign(self):
# check that enum will add missing values when custom __new__ does not
class Some(Enum):
def __new__(cls, val):
return object.__new__(cls)
x = 1
y = 2
self.assertEqual(Some.x.value, 1)
self.assertEqual(Some.y.value, 2)
class TestOrder(unittest.TestCase):
"test usage of the `_order_` attribute"
def test_same_members(self):
class Color(Enum):
_order_ = 'red green blue'
red = 1
green = 2
blue = 3
def test_same_members_with_aliases(self):
class Color(Enum):
_order_ = 'red green blue'
red = 1
green = 2
blue = 3
verde = green
def test_same_members_wrong_order(self):
with self.assertRaisesRegex(TypeError, 'member order does not match _order_'):
class Color(Enum):
_order_ = 'red green blue'
red = 1
blue = 3
green = 2
def test_order_has_extra_members(self):
with self.assertRaisesRegex(TypeError, 'member order does not match _order_'):
class Color(Enum):
_order_ = 'red green blue purple'
red = 1
green = 2
blue = 3
def test_order_has_extra_members_with_aliases(self):
with self.assertRaisesRegex(TypeError, 'member order does not match _order_'):
class Color(Enum):
_order_ = 'red green blue purple'
red = 1
green = 2
blue = 3
verde = green
def test_enum_has_extra_members(self):
with self.assertRaisesRegex(TypeError, 'member order does not match _order_'):
class Color(Enum):
_order_ = 'red green blue'
red = 1
green = 2
blue = 3
purple = 4
def test_enum_has_extra_members_with_aliases(self):
with self.assertRaisesRegex(TypeError, 'member order does not match _order_'):
class Color(Enum):
_order_ = 'red green blue'
red = 1
green = 2
blue = 3
purple = 4
verde = green
class OldTestFlag(unittest.TestCase):
"""Tests of the Flags."""
class Perm(Flag):
R, W, X = 4, 2, 1
class Open(Flag):
RO = 0
WO = 1
RW = 2
AC = 3
CE = 1<<19
class Color(Flag):
BLACK = 0
RED = 1
ROJO = 1
GREEN = 2
BLUE = 4
PURPLE = RED|BLUE
WHITE = RED|GREEN|BLUE
BLANCO = RED|GREEN|BLUE
def test_or(self):
Perm = self.Perm
for i in Perm:
for j in Perm:
self.assertEqual((i | j), Perm(i.value | j.value))
self.assertEqual((i | j).value, i.value | j.value)
self.assertIs(type(i | j), Perm)
for i in Perm:
self.assertIs(i | i, i)
Open = self.Open
self.assertIs(Open.RO | Open.CE, Open.CE)
def test_and(self):
Perm = self.Perm
RW = Perm.R | Perm.W
RX = Perm.R | Perm.X
WX = Perm.W | Perm.X
RWX = Perm.R | Perm.W | Perm.X
values = list(Perm) + [RW, RX, WX, RWX, Perm(0)]
for i in values:
for j in values:
self.assertEqual((i & j).value, i.value & j.value)
self.assertIs(type(i & j), Perm)
for i in Perm:
self.assertIs(i & i, i)
self.assertIs(i & RWX, i)
self.assertIs(RWX & i, i)
Open = self.Open
self.assertIs(Open.RO & Open.CE, Open.RO)
def test_xor(self):
Perm = self.Perm
for i in Perm:
for j in Perm:
self.assertEqual((i ^ j).value, i.value ^ j.value)
self.assertIs(type(i ^ j), Perm)
for i in Perm:
self.assertIs(i ^ Perm(0), i)
self.assertIs(Perm(0) ^ i, i)
Open = self.Open
self.assertIs(Open.RO ^ Open.CE, Open.CE)
self.assertIs(Open.CE ^ Open.CE, Open.RO)
def test_invert(self):
Perm = self.Perm
RW = Perm.R | Perm.W
RX = Perm.R | Perm.X
WX = Perm.W | Perm.X
RWX = Perm.R | Perm.W | Perm.X
values = list(Perm) + [RW, RX, WX, RWX, Perm(0)]
for i in values:
self.assertIs(type(~i), Perm)
self.assertEqual(~~i, i)
for i in Perm:
self.assertIs(~~i, i)
Open = self.Open
self.assertIs(Open.WO & ~Open.WO, Open.RO)
self.assertIs((Open.WO|Open.CE) & ~Open.WO, Open.CE)
def test_bool(self):
Perm = self.Perm
for f in Perm:
self.assertTrue(f)
Open = self.Open
for f in Open:
self.assertEqual(bool(f.value), bool(f))
def test_boundary(self):
self.assertIs(enum.Flag._boundary_, STRICT)
class Iron(Flag, boundary=STRICT):
ONE = 1
TWO = 2
EIGHT = 8
self.assertIs(Iron._boundary_, STRICT)
#
class Water(Flag, boundary=CONFORM):
ONE = 1
TWO = 2
EIGHT = 8
self.assertIs(Water._boundary_, CONFORM)
#
class Space(Flag, boundary=EJECT):
ONE = 1
TWO = 2
EIGHT = 8
self.assertIs(Space._boundary_, EJECT)
#
class Bizarre(Flag, boundary=KEEP):
b = 3
c = 4
d = 6
#
self.assertRaisesRegex(ValueError, 'invalid value 7', Iron, 7)
#
self.assertIs(Water(7), Water.ONE|Water.TWO)
self.assertIs(Water(~9), Water.TWO)
#
self.assertEqual(Space(7), 7)
self.assertTrue(type(Space(7)) is int)
#
self.assertEqual(list(Bizarre), [Bizarre.c])
self.assertIs(Bizarre(3), Bizarre.b)
self.assertIs(Bizarre(6), Bizarre.d)
def test_iter(self):
Color = self.Color
Open = self.Open
self.assertEqual(list(Color), [Color.RED, Color.GREEN, Color.BLUE])
self.assertEqual(list(Open), [Open.WO, Open.RW, Open.CE])
def test_programatic_function_string(self):
Perm = Flag('Perm', 'R W X')
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<i
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_string_with_start(self):
Perm = Flag('Perm', 'R W X', start=8)
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 8<<i
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_string_list(self):
Perm = Flag('Perm', ['R', 'W', 'X'])
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<i
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_iterable(self):
Perm = Flag('Perm', (('R', 2), ('W', 8), ('X', 32)))
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<(2*i+1)
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_from_dict(self):
Perm = Flag('Perm', OrderedDict((('R', 2), ('W', 8), ('X', 32))))
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<(2*i+1)
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_pickle(self):
if isinstance(FlagStooges, Exception):
raise FlagStooges
test_pickle_dump_load(self.assertIs, FlagStooges.CURLY|FlagStooges.MOE)
test_pickle_dump_load(self.assertIs, FlagStooges)
@unittest.skipIf(
python_version >= (3, 12),
'__contains__ now returns True/False for all inputs',
)
def test_contains_er(self):
Open = self.Open
Color = self.Color
self.assertFalse(Color.BLACK in Open)
self.assertFalse(Open.RO in Color)
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
'BLACK' in Color
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
'RO' in Open
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
1 in Color
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
1 in Open
@unittest.skipIf(
python_version < (3, 12),
'__contains__ only works with enum memmbers before 3.12',
)
def test_contains_tf(self):
Open = self.Open
Color = self.Color
self.assertFalse(Color.BLACK in Open)
self.assertFalse(Open.RO in Color)
self.assertFalse('BLACK' in Color)
self.assertFalse('RO' in Open)
self.assertTrue(1 in Color)
self.assertTrue(1 in Open)
def test_member_contains(self):
Perm = self.Perm
R, W, X = Perm
RW = R | W
RX = R | X
WX = W | X
RWX = R | W | X
self.assertTrue(R in RW)
self.assertTrue(R in RX)
self.assertTrue(R in RWX)
self.assertTrue(W in RW)
self.assertTrue(W in WX)
self.assertTrue(W in RWX)
self.assertTrue(X in RX)
self.assertTrue(X in WX)
self.assertTrue(X in RWX)
self.assertFalse(R in WX)
self.assertFalse(W in RX)
self.assertFalse(X in RW)
def test_member_iter(self):
Color = self.Color
self.assertEqual(list(Color.BLACK), [])
self.assertEqual(list(Color.PURPLE), [Color.RED, Color.BLUE])
self.assertEqual(list(Color.BLUE), [Color.BLUE])
self.assertEqual(list(Color.GREEN), [Color.GREEN])
self.assertEqual(list(Color.WHITE), [Color.RED, Color.GREEN, Color.BLUE])
self.assertEqual(list(Color.WHITE), [Color.RED, Color.GREEN, Color.BLUE])
def test_member_length(self):
self.assertEqual(self.Color.__len__(self.Color.BLACK), 0)
self.assertEqual(self.Color.__len__(self.Color.GREEN), 1)
self.assertEqual(self.Color.__len__(self.Color.PURPLE), 2)
self.assertEqual(self.Color.__len__(self.Color.BLANCO), 3)
def test_number_reset_and_order_cleanup(self):
class Confused(Flag):
_order_ = 'ONE TWO FOUR DOS EIGHT SIXTEEN'
ONE = auto()
TWO = auto()
FOUR = auto()
DOS = 2
EIGHT = auto()
SIXTEEN = auto()
self.assertEqual(
list(Confused),
[Confused.ONE, Confused.TWO, Confused.FOUR, Confused.EIGHT, Confused.SIXTEEN])
self.assertIs(Confused.TWO, Confused.DOS)
self.assertEqual(Confused.DOS._value_, 2)
self.assertEqual(Confused.EIGHT._value_, 8)
self.assertEqual(Confused.SIXTEEN._value_, 16)
def test_aliases(self):
Color = self.Color
self.assertEqual(Color(1).name, 'RED')
self.assertEqual(Color['ROJO'].name, 'RED')
self.assertEqual(Color(7).name, 'WHITE')
self.assertEqual(Color['BLANCO'].name, 'WHITE')
self.assertIs(Color.BLANCO, Color.WHITE)
Open = self.Open
self.assertIs(Open['AC'], Open.AC)
def test_auto_number(self):
class Color(Flag):
red = auto()
blue = auto()
green = auto()
self.assertEqual(list(Color), [Color.red, Color.blue, Color.green])
self.assertEqual(Color.red.value, 1)
self.assertEqual(Color.blue.value, 2)
self.assertEqual(Color.green.value, 4)
def test_auto_number_garbage(self):
with self.assertRaisesRegex(TypeError, 'invalid flag value .not an int.'):
class Color(Flag):
red = 'not an int'
blue = auto()
def test_duplicate_auto(self):
class Dupes(Enum):
first = primero = auto()
second = auto()
third = auto()
self.assertEqual([Dupes.first, Dupes.second, Dupes.third], list(Dupes))
def test_multiple_mixin(self):
class AllMixin:
@classproperty
def ALL(cls):
members = list(cls)
all_value = None
if members:
all_value = members[0]
for member in members[1:]:
all_value |= member
cls.ALL = all_value
return all_value
class StrMixin:
def __str__(self):
return self._name_.lower()
class Color(AllMixin, Flag):
RED = auto()
GREEN = auto()
BLUE = auto()
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 4)
self.assertEqual(Color.ALL.value, 7)
self.assertEqual(str(Color.BLUE), 'Color.BLUE')
class Color(AllMixin, StrMixin, Flag):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 4)
self.assertEqual(Color.ALL.value, 7)
self.assertEqual(str(Color.BLUE), 'blue')
class Color(StrMixin, AllMixin, Flag):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 4)
self.assertEqual(Color.ALL.value, 7)
self.assertEqual(str(Color.BLUE), 'blue')
@threading_helper.reap_threads
def test_unique_composite(self):
# override __eq__ to be identity only
class TestFlag(Flag):
one = auto()
two = auto()
three = auto()
four = auto()
five = auto()
six = auto()
seven = auto()
eight = auto()
def __eq__(self, other):
return self is other
def __hash__(self):
return hash(self._value_)
# have multiple threads competing to complete the composite members
seen = set()
failed = False
def cycle_enum():
nonlocal failed
try:
for i in range(256):
seen.add(TestFlag(i))
except Exception:
failed = True
threads = [
threading.Thread(target=cycle_enum)
for _ in range(8)
]
with threading_helper.start_threads(threads):
pass
# check that only 248 members were created
self.assertFalse(
failed,
'at least one thread failed while creating composite members')
self.assertEqual(256, len(seen), 'too many composite members created')
def test_init_subclass(self):
class MyEnum(Flag):
def __init_subclass__(cls, **kwds):
super().__init_subclass__(**kwds)
self.assertFalse(cls.__dict__.get('_test', False))
cls._test1 = 'MyEnum'
#
class TheirEnum(MyEnum):
def __init_subclass__(cls, **kwds):
super(TheirEnum, cls).__init_subclass__(**kwds)
cls._test2 = 'TheirEnum'
class WhoseEnum(TheirEnum):
def __init_subclass__(cls, **kwds):
pass
class NoEnum(WhoseEnum):
ONE = 1
self.assertEqual(TheirEnum.__dict__['_test1'], 'MyEnum')
self.assertEqual(WhoseEnum.__dict__['_test1'], 'MyEnum')
self.assertEqual(WhoseEnum.__dict__['_test2'], 'TheirEnum')
self.assertFalse(NoEnum.__dict__.get('_test1', False))
self.assertFalse(NoEnum.__dict__.get('_test2', False))
#
class OurEnum(MyEnum):
def __init_subclass__(cls, **kwds):
cls._test2 = 'OurEnum'
class WhereEnum(OurEnum):
def __init_subclass__(cls, **kwds):
pass
class NeverEnum(WhereEnum):
ONE = 1
self.assertEqual(OurEnum.__dict__['_test1'], 'MyEnum')
self.assertFalse(WhereEnum.__dict__.get('_test1', False))
self.assertEqual(WhereEnum.__dict__['_test2'], 'OurEnum')
self.assertFalse(NeverEnum.__dict__.get('_test1', False))
self.assertFalse(NeverEnum.__dict__.get('_test2', False))
class OldTestIntFlag(unittest.TestCase):
"""Tests of the IntFlags."""
class Perm(IntFlag):
R = 1 << 2
W = 1 << 1
X = 1 << 0
class Open(IntFlag):
RO = 0
WO = 1
RW = 2
AC = 3
CE = 1<<19
class Color(IntFlag):
BLACK = 0
RED = 1
ROJO = 1
GREEN = 2
BLUE = 4
PURPLE = RED|BLUE
WHITE = RED|GREEN|BLUE
BLANCO = RED|GREEN|BLUE
class Skip(IntFlag):
FIRST = 1
SECOND = 2
EIGHTH = 8
def test_type(self):
Perm = self.Perm
self.assertTrue(Perm._member_type_ is int)
Open = self.Open
for f in Perm:
self.assertTrue(isinstance(f, Perm))
self.assertEqual(f, f.value)
self.assertTrue(isinstance(Perm.W | Perm.X, Perm))
self.assertEqual(Perm.W | Perm.X, 3)
for f in Open:
self.assertTrue(isinstance(f, Open))
self.assertEqual(f, f.value)
self.assertTrue(isinstance(Open.WO | Open.RW, Open))
self.assertEqual(Open.WO | Open.RW, 3)
def test_global_repr_keep(self):
self.assertEqual(
repr(HeadlightsK(0)),
'%s.OFF_K' % SHORT_MODULE,
)
self.assertEqual(
repr(HeadlightsK(2**0 + 2**2 + 2**3)),
'%(m)s.LOW_BEAM_K|%(m)s.FOG_K|8' % {'m': SHORT_MODULE},
)
self.assertEqual(
repr(HeadlightsK(2**3)),
'%(m)s.HeadlightsK(8)' % {'m': SHORT_MODULE},
)
def test_global_repr_conform1(self):
self.assertEqual(
repr(HeadlightsC(0)),
'%s.OFF_C' % SHORT_MODULE,
)
self.assertEqual(
repr(HeadlightsC(2**0 + 2**2 + 2**3)),
'%(m)s.LOW_BEAM_C|%(m)s.FOG_C' % {'m': SHORT_MODULE},
)
self.assertEqual(
repr(HeadlightsC(2**3)),
'%(m)s.OFF_C' % {'m': SHORT_MODULE},
)
def test_format(self):
Perm = self.Perm
self.assertEqual(format(Perm.R, ''), '4')
self.assertEqual(format(Perm.R | Perm.X, ''), '5')
#
class NewPerm(IntFlag):
R = 1 << 2
W = 1 << 1
X = 1 << 0
def __str__(self):
return self._name_
self.assertEqual(format(NewPerm.R, ''), 'R')
self.assertEqual(format(NewPerm.R | Perm.X, ''), 'R|X')
def test_or(self):
Perm = self.Perm
for i in Perm:
for j in Perm:
self.assertEqual(i | j, i.value | j.value)
self.assertEqual((i | j).value, i.value | j.value)
self.assertIs(type(i | j), Perm)
for j in range(8):
self.assertEqual(i | j, i.value | j)
self.assertEqual((i | j).value, i.value | j)
self.assertIs(type(i | j), Perm)
self.assertEqual(j | i, j | i.value)
self.assertEqual((j | i).value, j | i.value)
self.assertIs(type(j | i), Perm)
for i in Perm:
self.assertIs(i | i, i)
self.assertIs(i | 0, i)
self.assertIs(0 | i, i)
Open = self.Open
self.assertIs(Open.RO | Open.CE, Open.CE)
def test_and(self):
Perm = self.Perm
RW = Perm.R | Perm.W
RX = Perm.R | Perm.X
WX = Perm.W | Perm.X
RWX = Perm.R | Perm.W | Perm.X
values = list(Perm) + [RW, RX, WX, RWX, Perm(0)]
for i in values:
for j in values:
self.assertEqual(i & j, i.value & j.value, 'i is %r, j is %r' % (i, j))
self.assertEqual((i & j).value, i.value & j.value, 'i is %r, j is %r' % (i, j))
self.assertIs(type(i & j), Perm, 'i is %r, j is %r' % (i, j))
for j in range(8):
self.assertEqual(i & j, i.value & j)
self.assertEqual((i & j).value, i.value & j)
self.assertIs(type(i & j), Perm)
self.assertEqual(j & i, j & i.value)
self.assertEqual((j & i).value, j & i.value)
self.assertIs(type(j & i), Perm)
for i in Perm:
self.assertIs(i & i, i)
self.assertIs(i & 7, i)
self.assertIs(7 & i, i)
Open = self.Open
self.assertIs(Open.RO & Open.CE, Open.RO)
def test_xor(self):
Perm = self.Perm
for i in Perm:
for j in Perm:
self.assertEqual(i ^ j, i.value ^ j.value)
self.assertEqual((i ^ j).value, i.value ^ j.value)
self.assertIs(type(i ^ j), Perm)
for j in range(8):
self.assertEqual(i ^ j, i.value ^ j)
self.assertEqual((i ^ j).value, i.value ^ j)
self.assertIs(type(i ^ j), Perm)
self.assertEqual(j ^ i, j ^ i.value)
self.assertEqual((j ^ i).value, j ^ i.value)
self.assertIs(type(j ^ i), Perm)
for i in Perm:
self.assertIs(i ^ 0, i)
self.assertIs(0 ^ i, i)
Open = self.Open
self.assertIs(Open.RO ^ Open.CE, Open.CE)
self.assertIs(Open.CE ^ Open.CE, Open.RO)
def test_invert(self):
Perm = self.Perm
RW = Perm.R | Perm.W
RX = Perm.R | Perm.X
WX = Perm.W | Perm.X
RWX = Perm.R | Perm.W | Perm.X
values = list(Perm) + [RW, RX, WX, RWX, Perm(0)]
for i in values:
self.assertEqual(~i, (~i).value)
self.assertIs(type(~i), Perm)
self.assertEqual(~~i, i)
for i in Perm:
self.assertIs(~~i, i)
Open = self.Open
self.assertIs(Open.WO & ~Open.WO, Open.RO)
self.assertIs((Open.WO|Open.CE) & ~Open.WO, Open.CE)
def test_boundary(self):
self.assertIs(enum.IntFlag._boundary_, EJECT)
class Iron(IntFlag, boundary=STRICT):
ONE = 1
TWO = 2
EIGHT = 8
self.assertIs(Iron._boundary_, STRICT)
#
class Water(IntFlag, boundary=CONFORM):
ONE = 1
TWO = 2
EIGHT = 8
self.assertIs(Water._boundary_, CONFORM)
#
class Space(IntFlag, boundary=EJECT):
ONE = 1
TWO = 2
EIGHT = 8
self.assertIs(Space._boundary_, EJECT)
#
#
class Bizarre(IntFlag, boundary=KEEP):
b = 3
c = 4
d = 6
#
self.assertRaisesRegex(ValueError, 'invalid value 5', Iron, 5)
#
self.assertIs(Water(7), Water.ONE|Water.TWO)
self.assertIs(Water(~9), Water.TWO)
#
self.assertEqual(Space(7), 7)
self.assertTrue(type(Space(7)) is int)
#
self.assertEqual(list(Bizarre), [Bizarre.c])
self.assertIs(Bizarre(3), Bizarre.b)
self.assertIs(Bizarre(6), Bizarre.d)
def test_iter(self):
Color = self.Color
Open = self.Open
self.assertEqual(list(Color), [Color.RED, Color.GREEN, Color.BLUE])
self.assertEqual(list(Open), [Open.WO, Open.RW, Open.CE])
def test_programatic_function_string(self):
Perm = IntFlag('Perm', 'R W X')
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<i
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e, v)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_string_with_start(self):
Perm = IntFlag('Perm', 'R W X', start=8)
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 8<<i
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e, v)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_string_list(self):
Perm = IntFlag('Perm', ['R', 'W', 'X'])
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<i
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e, v)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_iterable(self):
Perm = IntFlag('Perm', (('R', 2), ('W', 8), ('X', 32)))
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<(2*i+1)
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e, v)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_from_dict(self):
Perm = IntFlag('Perm', OrderedDict((('R', 2), ('W', 8), ('X', 32))))
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 3, Perm)
self.assertEqual(lst, [Perm.R, Perm.W, Perm.X])
for i, n in enumerate('R W X'.split()):
v = 1<<(2*i+1)
e = Perm(v)
self.assertEqual(e.value, v)
self.assertEqual(type(e.value), int)
self.assertEqual(e, v)
self.assertEqual(e.name, n)
self.assertIn(e, Perm)
self.assertIs(type(e), Perm)
def test_programatic_function_from_empty_list(self):
Perm = enum.IntFlag('Perm', [])
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 0, Perm)
Thing = enum.Enum('Thing', [])
lst = list(Thing)
self.assertEqual(len(lst), len(Thing))
self.assertEqual(len(Thing), 0, Thing)
def test_programatic_function_from_empty_tuple(self):
Perm = enum.IntFlag('Perm', ())
lst = list(Perm)
self.assertEqual(len(lst), len(Perm))
self.assertEqual(len(Perm), 0, Perm)
Thing = enum.Enum('Thing', ())
self.assertEqual(len(lst), len(Thing))
self.assertEqual(len(Thing), 0, Thing)
@unittest.skipIf(
python_version >= (3, 12),
'__contains__ now returns True/False for all inputs',
)
def test_contains_er(self):
Open = self.Open
Color = self.Color
self.assertTrue(Color.GREEN in Color)
self.assertTrue(Open.RW in Open)
self.assertFalse(Color.GREEN in Open)
self.assertFalse(Open.RW in Color)
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
'GREEN' in Color
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
'RW' in Open
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
2 in Color
with self.assertRaises(TypeError):
with self.assertWarns(DeprecationWarning):
2 in Open
@unittest.skipIf(
python_version < (3, 12),
'__contains__ only works with enum memmbers before 3.12',
)
def test_contains_tf(self):
Open = self.Open
Color = self.Color
self.assertTrue(Color.GREEN in Color)
self.assertTrue(Open.RW in Open)
self.assertTrue(Color.GREEN in Open)
self.assertTrue(Open.RW in Color)
self.assertFalse('GREEN' in Color)
self.assertFalse('RW' in Open)
self.assertTrue(2 in Color)
self.assertTrue(2 in Open)
def test_member_contains(self):
Perm = self.Perm
R, W, X = Perm
RW = R | W
RX = R | X
WX = W | X
RWX = R | W | X
self.assertTrue(R in RW)
self.assertTrue(R in RX)
self.assertTrue(R in RWX)
self.assertTrue(W in RW)
self.assertTrue(W in WX)
self.assertTrue(W in RWX)
self.assertTrue(X in RX)
self.assertTrue(X in WX)
self.assertTrue(X in RWX)
self.assertFalse(R in WX)
self.assertFalse(W in RX)
self.assertFalse(X in RW)
with self.assertRaises(TypeError):
self.assertFalse('test' in RW)
def test_member_iter(self):
Color = self.Color
self.assertEqual(list(Color.BLACK), [])
self.assertEqual(list(Color.PURPLE), [Color.RED, Color.BLUE])
self.assertEqual(list(Color.BLUE), [Color.BLUE])
self.assertEqual(list(Color.GREEN), [Color.GREEN])
self.assertEqual(list(Color.WHITE), [Color.RED, Color.GREEN, Color.BLUE])
def test_member_length(self):
self.assertEqual(self.Color.__len__(self.Color.BLACK), 0)
self.assertEqual(self.Color.__len__(self.Color.GREEN), 1)
self.assertEqual(self.Color.__len__(self.Color.PURPLE), 2)
self.assertEqual(self.Color.__len__(self.Color.BLANCO), 3)
def test_aliases(self):
Color = self.Color
self.assertEqual(Color(1).name, 'RED')
self.assertEqual(Color['ROJO'].name, 'RED')
self.assertEqual(Color(7).name, 'WHITE')
self.assertEqual(Color['BLANCO'].name, 'WHITE')
self.assertIs(Color.BLANCO, Color.WHITE)
Open = self.Open
self.assertIs(Open['AC'], Open.AC)
def test_bool(self):
Perm = self.Perm
for f in Perm:
self.assertTrue(f)
Open = self.Open
for f in Open:
self.assertEqual(bool(f.value), bool(f))
def test_multiple_mixin(self):
class AllMixin:
@classproperty
def ALL(cls):
members = list(cls)
all_value = None
if members:
all_value = members[0]
for member in members[1:]:
all_value |= member
cls.ALL = all_value
return all_value
class StrMixin:
def __str__(self):
return self._name_.lower()
class Color(AllMixin, IntFlag):
RED = auto()
GREEN = auto()
BLUE = auto()
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 4)
self.assertEqual(Color.ALL.value, 7)
self.assertEqual(str(Color.BLUE), '4')
class Color(AllMixin, StrMixin, IntFlag):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 4)
self.assertEqual(Color.ALL.value, 7)
self.assertEqual(str(Color.BLUE), 'blue')
class Color(StrMixin, AllMixin, IntFlag):
RED = auto()
GREEN = auto()
BLUE = auto()
__str__ = StrMixin.__str__
self.assertEqual(Color.RED.value, 1)
self.assertEqual(Color.GREEN.value, 2)
self.assertEqual(Color.BLUE.value, 4)
self.assertEqual(Color.ALL.value, 7)
self.assertEqual(str(Color.BLUE), 'blue')
@threading_helper.reap_threads
def test_unique_composite(self):
# override __eq__ to be identity only
class TestFlag(IntFlag):
one = auto()
two = auto()
three = auto()
four = auto()
five = auto()
six = auto()
seven = auto()
eight = auto()
def __eq__(self, other):
return self is other
def __hash__(self):
return hash(self._value_)
# have multiple threads competing to complete the composite members
seen = set()
failed = False
def cycle_enum():
nonlocal failed
try:
for i in range(256):
seen.add(TestFlag(i))
except Exception:
failed = True
threads = [
threading.Thread(target=cycle_enum)
for _ in range(8)
]
with threading_helper.start_threads(threads):
pass
# check that only 248 members were created
self.assertFalse(
failed,
'at least one thread failed while creating composite members')
self.assertEqual(256, len(seen), 'too many composite members created')
class TestEmptyAndNonLatinStrings(unittest.TestCase):
def test_empty_string(self):
with self.assertRaises(ValueError):
empty_abc = Enum('empty_abc', ('', 'B', 'C'))
def test_non_latin_character_string(self):
greek_abc = Enum('greek_abc', ('\u03B1', 'B', 'C'))
item = getattr(greek_abc, '\u03B1')
self.assertEqual(item.value, 1)
def test_non_latin_number_string(self):
hebrew_123 = Enum('hebrew_123', ('\u05D0', '2', '3'))
item = getattr(hebrew_123, '\u05D0')
self.assertEqual(item.value, 1)
class TestUnique(unittest.TestCase):
def test_unique_clean(self):
@unique
class Clean(Enum):
one = 1
two = 'dos'
tres = 4.0
#
@unique
class Cleaner(IntEnum):
single = 1
double = 2
triple = 3
def test_unique_dirty(self):
with self.assertRaisesRegex(ValueError, 'tres.*one'):
@unique
class Dirty(Enum):
one = 1
two = 'dos'
tres = 1
with self.assertRaisesRegex(
ValueError,
'double.*single.*turkey.*triple',
):
@unique
class Dirtier(IntEnum):
single = 1
double = 1
triple = 3
turkey = 3
def test_unique_with_name(self):
@verify(UNIQUE)
class Silly(Enum):
one = 1
two = 'dos'
name = 3
#
@verify(UNIQUE)
class Sillier(IntEnum):
single = 1
name = 2
triple = 3
value = 4
class TestVerify(unittest.TestCase):
def test_continuous(self):
@verify(CONTINUOUS)
class Auto(Enum):
FIRST = auto()
SECOND = auto()
THIRD = auto()
FORTH = auto()
#
@verify(CONTINUOUS)
class Manual(Enum):
FIRST = 3
SECOND = 4
THIRD = 5
FORTH = 6
#
with self.assertRaisesRegex(ValueError, 'invalid enum .Missing.: missing values 5, 6, 7, 8, 9, 10, 12'):
@verify(CONTINUOUS)
class Missing(Enum):
FIRST = 3
SECOND = 4
THIRD = 11
FORTH = 13
#
with self.assertRaisesRegex(ValueError, 'invalid flag .Incomplete.: missing values 32'):
@verify(CONTINUOUS)
class Incomplete(Flag):
FIRST = 4
SECOND = 8
THIRD = 16
FORTH = 64
#
with self.assertRaisesRegex(ValueError, 'invalid flag .StillIncomplete.: missing values 16'):
@verify(CONTINUOUS)
class StillIncomplete(Flag):
FIRST = 4
SECOND = 8
THIRD = 11
FORTH = 32
def test_composite(self):
class Bizarre(Flag):
b = 3
c = 4
d = 6
self.assertEqual(list(Bizarre), [Bizarre.c])
self.assertEqual(Bizarre.b.value, 3)
self.assertEqual(Bizarre.c.value, 4)
self.assertEqual(Bizarre.d.value, 6)
with self.assertRaisesRegex(
ValueError,
"invalid Flag 'Bizarre': aliases b and d are missing combined values of 0x3 .use enum.show_flag_values.value. for details.",
):
@verify(NAMED_FLAGS)
class Bizarre(Flag):
b = 3
c = 4
d = 6
#
self.assertEqual(enum.show_flag_values(3), [1, 2])
class Bizarre(IntFlag):
b = 3
c = 4
d = 6
self.assertEqual(list(Bizarre), [Bizarre.c])
self.assertEqual(Bizarre.b.value, 3)
self.assertEqual(Bizarre.c.value, 4)
self.assertEqual(Bizarre.d.value, 6)
with self.assertRaisesRegex(
ValueError,
"invalid Flag 'Bizarre': alias d is missing value 0x2 .use enum.show_flag_values.value. for details.",
):
@verify(NAMED_FLAGS)
class Bizarre(IntFlag):
c = 4
d = 6
self.assertEqual(enum.show_flag_values(2), [2])
def test_unique_clean(self):
@verify(UNIQUE)
class Clean(Enum):
one = 1
two = 'dos'
tres = 4.0
#
@verify(UNIQUE)
class Cleaner(IntEnum):
single = 1
double = 2
triple = 3
def test_unique_dirty(self):
with self.assertRaisesRegex(ValueError, 'tres.*one'):
@verify(UNIQUE)
class Dirty(Enum):
one = 1
two = 'dos'
tres = 1
with self.assertRaisesRegex(
ValueError,
'double.*single.*turkey.*triple',
):
@verify(UNIQUE)
class Dirtier(IntEnum):
single = 1
double = 1
triple = 3
turkey = 3
def test_unique_with_name(self):
@verify(UNIQUE)
class Silly(Enum):
one = 1
two = 'dos'
name = 3
#
@verify(UNIQUE)
class Sillier(IntEnum):
single = 1
name = 2
triple = 3
value = 4
class TestHelpers(unittest.TestCase):
sunder_names = '_bad_', '_good_', '_what_ho_'
dunder_names = '__mal__', '__bien__', '__que_que__'
private_names = '_MyEnum__private', '_MyEnum__still_private'
private_and_sunder_names = '_MyEnum__private_', '_MyEnum__also_private_'
random_names = 'okay', '_semi_private', '_weird__', '_MyEnum__'
def test_sunder(self):
for name in self.sunder_names + self.private_and_sunder_names:
self.assertTrue(enum._is_sunder(name), '%r is a not sunder name?' % name)
for name in self.dunder_names + self.private_names + self.random_names:
self.assertFalse(enum._is_sunder(name), '%r is a sunder name?' % name)
def test_dunder(self):
for name in self.dunder_names:
self.assertTrue(enum._is_dunder(name), '%r is a not dunder name?' % name)
for name in self.sunder_names + self.private_names + self.private_and_sunder_names + self.random_names:
self.assertFalse(enum._is_dunder(name), '%r is a dunder name?' % name)
def test_is_private(self):
for name in self.private_names + self.private_and_sunder_names:
self.assertTrue(enum._is_private('MyEnum', name), '%r is a not private name?')
for name in self.sunder_names + self.dunder_names + self.random_names:
self.assertFalse(enum._is_private('MyEnum', name), '%r is a private name?')
def test_auto_number(self):
class Color(Enum):
red = auto()
blue = auto()
green = auto()
self.assertEqual(list(Color), [Color.red, Color.blue, Color.green])
self.assertEqual(Color.red.value, 1)
self.assertEqual(Color.blue.value, 2)
self.assertEqual(Color.green.value, 3)
def test_auto_name(self):
class Color(Enum):
def _generate_next_value_(name, start, count, last):
return name
red = auto()
blue = auto()
green = auto()
self.assertEqual(list(Color), [Color.red, Color.blue, Color.green])
self.assertEqual(Color.red.value, 'red')
self.assertEqual(Color.blue.value, 'blue')
self.assertEqual(Color.green.value, 'green')
def test_auto_name_inherit(self):
class AutoNameEnum(Enum):
def _generate_next_value_(name, start, count, last):
return name
class Color(AutoNameEnum):
red = auto()
blue = auto()
green = auto()
self.assertEqual(list(Color), [Color.red, Color.blue, Color.green])
self.assertEqual(Color.red.value, 'red')
self.assertEqual(Color.blue.value, 'blue')
self.assertEqual(Color.green.value, 'green')
def test_auto_garbage(self):
class Color(Enum):
red = 'red'
blue = auto()
self.assertEqual(Color.blue.value, 1)
def test_auto_garbage_corrected(self):
class Color(Enum):
red = 'red'
blue = 2
green = auto()
self.assertEqual(list(Color), [Color.red, Color.blue, Color.green])
self.assertEqual(Color.red.value, 'red')
self.assertEqual(Color.blue.value, 2)
self.assertEqual(Color.green.value, 3)
def test_auto_order(self):
with self.assertRaises(TypeError):
class Color(Enum):
red = auto()
green = auto()
blue = auto()
def _generate_next_value_(name, start, count, last):
return name
def test_auto_order_wierd(self):
weird_auto = auto()
weird_auto.value = 'pathological case'
class Color(Enum):
red = weird_auto
def _generate_next_value_(name, start, count, last):
return name
blue = auto()
self.assertEqual(list(Color), [Color.red, Color.blue])
self.assertEqual(Color.red.value, 'pathological case')
self.assertEqual(Color.blue.value, 'blue')
def test_duplicate_auto(self):
class Dupes(Enum):
first = primero = auto()
second = auto()
third = auto()
self.assertEqual([Dupes.first, Dupes.second, Dupes.third], list(Dupes))
class TestEnumTypeSubclassing(unittest.TestCase):
pass
expected_help_output_with_docs = """\
Help on class Color in module %s:
class Color(enum.Enum)
| Color(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
|\x20\x20
| A collection of name/value pairs.
|\x20\x20
| Access them by:
|\x20\x20
| - attribute access::
|\x20\x20
| >>> Color.CYAN
| <Color.CYAN: 1>
|\x20\x20
| - value lookup:
|\x20\x20
| >>> Color(1)
| <Color.CYAN: 1>
|\x20\x20
| - name lookup:
|\x20\x20
| >>> Color['CYAN']
| <Color.CYAN: 1>
|\x20\x20
| Enumerations can be iterated over, and know how many members they have:
|\x20\x20
| >>> len(Color)
| 3
|\x20\x20
| >>> list(Color)
| [<Color.CYAN: 1>, <Color.MAGENTA: 2>, <Color.YELLOW: 3>]
|\x20\x20
| Methods can be added to enumerations, and members can have their own
| attributes -- see the documentation for details.
|\x20\x20
| Method resolution order:
| Color
| enum.Enum
| builtins.object
|\x20\x20
| Data and other attributes defined here:
|\x20\x20
| CYAN = <Color.CYAN: 1>
|\x20\x20
| MAGENTA = <Color.MAGENTA: 2>
|\x20\x20
| YELLOW = <Color.YELLOW: 3>
|\x20\x20
| ----------------------------------------------------------------------
| Data descriptors inherited from enum.Enum:
|\x20\x20
| name
| The name of the Enum member.
|\x20\x20
| value
| The value of the Enum member.
|\x20\x20
| ----------------------------------------------------------------------
| Methods inherited from enum.EnumType:
|\x20\x20
| __contains__(member) from enum.EnumType
| Return True if member is a member of this enum
| raises TypeError if member is not an enum member
|\x20\x20\x20\x20\x20\x20
| note: in 3.12 TypeError will no longer be raised, and True will also be
| returned if member is the value of a member in this enum
|\x20\x20
| __getitem__(name) from enum.EnumType
| Return the member matching `name`.
|\x20\x20
| __iter__() from enum.EnumType
| Return members in definition order.
|\x20\x20
| __len__() from enum.EnumType
| Return the number of members (no aliases)
|\x20\x20
| ----------------------------------------------------------------------
| Readonly properties inherited from enum.EnumType:
|\x20\x20
| __members__
| Returns a mapping of member name->value.
|\x20\x20\x20\x20\x20\x20
| This mapping lists all enum members, including aliases. Note that this
| is a read-only view of the internal mapping."""
expected_help_output_without_docs = """\
Help on class Color in module %s:
class Color(enum.Enum)
| Color(value, names=None, *, module=None, qualname=None, type=None, start=1)
|\x20\x20
| Method resolution order:
| Color
| enum.Enum
| builtins.object
|\x20\x20
| Data and other attributes defined here:
|\x20\x20
| YELLOW = <Color.YELLOW: 3>
|\x20\x20
| MAGENTA = <Color.MAGENTA: 2>
|\x20\x20
| CYAN = <Color.CYAN: 1>
|\x20\x20
| ----------------------------------------------------------------------
| Data descriptors inherited from enum.Enum:
|\x20\x20
| name
|\x20\x20
| value
|\x20\x20
| ----------------------------------------------------------------------
| Data descriptors inherited from enum.EnumType:
|\x20\x20
| __members__"""
class TestStdLib(unittest.TestCase):
maxDiff = None
class Color(Enum):
CYAN = 1
MAGENTA = 2
YELLOW = 3
def test_pydoc(self):
# indirectly test __objclass__
if StrEnum.__doc__ is None:
expected_text = expected_help_output_without_docs % __name__
else:
expected_text = expected_help_output_with_docs % __name__
output = StringIO()
helper = pydoc.Helper(output=output)
helper(self.Color)
result = output.getvalue().strip()
self.assertEqual(result, expected_text, result)
def test_inspect_getmembers(self):
values = dict((
('__class__', EnumType),
('__doc__', '...'),
('__members__', self.Color.__members__),
('__module__', __name__),
('YELLOW', self.Color.YELLOW),
('MAGENTA', self.Color.MAGENTA),
('CYAN', self.Color.CYAN),
('name', Enum.__dict__['name']),
('value', Enum.__dict__['value']),
('__len__', self.Color.__len__),
('__contains__', self.Color.__contains__),
('__name__', 'Color'),
('__getitem__', self.Color.__getitem__),
('__qualname__', 'TestStdLib.Color'),
('__init_subclass__', getattr(self.Color, '__init_subclass__')),
('__iter__', self.Color.__iter__),
))
result = dict(inspect.getmembers(self.Color))
self.assertEqual(set(values.keys()), set(result.keys()))
failed = False
for k in values.keys():
if k == '__doc__':
# __doc__ is huge, not comparing
continue
if result[k] != values[k]:
print()
print('\n%s\n key: %s\n result: %s\nexpected: %s\n%s\n' %
('=' * 75, k, result[k], values[k], '=' * 75), sep='')
failed = True
if failed:
self.fail("result does not equal expected, see print above")
def test_inspect_classify_class_attrs(self):
# indirectly test __objclass__
from inspect import Attribute
values = [
Attribute(name='__class__', kind='data',
defining_class=object, object=EnumType),
Attribute(name='__contains__', kind='method',
defining_class=EnumType, object=self.Color.__contains__),
Attribute(name='__doc__', kind='data',
defining_class=self.Color, object='...'),
Attribute(name='__getitem__', kind='method',
defining_class=EnumType, object=self.Color.__getitem__),
Attribute(name='__iter__', kind='method',
defining_class=EnumType, object=self.Color.__iter__),
Attribute(name='__init_subclass__', kind='class method',
defining_class=object, object=getattr(self.Color, '__init_subclass__')),
Attribute(name='__len__', kind='method',
defining_class=EnumType, object=self.Color.__len__),
Attribute(name='__members__', kind='property',
defining_class=EnumType, object=EnumType.__members__),
Attribute(name='__module__', kind='data',
defining_class=self.Color, object=__name__),
Attribute(name='__name__', kind='data',
defining_class=self.Color, object='Color'),
Attribute(name='__qualname__', kind='data',
defining_class=self.Color, object='TestStdLib.Color'),
Attribute(name='YELLOW', kind='data',
defining_class=self.Color, object=self.Color.YELLOW),
Attribute(name='MAGENTA', kind='data',
defining_class=self.Color, object=self.Color.MAGENTA),
Attribute(name='CYAN', kind='data',
defining_class=self.Color, object=self.Color.CYAN),
Attribute(name='name', kind='data',
defining_class=Enum, object=Enum.__dict__['name']),
Attribute(name='value', kind='data',
defining_class=Enum, object=Enum.__dict__['value']),
]
for v in values:
try:
v.name
except AttributeError:
print(v)
values.sort(key=lambda item: item.name)
result = list(inspect.classify_class_attrs(self.Color))
result.sort(key=lambda item: item.name)
self.assertEqual(
len(values), len(result),
"%s != %s" % ([a.name for a in values], [a.name for a in result])
)
failed = False
for v, r in zip(values, result):
if r.name in ('__init_subclass__', '__doc__'):
# not sure how to make the __init_subclass_ Attributes match
# so as long as there is one, call it good
# __doc__ is too big to check exactly, so treat the same as __init_subclass__
for name in ('name','kind','defining_class'):
if getattr(v, name) != getattr(r, name):
print('\n%s\n%s\n%s\n%s\n' % ('=' * 75, r, v, '=' * 75), sep='')
failed = True
elif r != v:
print('\n%s\n%s\n%s\n%s\n' % ('=' * 75, r, v, '=' * 75), sep='')
failed = True
if failed:
self.fail("result does not equal expected, see print above")
def test_test_simple_enum(self):
@_simple_enum(Enum)
class SimpleColor:
CYAN = 1
MAGENTA = 2
YELLOW = 3
class CheckedColor(Enum):
CYAN = 1
MAGENTA = 2
YELLOW = 3
self.assertTrue(_test_simple_enum(CheckedColor, SimpleColor) is None)
SimpleColor.MAGENTA._value_ = 9
self.assertRaisesRegex(
TypeError, "enum mismatch",
_test_simple_enum, CheckedColor, SimpleColor,
)
class CheckedMissing(IntFlag, boundary=KEEP):
SIXTY_FOUR = 64
ONE_TWENTY_EIGHT = 128
TWENTY_FORTY_EIGHT = 2048
ALL = 2048 + 128 + 64 + 12
CM = CheckedMissing
self.assertEqual(list(CheckedMissing), [CM.SIXTY_FOUR, CM.ONE_TWENTY_EIGHT, CM.TWENTY_FORTY_EIGHT])
#
@_simple_enum(IntFlag, boundary=KEEP)
class Missing:
SIXTY_FOUR = 64
ONE_TWENTY_EIGHT = 128
TWENTY_FORTY_EIGHT = 2048
ALL = 2048 + 128 + 64 + 12
M = Missing
self.assertEqual(list(CheckedMissing), [M.SIXTY_FOUR, M.ONE_TWENTY_EIGHT, M.TWENTY_FORTY_EIGHT])
#
_test_simple_enum(CheckedMissing, Missing)
class MiscTestCase(unittest.TestCase):
def test__all__(self):
support.check__all__(self, enum, not_exported={'bin', 'show_flag_values'})
def test_doc_1(self):
class Single(Enum):
ONE = 1
self.assertEqual(
Single.__doc__,
dedent("""\
A collection of name/value pairs.
Access them by:
- attribute access::
>>> Single.ONE
<Single.ONE: 1>
- value lookup:
>>> Single(1)
<Single.ONE: 1>
- name lookup:
>>> Single['ONE']
<Single.ONE: 1>
Enumerations can be iterated over, and know how many members they have:
>>> len(Single)
1
>>> list(Single)
[<Single.ONE: 1>]
Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.
"""))
def test_doc_2(self):
class Double(Enum):
ONE = 1
TWO = 2
self.assertEqual(
Double.__doc__,
dedent("""\
A collection of name/value pairs.
Access them by:
- attribute access::
>>> Double.ONE
<Double.ONE: 1>
- value lookup:
>>> Double(1)
<Double.ONE: 1>
- name lookup:
>>> Double['ONE']
<Double.ONE: 1>
Enumerations can be iterated over, and know how many members they have:
>>> len(Double)
2
>>> list(Double)
[<Double.ONE: 1>, <Double.TWO: 2>]
Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.
"""))
def test_doc_1(self):
class Triple(Enum):
ONE = 1
TWO = 2
THREE = 3
self.assertEqual(
Triple.__doc__,
dedent("""\
A collection of name/value pairs.
Access them by:
- attribute access::
>>> Triple.ONE
<Triple.ONE: 1>
- value lookup:
>>> Triple(1)
<Triple.ONE: 1>
- name lookup:
>>> Triple['ONE']
<Triple.ONE: 1>
Enumerations can be iterated over, and know how many members they have:
>>> len(Triple)
3
>>> list(Triple)
[<Triple.ONE: 1>, <Triple.TWO: 2>, <Triple.THREE: 3>]
Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.
"""))
def test_doc_1(self):
class Quadruple(Enum):
ONE = 1
TWO = 2
THREE = 3
FOUR = 4
self.assertEqual(
Quadruple.__doc__,
dedent("""\
A collection of name/value pairs.
Access them by:
- attribute access::
>>> Quadruple.ONE
<Quadruple.ONE: 1>
- value lookup:
>>> Quadruple(1)
<Quadruple.ONE: 1>
- name lookup:
>>> Quadruple['ONE']
<Quadruple.ONE: 1>
Enumerations can be iterated over, and know how many members they have:
>>> len(Quadruple)
4
>>> list(Quadruple)[:3]
[<Quadruple.ONE: 1>, <Quadruple.TWO: 2>, <Quadruple.THREE: 3>]
Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.
"""))
# These are unordered here on purpose to ensure that declaration order
# makes no difference.
CONVERT_TEST_NAME_D = 5
CONVERT_TEST_NAME_C = 5
CONVERT_TEST_NAME_B = 5
CONVERT_TEST_NAME_A = 5 # This one should sort first.
CONVERT_TEST_NAME_E = 5
CONVERT_TEST_NAME_F = 5
CONVERT_STRING_TEST_NAME_D = 5
CONVERT_STRING_TEST_NAME_C = 5
CONVERT_STRING_TEST_NAME_B = 5
CONVERT_STRING_TEST_NAME_A = 5 # This one should sort first.
CONVERT_STRING_TEST_NAME_E = 5
CONVERT_STRING_TEST_NAME_F = 5
# global names for StrEnum._convert_ test
CONVERT_STR_TEST_2 = 'goodbye'
CONVERT_STR_TEST_1 = 'hello'
# We also need values that cannot be compared:
UNCOMPARABLE_A = 5
UNCOMPARABLE_C = (9, 1) # naming order is broken on purpose
UNCOMPARABLE_B = 'value'
COMPLEX_C = 1j
COMPLEX_A = 2j
COMPLEX_B = 3j
class _ModuleWrapper:
"""We use this class as a namespace for swapping modules."""
def __init__(self, module):
self.__dict__.update(module.__dict__)
class TestConvert(unittest.TestCase):
def tearDown(self):
# Reset the module-level test variables to their original integer
# values, otherwise the already created enum values get converted
# instead.
g = globals()
for suffix in ['A', 'B', 'C', 'D', 'E', 'F']:
g['CONVERT_TEST_NAME_%s' % suffix] = 5
g['CONVERT_STRING_TEST_NAME_%s' % suffix] = 5
for suffix, value in (('A', 5), ('B', (9, 1)), ('C', 'value')):
g['UNCOMPARABLE_%s' % suffix] = value
for suffix, value in (('A', 2j), ('B', 3j), ('C', 1j)):
g['COMPLEX_%s' % suffix] = value
for suffix, value in (('1', 'hello'), ('2', 'goodbye')):
g['CONVERT_STR_TEST_%s' % suffix] = value
def test_convert_value_lookup_priority(self):
test_type = enum.IntEnum._convert_(
'UnittestConvert',
MODULE,
filter=lambda x: x.startswith('CONVERT_TEST_'))
# We don't want the reverse lookup value to vary when there are
# multiple possible names for a given value. It should always
# report the first lexigraphical name in that case.
self.assertEqual(test_type(5).name, 'CONVERT_TEST_NAME_A')
def test_convert_int(self):
test_type = enum.IntEnum._convert_(
'UnittestConvert',
MODULE,
filter=lambda x: x.startswith('CONVERT_TEST_'))
# Ensure that test_type has all of the desired names and values.
self.assertEqual(test_type.CONVERT_TEST_NAME_F,
test_type.CONVERT_TEST_NAME_A)
self.assertEqual(test_type.CONVERT_TEST_NAME_B, 5)
self.assertEqual(test_type.CONVERT_TEST_NAME_C, 5)
self.assertEqual(test_type.CONVERT_TEST_NAME_D, 5)
self.assertEqual(test_type.CONVERT_TEST_NAME_E, 5)
# Ensure that test_type only picked up names matching the filter.
int_dir = dir(int) + [
'CONVERT_TEST_NAME_A', 'CONVERT_TEST_NAME_B', 'CONVERT_TEST_NAME_C',
'CONVERT_TEST_NAME_D', 'CONVERT_TEST_NAME_E', 'CONVERT_TEST_NAME_F',
]
self.assertEqual(
[name for name in dir(test_type) if name not in int_dir],
[],
msg='Names other than CONVERT_TEST_* found.',
)
def test_convert_uncomparable(self):
uncomp = enum.Enum._convert_(
'Uncomparable',
MODULE,
filter=lambda x: x.startswith('UNCOMPARABLE_'))
# Should be ordered by `name` only:
self.assertEqual(
list(uncomp),
[uncomp.UNCOMPARABLE_A, uncomp.UNCOMPARABLE_B, uncomp.UNCOMPARABLE_C],
)
def test_convert_complex(self):
uncomp = enum.Enum._convert_(
'Uncomparable',
MODULE,
filter=lambda x: x.startswith('COMPLEX_'))
# Should be ordered by `name` only:
self.assertEqual(
list(uncomp),
[uncomp.COMPLEX_A, uncomp.COMPLEX_B, uncomp.COMPLEX_C],
)
def test_convert_str(self):
test_type = enum.StrEnum._convert_(
'UnittestConvert',
MODULE,
filter=lambda x: x.startswith('CONVERT_STR_'),
as_global=True)
# Ensure that test_type has all of the desired names and values.
self.assertEqual(test_type.CONVERT_STR_TEST_1, 'hello')
self.assertEqual(test_type.CONVERT_STR_TEST_2, 'goodbye')
# Ensure that test_type only picked up names matching the filter.
str_dir = dir(str) + ['CONVERT_STR_TEST_1', 'CONVERT_STR_TEST_2']
self.assertEqual(
[name for name in dir(test_type) if name not in str_dir],
[],
msg='Names other than CONVERT_STR_* found.',
)
self.assertEqual(repr(test_type.CONVERT_STR_TEST_1), '%s.CONVERT_STR_TEST_1' % SHORT_MODULE)
self.assertEqual(str(test_type.CONVERT_STR_TEST_2), 'goodbye')
self.assertEqual(format(test_type.CONVERT_STR_TEST_1), 'hello')
def test_convert_raise(self):
with self.assertRaises(AttributeError):
enum.IntEnum._convert(
'UnittestConvert',
MODULE,
filter=lambda x: x.startswith('CONVERT_TEST_'))
def test_convert_repr_and_str(self):
test_type = enum.IntEnum._convert_(
'UnittestConvert',
MODULE,
filter=lambda x: x.startswith('CONVERT_STRING_TEST_'),
as_global=True)
self.assertEqual(repr(test_type.CONVERT_STRING_TEST_NAME_A), '%s.CONVERT_STRING_TEST_NAME_A' % SHORT_MODULE)
self.assertEqual(str(test_type.CONVERT_STRING_TEST_NAME_A), '5')
self.assertEqual(format(test_type.CONVERT_STRING_TEST_NAME_A), '5')
# helpers
def enum_dir(cls):
# TODO: check for custom __init__, __new__, __format__, __repr__, __str__, __init_subclass__
if cls._member_type_ is object:
interesting = set()
if cls.__init_subclass__ is not object.__init_subclass__:
interesting.add('__init_subclass__')
return sorted(set([
'__class__', '__contains__', '__doc__', '__getitem__',
'__iter__', '__len__', '__members__', '__module__',
'__name__', '__qualname__',
]
+ cls._member_names_
) | interesting
)
else:
# return whatever mixed-in data type has
return sorted(set(
dir(cls._member_type_)
+ cls._member_names_
))
def member_dir(member):
if member.__class__._member_type_ is object:
allowed = set(['__class__', '__doc__', '__eq__', '__hash__', '__module__', 'name', 'value'])
else:
allowed = set(dir(member))
for cls in member.__class__.mro():
for name, obj in cls.__dict__.items():
if name[0] == '_':
continue
if isinstance(obj, enum.property):
if obj.fget is not None or name not in member._member_map_:
allowed.add(name)
else:
allowed.discard(name)
else:
allowed.add(name)
return sorted(allowed)
missing = object()
if __name__ == '__main__':
unittest.main()