| /* MIT License |
| * |
| * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation |
| * Copyright (c) 2022-2023 HACL* Contributors |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| |
| #include "internal/Hacl_Hash_SHA2.h" |
| |
| |
| |
| void Hacl_SHA2_Scalar32_sha256_init(uint32_t *hash) |
| { |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| uint32_t *os = hash; |
| uint32_t x = Hacl_Impl_SHA2_Generic_h256[i]; |
| os[i] = x;); |
| } |
| |
| static inline void sha256_update(uint8_t *b, uint32_t *hash) |
| { |
| uint32_t hash_old[8U] = { 0U }; |
| uint32_t ws[16U] = { 0U }; |
| memcpy(hash_old, hash, (uint32_t)8U * sizeof (uint32_t)); |
| uint8_t *b10 = b; |
| uint32_t u = load32_be(b10); |
| ws[0U] = u; |
| uint32_t u0 = load32_be(b10 + (uint32_t)4U); |
| ws[1U] = u0; |
| uint32_t u1 = load32_be(b10 + (uint32_t)8U); |
| ws[2U] = u1; |
| uint32_t u2 = load32_be(b10 + (uint32_t)12U); |
| ws[3U] = u2; |
| uint32_t u3 = load32_be(b10 + (uint32_t)16U); |
| ws[4U] = u3; |
| uint32_t u4 = load32_be(b10 + (uint32_t)20U); |
| ws[5U] = u4; |
| uint32_t u5 = load32_be(b10 + (uint32_t)24U); |
| ws[6U] = u5; |
| uint32_t u6 = load32_be(b10 + (uint32_t)28U); |
| ws[7U] = u6; |
| uint32_t u7 = load32_be(b10 + (uint32_t)32U); |
| ws[8U] = u7; |
| uint32_t u8 = load32_be(b10 + (uint32_t)36U); |
| ws[9U] = u8; |
| uint32_t u9 = load32_be(b10 + (uint32_t)40U); |
| ws[10U] = u9; |
| uint32_t u10 = load32_be(b10 + (uint32_t)44U); |
| ws[11U] = u10; |
| uint32_t u11 = load32_be(b10 + (uint32_t)48U); |
| ws[12U] = u11; |
| uint32_t u12 = load32_be(b10 + (uint32_t)52U); |
| ws[13U] = u12; |
| uint32_t u13 = load32_be(b10 + (uint32_t)56U); |
| ws[14U] = u13; |
| uint32_t u14 = load32_be(b10 + (uint32_t)60U); |
| ws[15U] = u14; |
| KRML_MAYBE_FOR4(i0, |
| (uint32_t)0U, |
| (uint32_t)4U, |
| (uint32_t)1U, |
| KRML_MAYBE_FOR16(i, |
| (uint32_t)0U, |
| (uint32_t)16U, |
| (uint32_t)1U, |
| uint32_t k_t = Hacl_Impl_SHA2_Generic_k224_256[(uint32_t)16U * i0 + i]; |
| uint32_t ws_t = ws[i]; |
| uint32_t a0 = hash[0U]; |
| uint32_t b0 = hash[1U]; |
| uint32_t c0 = hash[2U]; |
| uint32_t d0 = hash[3U]; |
| uint32_t e0 = hash[4U]; |
| uint32_t f0 = hash[5U]; |
| uint32_t g0 = hash[6U]; |
| uint32_t h02 = hash[7U]; |
| uint32_t k_e_t = k_t; |
| uint32_t |
| t1 = |
| h02 |
| + |
| ((e0 << (uint32_t)26U | e0 >> (uint32_t)6U) |
| ^ |
| ((e0 << (uint32_t)21U | e0 >> (uint32_t)11U) |
| ^ (e0 << (uint32_t)7U | e0 >> (uint32_t)25U))) |
| + ((e0 & f0) ^ (~e0 & g0)) |
| + k_e_t |
| + ws_t; |
| uint32_t |
| t2 = |
| ((a0 << (uint32_t)30U | a0 >> (uint32_t)2U) |
| ^ |
| ((a0 << (uint32_t)19U | a0 >> (uint32_t)13U) |
| ^ (a0 << (uint32_t)10U | a0 >> (uint32_t)22U))) |
| + ((a0 & b0) ^ ((a0 & c0) ^ (b0 & c0))); |
| uint32_t a1 = t1 + t2; |
| uint32_t b1 = a0; |
| uint32_t c1 = b0; |
| uint32_t d1 = c0; |
| uint32_t e1 = d0 + t1; |
| uint32_t f1 = e0; |
| uint32_t g1 = f0; |
| uint32_t h12 = g0; |
| hash[0U] = a1; |
| hash[1U] = b1; |
| hash[2U] = c1; |
| hash[3U] = d1; |
| hash[4U] = e1; |
| hash[5U] = f1; |
| hash[6U] = g1; |
| hash[7U] = h12;); |
| if (i0 < (uint32_t)3U) |
| { |
| KRML_MAYBE_FOR16(i, |
| (uint32_t)0U, |
| (uint32_t)16U, |
| (uint32_t)1U, |
| uint32_t t16 = ws[i]; |
| uint32_t t15 = ws[(i + (uint32_t)1U) % (uint32_t)16U]; |
| uint32_t t7 = ws[(i + (uint32_t)9U) % (uint32_t)16U]; |
| uint32_t t2 = ws[(i + (uint32_t)14U) % (uint32_t)16U]; |
| uint32_t |
| s1 = |
| (t2 << (uint32_t)15U | t2 >> (uint32_t)17U) |
| ^ ((t2 << (uint32_t)13U | t2 >> (uint32_t)19U) ^ t2 >> (uint32_t)10U); |
| uint32_t |
| s0 = |
| (t15 << (uint32_t)25U | t15 >> (uint32_t)7U) |
| ^ ((t15 << (uint32_t)14U | t15 >> (uint32_t)18U) ^ t15 >> (uint32_t)3U); |
| ws[i] = s1 + t7 + s0 + t16;); |
| }); |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| uint32_t *os = hash; |
| uint32_t x = hash[i] + hash_old[i]; |
| os[i] = x;); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha256_update_nblocks(uint32_t len, uint8_t *b, uint32_t *st) |
| { |
| uint32_t blocks = len / (uint32_t)64U; |
| for (uint32_t i = (uint32_t)0U; i < blocks; i++) |
| { |
| uint8_t *b0 = b; |
| uint8_t *mb = b0 + i * (uint32_t)64U; |
| sha256_update(mb, st); |
| } |
| } |
| |
| void |
| Hacl_SHA2_Scalar32_sha256_update_last( |
| uint64_t totlen, |
| uint32_t len, |
| uint8_t *b, |
| uint32_t *hash |
| ) |
| { |
| uint32_t blocks; |
| if (len + (uint32_t)8U + (uint32_t)1U <= (uint32_t)64U) |
| { |
| blocks = (uint32_t)1U; |
| } |
| else |
| { |
| blocks = (uint32_t)2U; |
| } |
| uint32_t fin = blocks * (uint32_t)64U; |
| uint8_t last[128U] = { 0U }; |
| uint8_t totlen_buf[8U] = { 0U }; |
| uint64_t total_len_bits = totlen << (uint32_t)3U; |
| store64_be(totlen_buf, total_len_bits); |
| uint8_t *b0 = b; |
| memcpy(last, b0, len * sizeof (uint8_t)); |
| last[len] = (uint8_t)0x80U; |
| memcpy(last + fin - (uint32_t)8U, totlen_buf, (uint32_t)8U * sizeof (uint8_t)); |
| uint8_t *last00 = last; |
| uint8_t *last10 = last + (uint32_t)64U; |
| uint8_t *l0 = last00; |
| uint8_t *l1 = last10; |
| uint8_t *lb0 = l0; |
| uint8_t *lb1 = l1; |
| uint8_t *last0 = lb0; |
| uint8_t *last1 = lb1; |
| sha256_update(last0, hash); |
| if (blocks > (uint32_t)1U) |
| { |
| sha256_update(last1, hash); |
| return; |
| } |
| } |
| |
| void Hacl_SHA2_Scalar32_sha256_finish(uint32_t *st, uint8_t *h) |
| { |
| uint8_t hbuf[32U] = { 0U }; |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| store32_be(hbuf + i * (uint32_t)4U, st[i]);); |
| memcpy(h, hbuf, (uint32_t)32U * sizeof (uint8_t)); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha224_init(uint32_t *hash) |
| { |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| uint32_t *os = hash; |
| uint32_t x = Hacl_Impl_SHA2_Generic_h224[i]; |
| os[i] = x;); |
| } |
| |
| static inline void sha224_update_nblocks(uint32_t len, uint8_t *b, uint32_t *st) |
| { |
| Hacl_SHA2_Scalar32_sha256_update_nblocks(len, b, st); |
| } |
| |
| void |
| Hacl_SHA2_Scalar32_sha224_update_last(uint64_t totlen, uint32_t len, uint8_t *b, uint32_t *st) |
| { |
| Hacl_SHA2_Scalar32_sha256_update_last(totlen, len, b, st); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha224_finish(uint32_t *st, uint8_t *h) |
| { |
| uint8_t hbuf[32U] = { 0U }; |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| store32_be(hbuf + i * (uint32_t)4U, st[i]);); |
| memcpy(h, hbuf, (uint32_t)28U * sizeof (uint8_t)); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha512_init(uint64_t *hash) |
| { |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| uint64_t *os = hash; |
| uint64_t x = Hacl_Impl_SHA2_Generic_h512[i]; |
| os[i] = x;); |
| } |
| |
| static inline void sha512_update(uint8_t *b, uint64_t *hash) |
| { |
| uint64_t hash_old[8U] = { 0U }; |
| uint64_t ws[16U] = { 0U }; |
| memcpy(hash_old, hash, (uint32_t)8U * sizeof (uint64_t)); |
| uint8_t *b10 = b; |
| uint64_t u = load64_be(b10); |
| ws[0U] = u; |
| uint64_t u0 = load64_be(b10 + (uint32_t)8U); |
| ws[1U] = u0; |
| uint64_t u1 = load64_be(b10 + (uint32_t)16U); |
| ws[2U] = u1; |
| uint64_t u2 = load64_be(b10 + (uint32_t)24U); |
| ws[3U] = u2; |
| uint64_t u3 = load64_be(b10 + (uint32_t)32U); |
| ws[4U] = u3; |
| uint64_t u4 = load64_be(b10 + (uint32_t)40U); |
| ws[5U] = u4; |
| uint64_t u5 = load64_be(b10 + (uint32_t)48U); |
| ws[6U] = u5; |
| uint64_t u6 = load64_be(b10 + (uint32_t)56U); |
| ws[7U] = u6; |
| uint64_t u7 = load64_be(b10 + (uint32_t)64U); |
| ws[8U] = u7; |
| uint64_t u8 = load64_be(b10 + (uint32_t)72U); |
| ws[9U] = u8; |
| uint64_t u9 = load64_be(b10 + (uint32_t)80U); |
| ws[10U] = u9; |
| uint64_t u10 = load64_be(b10 + (uint32_t)88U); |
| ws[11U] = u10; |
| uint64_t u11 = load64_be(b10 + (uint32_t)96U); |
| ws[12U] = u11; |
| uint64_t u12 = load64_be(b10 + (uint32_t)104U); |
| ws[13U] = u12; |
| uint64_t u13 = load64_be(b10 + (uint32_t)112U); |
| ws[14U] = u13; |
| uint64_t u14 = load64_be(b10 + (uint32_t)120U); |
| ws[15U] = u14; |
| KRML_MAYBE_FOR5(i0, |
| (uint32_t)0U, |
| (uint32_t)5U, |
| (uint32_t)1U, |
| KRML_MAYBE_FOR16(i, |
| (uint32_t)0U, |
| (uint32_t)16U, |
| (uint32_t)1U, |
| uint64_t k_t = Hacl_Impl_SHA2_Generic_k384_512[(uint32_t)16U * i0 + i]; |
| uint64_t ws_t = ws[i]; |
| uint64_t a0 = hash[0U]; |
| uint64_t b0 = hash[1U]; |
| uint64_t c0 = hash[2U]; |
| uint64_t d0 = hash[3U]; |
| uint64_t e0 = hash[4U]; |
| uint64_t f0 = hash[5U]; |
| uint64_t g0 = hash[6U]; |
| uint64_t h02 = hash[7U]; |
| uint64_t k_e_t = k_t; |
| uint64_t |
| t1 = |
| h02 |
| + |
| ((e0 << (uint32_t)50U | e0 >> (uint32_t)14U) |
| ^ |
| ((e0 << (uint32_t)46U | e0 >> (uint32_t)18U) |
| ^ (e0 << (uint32_t)23U | e0 >> (uint32_t)41U))) |
| + ((e0 & f0) ^ (~e0 & g0)) |
| + k_e_t |
| + ws_t; |
| uint64_t |
| t2 = |
| ((a0 << (uint32_t)36U | a0 >> (uint32_t)28U) |
| ^ |
| ((a0 << (uint32_t)30U | a0 >> (uint32_t)34U) |
| ^ (a0 << (uint32_t)25U | a0 >> (uint32_t)39U))) |
| + ((a0 & b0) ^ ((a0 & c0) ^ (b0 & c0))); |
| uint64_t a1 = t1 + t2; |
| uint64_t b1 = a0; |
| uint64_t c1 = b0; |
| uint64_t d1 = c0; |
| uint64_t e1 = d0 + t1; |
| uint64_t f1 = e0; |
| uint64_t g1 = f0; |
| uint64_t h12 = g0; |
| hash[0U] = a1; |
| hash[1U] = b1; |
| hash[2U] = c1; |
| hash[3U] = d1; |
| hash[4U] = e1; |
| hash[5U] = f1; |
| hash[6U] = g1; |
| hash[7U] = h12;); |
| if (i0 < (uint32_t)4U) |
| { |
| KRML_MAYBE_FOR16(i, |
| (uint32_t)0U, |
| (uint32_t)16U, |
| (uint32_t)1U, |
| uint64_t t16 = ws[i]; |
| uint64_t t15 = ws[(i + (uint32_t)1U) % (uint32_t)16U]; |
| uint64_t t7 = ws[(i + (uint32_t)9U) % (uint32_t)16U]; |
| uint64_t t2 = ws[(i + (uint32_t)14U) % (uint32_t)16U]; |
| uint64_t |
| s1 = |
| (t2 << (uint32_t)45U | t2 >> (uint32_t)19U) |
| ^ ((t2 << (uint32_t)3U | t2 >> (uint32_t)61U) ^ t2 >> (uint32_t)6U); |
| uint64_t |
| s0 = |
| (t15 << (uint32_t)63U | t15 >> (uint32_t)1U) |
| ^ ((t15 << (uint32_t)56U | t15 >> (uint32_t)8U) ^ t15 >> (uint32_t)7U); |
| ws[i] = s1 + t7 + s0 + t16;); |
| }); |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| uint64_t *os = hash; |
| uint64_t x = hash[i] + hash_old[i]; |
| os[i] = x;); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha512_update_nblocks(uint32_t len, uint8_t *b, uint64_t *st) |
| { |
| uint32_t blocks = len / (uint32_t)128U; |
| for (uint32_t i = (uint32_t)0U; i < blocks; i++) |
| { |
| uint8_t *b0 = b; |
| uint8_t *mb = b0 + i * (uint32_t)128U; |
| sha512_update(mb, st); |
| } |
| } |
| |
| void |
| Hacl_SHA2_Scalar32_sha512_update_last( |
| FStar_UInt128_uint128 totlen, |
| uint32_t len, |
| uint8_t *b, |
| uint64_t *hash |
| ) |
| { |
| uint32_t blocks; |
| if (len + (uint32_t)16U + (uint32_t)1U <= (uint32_t)128U) |
| { |
| blocks = (uint32_t)1U; |
| } |
| else |
| { |
| blocks = (uint32_t)2U; |
| } |
| uint32_t fin = blocks * (uint32_t)128U; |
| uint8_t last[256U] = { 0U }; |
| uint8_t totlen_buf[16U] = { 0U }; |
| FStar_UInt128_uint128 total_len_bits = FStar_UInt128_shift_left(totlen, (uint32_t)3U); |
| store128_be(totlen_buf, total_len_bits); |
| uint8_t *b0 = b; |
| memcpy(last, b0, len * sizeof (uint8_t)); |
| last[len] = (uint8_t)0x80U; |
| memcpy(last + fin - (uint32_t)16U, totlen_buf, (uint32_t)16U * sizeof (uint8_t)); |
| uint8_t *last00 = last; |
| uint8_t *last10 = last + (uint32_t)128U; |
| uint8_t *l0 = last00; |
| uint8_t *l1 = last10; |
| uint8_t *lb0 = l0; |
| uint8_t *lb1 = l1; |
| uint8_t *last0 = lb0; |
| uint8_t *last1 = lb1; |
| sha512_update(last0, hash); |
| if (blocks > (uint32_t)1U) |
| { |
| sha512_update(last1, hash); |
| return; |
| } |
| } |
| |
| void Hacl_SHA2_Scalar32_sha512_finish(uint64_t *st, uint8_t *h) |
| { |
| uint8_t hbuf[64U] = { 0U }; |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| store64_be(hbuf + i * (uint32_t)8U, st[i]);); |
| memcpy(h, hbuf, (uint32_t)64U * sizeof (uint8_t)); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha384_init(uint64_t *hash) |
| { |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| uint64_t *os = hash; |
| uint64_t x = Hacl_Impl_SHA2_Generic_h384[i]; |
| os[i] = x;); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha384_update_nblocks(uint32_t len, uint8_t *b, uint64_t *st) |
| { |
| Hacl_SHA2_Scalar32_sha512_update_nblocks(len, b, st); |
| } |
| |
| void |
| Hacl_SHA2_Scalar32_sha384_update_last( |
| FStar_UInt128_uint128 totlen, |
| uint32_t len, |
| uint8_t *b, |
| uint64_t *st |
| ) |
| { |
| Hacl_SHA2_Scalar32_sha512_update_last(totlen, len, b, st); |
| } |
| |
| void Hacl_SHA2_Scalar32_sha384_finish(uint64_t *st, uint8_t *h) |
| { |
| uint8_t hbuf[64U] = { 0U }; |
| KRML_MAYBE_FOR8(i, |
| (uint32_t)0U, |
| (uint32_t)8U, |
| (uint32_t)1U, |
| store64_be(hbuf + i * (uint32_t)8U, st[i]);); |
| memcpy(h, hbuf, (uint32_t)48U * sizeof (uint8_t)); |
| } |
| |
| /** |
| Allocate initial state for the SHA2_256 hash. The state is to be freed by |
| calling `free_256`. |
| */ |
| Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA2_create_in_256(void) |
| { |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t)); |
| uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t)); |
| Hacl_Streaming_MD_state_32 |
| s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| Hacl_Streaming_MD_state_32 |
| *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); |
| p[0U] = s; |
| Hacl_SHA2_Scalar32_sha256_init(block_state); |
| return p; |
| } |
| |
| /** |
| Copies the state passed as argument into a newly allocated state (deep copy). |
| The state is to be freed by calling `free_256`. Cloning the state this way is |
| useful, for instance, if your control-flow diverges and you need to feed |
| more (different) data into the hash in each branch. |
| */ |
| Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA2_copy_256(Hacl_Streaming_MD_state_32 *s0) |
| { |
| Hacl_Streaming_MD_state_32 scrut = *s0; |
| uint32_t *block_state0 = scrut.block_state; |
| uint8_t *buf0 = scrut.buf; |
| uint64_t total_len0 = scrut.total_len; |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t)); |
| memcpy(buf, buf0, (uint32_t)64U * sizeof (uint8_t)); |
| uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t)); |
| memcpy(block_state, block_state0, (uint32_t)8U * sizeof (uint32_t)); |
| Hacl_Streaming_MD_state_32 |
| s = { .block_state = block_state, .buf = buf, .total_len = total_len0 }; |
| Hacl_Streaming_MD_state_32 |
| *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); |
| p[0U] = s; |
| return p; |
| } |
| |
| /** |
| Reset an existing state to the initial hash state with empty data. |
| */ |
| void Hacl_Streaming_SHA2_init_256(Hacl_Streaming_MD_state_32 *s) |
| { |
| Hacl_Streaming_MD_state_32 scrut = *s; |
| uint8_t *buf = scrut.buf; |
| uint32_t *block_state = scrut.block_state; |
| Hacl_SHA2_Scalar32_sha256_init(block_state); |
| Hacl_Streaming_MD_state_32 |
| tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| s[0U] = tmp; |
| } |
| |
| static inline Hacl_Streaming_Types_error_code |
| update_224_256(Hacl_Streaming_MD_state_32 *p, uint8_t *data, uint32_t len) |
| { |
| Hacl_Streaming_MD_state_32 s = *p; |
| uint64_t total_len = s.total_len; |
| if ((uint64_t)len > (uint64_t)2305843009213693951U - total_len) |
| { |
| return Hacl_Streaming_Types_MaximumLengthExceeded; |
| } |
| uint32_t sz; |
| if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U) |
| { |
| sz = (uint32_t)64U; |
| } |
| else |
| { |
| sz = (uint32_t)(total_len % (uint64_t)(uint32_t)64U); |
| } |
| if (len <= (uint32_t)64U - sz) |
| { |
| Hacl_Streaming_MD_state_32 s1 = *p; |
| uint32_t *block_state1 = s1.block_state; |
| uint8_t *buf = s1.buf; |
| uint64_t total_len1 = s1.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U) |
| { |
| sz1 = (uint32_t)64U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U); |
| } |
| uint8_t *buf2 = buf + sz1; |
| memcpy(buf2, data, len * sizeof (uint8_t)); |
| uint64_t total_len2 = total_len1 + (uint64_t)len; |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_32){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len2 |
| } |
| ); |
| } |
| else if (sz == (uint32_t)0U) |
| { |
| Hacl_Streaming_MD_state_32 s1 = *p; |
| uint32_t *block_state1 = s1.block_state; |
| uint8_t *buf = s1.buf; |
| uint64_t total_len1 = s1.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U) |
| { |
| sz1 = (uint32_t)64U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U); |
| } |
| if (!(sz1 == (uint32_t)0U)) |
| { |
| Hacl_SHA2_Scalar32_sha256_update_nblocks((uint32_t)64U, buf, block_state1); |
| } |
| uint32_t ite; |
| if ((uint64_t)len % (uint64_t)(uint32_t)64U == (uint64_t)0U && (uint64_t)len > (uint64_t)0U) |
| { |
| ite = (uint32_t)64U; |
| } |
| else |
| { |
| ite = (uint32_t)((uint64_t)len % (uint64_t)(uint32_t)64U); |
| } |
| uint32_t n_blocks = (len - ite) / (uint32_t)64U; |
| uint32_t data1_len = n_blocks * (uint32_t)64U; |
| uint32_t data2_len = len - data1_len; |
| uint8_t *data1 = data; |
| uint8_t *data2 = data + data1_len; |
| Hacl_SHA2_Scalar32_sha256_update_nblocks(data1_len / (uint32_t)64U * (uint32_t)64U, |
| data1, |
| block_state1); |
| uint8_t *dst = buf; |
| memcpy(dst, data2, data2_len * sizeof (uint8_t)); |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_32){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len1 + (uint64_t)len |
| } |
| ); |
| } |
| else |
| { |
| uint32_t diff = (uint32_t)64U - sz; |
| uint8_t *data1 = data; |
| uint8_t *data2 = data + diff; |
| Hacl_Streaming_MD_state_32 s1 = *p; |
| uint32_t *block_state10 = s1.block_state; |
| uint8_t *buf0 = s1.buf; |
| uint64_t total_len10 = s1.total_len; |
| uint32_t sz10; |
| if (total_len10 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len10 > (uint64_t)0U) |
| { |
| sz10 = (uint32_t)64U; |
| } |
| else |
| { |
| sz10 = (uint32_t)(total_len10 % (uint64_t)(uint32_t)64U); |
| } |
| uint8_t *buf2 = buf0 + sz10; |
| memcpy(buf2, data1, diff * sizeof (uint8_t)); |
| uint64_t total_len2 = total_len10 + (uint64_t)diff; |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_32){ |
| .block_state = block_state10, |
| .buf = buf0, |
| .total_len = total_len2 |
| } |
| ); |
| Hacl_Streaming_MD_state_32 s10 = *p; |
| uint32_t *block_state1 = s10.block_state; |
| uint8_t *buf = s10.buf; |
| uint64_t total_len1 = s10.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U) |
| { |
| sz1 = (uint32_t)64U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U); |
| } |
| if (!(sz1 == (uint32_t)0U)) |
| { |
| Hacl_SHA2_Scalar32_sha256_update_nblocks((uint32_t)64U, buf, block_state1); |
| } |
| uint32_t ite; |
| if |
| ( |
| (uint64_t)(len - diff) |
| % (uint64_t)(uint32_t)64U |
| == (uint64_t)0U |
| && (uint64_t)(len - diff) > (uint64_t)0U |
| ) |
| { |
| ite = (uint32_t)64U; |
| } |
| else |
| { |
| ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)(uint32_t)64U); |
| } |
| uint32_t n_blocks = (len - diff - ite) / (uint32_t)64U; |
| uint32_t data1_len = n_blocks * (uint32_t)64U; |
| uint32_t data2_len = len - diff - data1_len; |
| uint8_t *data11 = data2; |
| uint8_t *data21 = data2 + data1_len; |
| Hacl_SHA2_Scalar32_sha256_update_nblocks(data1_len / (uint32_t)64U * (uint32_t)64U, |
| data11, |
| block_state1); |
| uint8_t *dst = buf; |
| memcpy(dst, data21, data2_len * sizeof (uint8_t)); |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_32){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len1 + (uint64_t)(len - diff) |
| } |
| ); |
| } |
| return Hacl_Streaming_Types_Success; |
| } |
| |
| /** |
| Feed an arbitrary amount of data into the hash. This function returns 0 for |
| success, or 1 if the combined length of all of the data passed to `update_256` |
| (since the last call to `init_256`) exceeds 2^61-1 bytes. |
| |
| This function is identical to the update function for SHA2_224. |
| */ |
| Hacl_Streaming_Types_error_code |
| Hacl_Streaming_SHA2_update_256( |
| Hacl_Streaming_MD_state_32 *p, |
| uint8_t *input, |
| uint32_t input_len |
| ) |
| { |
| return update_224_256(p, input, input_len); |
| } |
| |
| /** |
| Write the resulting hash into `dst`, an array of 32 bytes. The state remains |
| valid after a call to `finish_256`, meaning the user may feed more data into |
| the hash via `update_256`. (The finish_256 function operates on an internal copy of |
| the state and therefore does not invalidate the client-held state `p`.) |
| */ |
| void Hacl_Streaming_SHA2_finish_256(Hacl_Streaming_MD_state_32 *p, uint8_t *dst) |
| { |
| Hacl_Streaming_MD_state_32 scrut = *p; |
| uint32_t *block_state = scrut.block_state; |
| uint8_t *buf_ = scrut.buf; |
| uint64_t total_len = scrut.total_len; |
| uint32_t r; |
| if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U) |
| { |
| r = (uint32_t)64U; |
| } |
| else |
| { |
| r = (uint32_t)(total_len % (uint64_t)(uint32_t)64U); |
| } |
| uint8_t *buf_1 = buf_; |
| uint32_t tmp_block_state[8U] = { 0U }; |
| memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint32_t)); |
| uint32_t ite; |
| if (r % (uint32_t)64U == (uint32_t)0U && r > (uint32_t)0U) |
| { |
| ite = (uint32_t)64U; |
| } |
| else |
| { |
| ite = r % (uint32_t)64U; |
| } |
| uint8_t *buf_last = buf_1 + r - ite; |
| uint8_t *buf_multi = buf_1; |
| Hacl_SHA2_Scalar32_sha256_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); |
| uint64_t prev_len_last = total_len - (uint64_t)r; |
| Hacl_SHA2_Scalar32_sha256_update_last(prev_len_last + (uint64_t)r, |
| r, |
| buf_last, |
| tmp_block_state); |
| Hacl_SHA2_Scalar32_sha256_finish(tmp_block_state, dst); |
| } |
| |
| /** |
| Free a state allocated with `create_in_256`. |
| |
| This function is identical to the free function for SHA2_224. |
| */ |
| void Hacl_Streaming_SHA2_free_256(Hacl_Streaming_MD_state_32 *s) |
| { |
| Hacl_Streaming_MD_state_32 scrut = *s; |
| uint8_t *buf = scrut.buf; |
| uint32_t *block_state = scrut.block_state; |
| KRML_HOST_FREE(block_state); |
| KRML_HOST_FREE(buf); |
| KRML_HOST_FREE(s); |
| } |
| |
| /** |
| Hash `input`, of len `input_len`, into `dst`, an array of 32 bytes. |
| */ |
| void Hacl_Streaming_SHA2_hash_256(uint8_t *input, uint32_t input_len, uint8_t *dst) |
| { |
| uint8_t *ib = input; |
| uint8_t *rb = dst; |
| uint32_t st[8U] = { 0U }; |
| Hacl_SHA2_Scalar32_sha256_init(st); |
| uint32_t rem = input_len % (uint32_t)64U; |
| uint64_t len_ = (uint64_t)input_len; |
| Hacl_SHA2_Scalar32_sha256_update_nblocks(input_len, ib, st); |
| uint32_t rem1 = input_len % (uint32_t)64U; |
| uint8_t *b0 = ib; |
| uint8_t *lb = b0 + input_len - rem1; |
| Hacl_SHA2_Scalar32_sha256_update_last(len_, rem, lb, st); |
| Hacl_SHA2_Scalar32_sha256_finish(st, rb); |
| } |
| |
| Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA2_create_in_224(void) |
| { |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t)); |
| uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t)); |
| Hacl_Streaming_MD_state_32 |
| s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| Hacl_Streaming_MD_state_32 |
| *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); |
| p[0U] = s; |
| Hacl_SHA2_Scalar32_sha224_init(block_state); |
| return p; |
| } |
| |
| void Hacl_Streaming_SHA2_init_224(Hacl_Streaming_MD_state_32 *s) |
| { |
| Hacl_Streaming_MD_state_32 scrut = *s; |
| uint8_t *buf = scrut.buf; |
| uint32_t *block_state = scrut.block_state; |
| Hacl_SHA2_Scalar32_sha224_init(block_state); |
| Hacl_Streaming_MD_state_32 |
| tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| s[0U] = tmp; |
| } |
| |
| Hacl_Streaming_Types_error_code |
| Hacl_Streaming_SHA2_update_224( |
| Hacl_Streaming_MD_state_32 *p, |
| uint8_t *input, |
| uint32_t input_len |
| ) |
| { |
| return update_224_256(p, input, input_len); |
| } |
| |
| /** |
| Write the resulting hash into `dst`, an array of 28 bytes. The state remains |
| valid after a call to `finish_224`, meaning the user may feed more data into |
| the hash via `update_224`. |
| */ |
| void Hacl_Streaming_SHA2_finish_224(Hacl_Streaming_MD_state_32 *p, uint8_t *dst) |
| { |
| Hacl_Streaming_MD_state_32 scrut = *p; |
| uint32_t *block_state = scrut.block_state; |
| uint8_t *buf_ = scrut.buf; |
| uint64_t total_len = scrut.total_len; |
| uint32_t r; |
| if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U) |
| { |
| r = (uint32_t)64U; |
| } |
| else |
| { |
| r = (uint32_t)(total_len % (uint64_t)(uint32_t)64U); |
| } |
| uint8_t *buf_1 = buf_; |
| uint32_t tmp_block_state[8U] = { 0U }; |
| memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint32_t)); |
| uint32_t ite; |
| if (r % (uint32_t)64U == (uint32_t)0U && r > (uint32_t)0U) |
| { |
| ite = (uint32_t)64U; |
| } |
| else |
| { |
| ite = r % (uint32_t)64U; |
| } |
| uint8_t *buf_last = buf_1 + r - ite; |
| uint8_t *buf_multi = buf_1; |
| sha224_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); |
| uint64_t prev_len_last = total_len - (uint64_t)r; |
| Hacl_SHA2_Scalar32_sha224_update_last(prev_len_last + (uint64_t)r, |
| r, |
| buf_last, |
| tmp_block_state); |
| Hacl_SHA2_Scalar32_sha224_finish(tmp_block_state, dst); |
| } |
| |
| void Hacl_Streaming_SHA2_free_224(Hacl_Streaming_MD_state_32 *p) |
| { |
| Hacl_Streaming_SHA2_free_256(p); |
| } |
| |
| /** |
| Hash `input`, of len `input_len`, into `dst`, an array of 28 bytes. |
| */ |
| void Hacl_Streaming_SHA2_hash_224(uint8_t *input, uint32_t input_len, uint8_t *dst) |
| { |
| uint8_t *ib = input; |
| uint8_t *rb = dst; |
| uint32_t st[8U] = { 0U }; |
| Hacl_SHA2_Scalar32_sha224_init(st); |
| uint32_t rem = input_len % (uint32_t)64U; |
| uint64_t len_ = (uint64_t)input_len; |
| sha224_update_nblocks(input_len, ib, st); |
| uint32_t rem1 = input_len % (uint32_t)64U; |
| uint8_t *b0 = ib; |
| uint8_t *lb = b0 + input_len - rem1; |
| Hacl_SHA2_Scalar32_sha224_update_last(len_, rem, lb, st); |
| Hacl_SHA2_Scalar32_sha224_finish(st, rb); |
| } |
| |
| Hacl_Streaming_MD_state_64 *Hacl_Streaming_SHA2_create_in_512(void) |
| { |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t)); |
| uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t)); |
| Hacl_Streaming_MD_state_64 |
| s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| Hacl_Streaming_MD_state_64 |
| *p = (Hacl_Streaming_MD_state_64 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_64)); |
| p[0U] = s; |
| Hacl_SHA2_Scalar32_sha512_init(block_state); |
| return p; |
| } |
| |
| /** |
| Copies the state passed as argument into a newly allocated state (deep copy). |
| The state is to be freed by calling `free_512`. Cloning the state this way is |
| useful, for instance, if your control-flow diverges and you need to feed |
| more (different) data into the hash in each branch. |
| */ |
| Hacl_Streaming_MD_state_64 *Hacl_Streaming_SHA2_copy_512(Hacl_Streaming_MD_state_64 *s0) |
| { |
| Hacl_Streaming_MD_state_64 scrut = *s0; |
| uint64_t *block_state0 = scrut.block_state; |
| uint8_t *buf0 = scrut.buf; |
| uint64_t total_len0 = scrut.total_len; |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t)); |
| memcpy(buf, buf0, (uint32_t)128U * sizeof (uint8_t)); |
| uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t)); |
| memcpy(block_state, block_state0, (uint32_t)8U * sizeof (uint64_t)); |
| Hacl_Streaming_MD_state_64 |
| s = { .block_state = block_state, .buf = buf, .total_len = total_len0 }; |
| Hacl_Streaming_MD_state_64 |
| *p = (Hacl_Streaming_MD_state_64 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_64)); |
| p[0U] = s; |
| return p; |
| } |
| |
| void Hacl_Streaming_SHA2_init_512(Hacl_Streaming_MD_state_64 *s) |
| { |
| Hacl_Streaming_MD_state_64 scrut = *s; |
| uint8_t *buf = scrut.buf; |
| uint64_t *block_state = scrut.block_state; |
| Hacl_SHA2_Scalar32_sha512_init(block_state); |
| Hacl_Streaming_MD_state_64 |
| tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| s[0U] = tmp; |
| } |
| |
| static inline Hacl_Streaming_Types_error_code |
| update_384_512(Hacl_Streaming_MD_state_64 *p, uint8_t *data, uint32_t len) |
| { |
| Hacl_Streaming_MD_state_64 s = *p; |
| uint64_t total_len = s.total_len; |
| if ((uint64_t)len > (uint64_t)18446744073709551615U - total_len) |
| { |
| return Hacl_Streaming_Types_MaximumLengthExceeded; |
| } |
| uint32_t sz; |
| if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U) |
| { |
| sz = (uint32_t)128U; |
| } |
| else |
| { |
| sz = (uint32_t)(total_len % (uint64_t)(uint32_t)128U); |
| } |
| if (len <= (uint32_t)128U - sz) |
| { |
| Hacl_Streaming_MD_state_64 s1 = *p; |
| uint64_t *block_state1 = s1.block_state; |
| uint8_t *buf = s1.buf; |
| uint64_t total_len1 = s1.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U) |
| { |
| sz1 = (uint32_t)128U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U); |
| } |
| uint8_t *buf2 = buf + sz1; |
| memcpy(buf2, data, len * sizeof (uint8_t)); |
| uint64_t total_len2 = total_len1 + (uint64_t)len; |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_64){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len2 |
| } |
| ); |
| } |
| else if (sz == (uint32_t)0U) |
| { |
| Hacl_Streaming_MD_state_64 s1 = *p; |
| uint64_t *block_state1 = s1.block_state; |
| uint8_t *buf = s1.buf; |
| uint64_t total_len1 = s1.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U) |
| { |
| sz1 = (uint32_t)128U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U); |
| } |
| if (!(sz1 == (uint32_t)0U)) |
| { |
| Hacl_SHA2_Scalar32_sha512_update_nblocks((uint32_t)128U, buf, block_state1); |
| } |
| uint32_t ite; |
| if ((uint64_t)len % (uint64_t)(uint32_t)128U == (uint64_t)0U && (uint64_t)len > (uint64_t)0U) |
| { |
| ite = (uint32_t)128U; |
| } |
| else |
| { |
| ite = (uint32_t)((uint64_t)len % (uint64_t)(uint32_t)128U); |
| } |
| uint32_t n_blocks = (len - ite) / (uint32_t)128U; |
| uint32_t data1_len = n_blocks * (uint32_t)128U; |
| uint32_t data2_len = len - data1_len; |
| uint8_t *data1 = data; |
| uint8_t *data2 = data + data1_len; |
| Hacl_SHA2_Scalar32_sha512_update_nblocks(data1_len / (uint32_t)128U * (uint32_t)128U, |
| data1, |
| block_state1); |
| uint8_t *dst = buf; |
| memcpy(dst, data2, data2_len * sizeof (uint8_t)); |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_64){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len1 + (uint64_t)len |
| } |
| ); |
| } |
| else |
| { |
| uint32_t diff = (uint32_t)128U - sz; |
| uint8_t *data1 = data; |
| uint8_t *data2 = data + diff; |
| Hacl_Streaming_MD_state_64 s1 = *p; |
| uint64_t *block_state10 = s1.block_state; |
| uint8_t *buf0 = s1.buf; |
| uint64_t total_len10 = s1.total_len; |
| uint32_t sz10; |
| if (total_len10 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len10 > (uint64_t)0U) |
| { |
| sz10 = (uint32_t)128U; |
| } |
| else |
| { |
| sz10 = (uint32_t)(total_len10 % (uint64_t)(uint32_t)128U); |
| } |
| uint8_t *buf2 = buf0 + sz10; |
| memcpy(buf2, data1, diff * sizeof (uint8_t)); |
| uint64_t total_len2 = total_len10 + (uint64_t)diff; |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_64){ |
| .block_state = block_state10, |
| .buf = buf0, |
| .total_len = total_len2 |
| } |
| ); |
| Hacl_Streaming_MD_state_64 s10 = *p; |
| uint64_t *block_state1 = s10.block_state; |
| uint8_t *buf = s10.buf; |
| uint64_t total_len1 = s10.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U) |
| { |
| sz1 = (uint32_t)128U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U); |
| } |
| if (!(sz1 == (uint32_t)0U)) |
| { |
| Hacl_SHA2_Scalar32_sha512_update_nblocks((uint32_t)128U, buf, block_state1); |
| } |
| uint32_t ite; |
| if |
| ( |
| (uint64_t)(len - diff) |
| % (uint64_t)(uint32_t)128U |
| == (uint64_t)0U |
| && (uint64_t)(len - diff) > (uint64_t)0U |
| ) |
| { |
| ite = (uint32_t)128U; |
| } |
| else |
| { |
| ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)(uint32_t)128U); |
| } |
| uint32_t n_blocks = (len - diff - ite) / (uint32_t)128U; |
| uint32_t data1_len = n_blocks * (uint32_t)128U; |
| uint32_t data2_len = len - diff - data1_len; |
| uint8_t *data11 = data2; |
| uint8_t *data21 = data2 + data1_len; |
| Hacl_SHA2_Scalar32_sha512_update_nblocks(data1_len / (uint32_t)128U * (uint32_t)128U, |
| data11, |
| block_state1); |
| uint8_t *dst = buf; |
| memcpy(dst, data21, data2_len * sizeof (uint8_t)); |
| *p |
| = |
| ( |
| (Hacl_Streaming_MD_state_64){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len1 + (uint64_t)(len - diff) |
| } |
| ); |
| } |
| return Hacl_Streaming_Types_Success; |
| } |
| |
| /** |
| Feed an arbitrary amount of data into the hash. This function returns 0 for |
| success, or 1 if the combined length of all of the data passed to `update_512` |
| (since the last call to `init_512`) exceeds 2^125-1 bytes. |
| |
| This function is identical to the update function for SHA2_384. |
| */ |
| Hacl_Streaming_Types_error_code |
| Hacl_Streaming_SHA2_update_512( |
| Hacl_Streaming_MD_state_64 *p, |
| uint8_t *input, |
| uint32_t input_len |
| ) |
| { |
| return update_384_512(p, input, input_len); |
| } |
| |
| /** |
| Write the resulting hash into `dst`, an array of 64 bytes. The state remains |
| valid after a call to `finish_512`, meaning the user may feed more data into |
| the hash via `update_512`. (The finish_512 function operates on an internal copy of |
| the state and therefore does not invalidate the client-held state `p`.) |
| */ |
| void Hacl_Streaming_SHA2_finish_512(Hacl_Streaming_MD_state_64 *p, uint8_t *dst) |
| { |
| Hacl_Streaming_MD_state_64 scrut = *p; |
| uint64_t *block_state = scrut.block_state; |
| uint8_t *buf_ = scrut.buf; |
| uint64_t total_len = scrut.total_len; |
| uint32_t r; |
| if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U) |
| { |
| r = (uint32_t)128U; |
| } |
| else |
| { |
| r = (uint32_t)(total_len % (uint64_t)(uint32_t)128U); |
| } |
| uint8_t *buf_1 = buf_; |
| uint64_t tmp_block_state[8U] = { 0U }; |
| memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint64_t)); |
| uint32_t ite; |
| if (r % (uint32_t)128U == (uint32_t)0U && r > (uint32_t)0U) |
| { |
| ite = (uint32_t)128U; |
| } |
| else |
| { |
| ite = r % (uint32_t)128U; |
| } |
| uint8_t *buf_last = buf_1 + r - ite; |
| uint8_t *buf_multi = buf_1; |
| Hacl_SHA2_Scalar32_sha512_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); |
| uint64_t prev_len_last = total_len - (uint64_t)r; |
| Hacl_SHA2_Scalar32_sha512_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(prev_len_last), |
| FStar_UInt128_uint64_to_uint128((uint64_t)r)), |
| r, |
| buf_last, |
| tmp_block_state); |
| Hacl_SHA2_Scalar32_sha512_finish(tmp_block_state, dst); |
| } |
| |
| /** |
| Free a state allocated with `create_in_512`. |
| |
| This function is identical to the free function for SHA2_384. |
| */ |
| void Hacl_Streaming_SHA2_free_512(Hacl_Streaming_MD_state_64 *s) |
| { |
| Hacl_Streaming_MD_state_64 scrut = *s; |
| uint8_t *buf = scrut.buf; |
| uint64_t *block_state = scrut.block_state; |
| KRML_HOST_FREE(block_state); |
| KRML_HOST_FREE(buf); |
| KRML_HOST_FREE(s); |
| } |
| |
| /** |
| Hash `input`, of len `input_len`, into `dst`, an array of 64 bytes. |
| */ |
| void Hacl_Streaming_SHA2_hash_512(uint8_t *input, uint32_t input_len, uint8_t *dst) |
| { |
| uint8_t *ib = input; |
| uint8_t *rb = dst; |
| uint64_t st[8U] = { 0U }; |
| Hacl_SHA2_Scalar32_sha512_init(st); |
| uint32_t rem = input_len % (uint32_t)128U; |
| FStar_UInt128_uint128 len_ = FStar_UInt128_uint64_to_uint128((uint64_t)input_len); |
| Hacl_SHA2_Scalar32_sha512_update_nblocks(input_len, ib, st); |
| uint32_t rem1 = input_len % (uint32_t)128U; |
| uint8_t *b0 = ib; |
| uint8_t *lb = b0 + input_len - rem1; |
| Hacl_SHA2_Scalar32_sha512_update_last(len_, rem, lb, st); |
| Hacl_SHA2_Scalar32_sha512_finish(st, rb); |
| } |
| |
| Hacl_Streaming_MD_state_64 *Hacl_Streaming_SHA2_create_in_384(void) |
| { |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t)); |
| uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t)); |
| Hacl_Streaming_MD_state_64 |
| s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| Hacl_Streaming_MD_state_64 |
| *p = (Hacl_Streaming_MD_state_64 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_64)); |
| p[0U] = s; |
| Hacl_SHA2_Scalar32_sha384_init(block_state); |
| return p; |
| } |
| |
| void Hacl_Streaming_SHA2_init_384(Hacl_Streaming_MD_state_64 *s) |
| { |
| Hacl_Streaming_MD_state_64 scrut = *s; |
| uint8_t *buf = scrut.buf; |
| uint64_t *block_state = scrut.block_state; |
| Hacl_SHA2_Scalar32_sha384_init(block_state); |
| Hacl_Streaming_MD_state_64 |
| tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; |
| s[0U] = tmp; |
| } |
| |
| Hacl_Streaming_Types_error_code |
| Hacl_Streaming_SHA2_update_384( |
| Hacl_Streaming_MD_state_64 *p, |
| uint8_t *input, |
| uint32_t input_len |
| ) |
| { |
| return update_384_512(p, input, input_len); |
| } |
| |
| /** |
| Write the resulting hash into `dst`, an array of 48 bytes. The state remains |
| valid after a call to `finish_384`, meaning the user may feed more data into |
| the hash via `update_384`. |
| */ |
| void Hacl_Streaming_SHA2_finish_384(Hacl_Streaming_MD_state_64 *p, uint8_t *dst) |
| { |
| Hacl_Streaming_MD_state_64 scrut = *p; |
| uint64_t *block_state = scrut.block_state; |
| uint8_t *buf_ = scrut.buf; |
| uint64_t total_len = scrut.total_len; |
| uint32_t r; |
| if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U) |
| { |
| r = (uint32_t)128U; |
| } |
| else |
| { |
| r = (uint32_t)(total_len % (uint64_t)(uint32_t)128U); |
| } |
| uint8_t *buf_1 = buf_; |
| uint64_t tmp_block_state[8U] = { 0U }; |
| memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint64_t)); |
| uint32_t ite; |
| if (r % (uint32_t)128U == (uint32_t)0U && r > (uint32_t)0U) |
| { |
| ite = (uint32_t)128U; |
| } |
| else |
| { |
| ite = r % (uint32_t)128U; |
| } |
| uint8_t *buf_last = buf_1 + r - ite; |
| uint8_t *buf_multi = buf_1; |
| Hacl_SHA2_Scalar32_sha384_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state); |
| uint64_t prev_len_last = total_len - (uint64_t)r; |
| Hacl_SHA2_Scalar32_sha384_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(prev_len_last), |
| FStar_UInt128_uint64_to_uint128((uint64_t)r)), |
| r, |
| buf_last, |
| tmp_block_state); |
| Hacl_SHA2_Scalar32_sha384_finish(tmp_block_state, dst); |
| } |
| |
| void Hacl_Streaming_SHA2_free_384(Hacl_Streaming_MD_state_64 *p) |
| { |
| Hacl_Streaming_SHA2_free_512(p); |
| } |
| |
| /** |
| Hash `input`, of len `input_len`, into `dst`, an array of 48 bytes. |
| */ |
| void Hacl_Streaming_SHA2_hash_384(uint8_t *input, uint32_t input_len, uint8_t *dst) |
| { |
| uint8_t *ib = input; |
| uint8_t *rb = dst; |
| uint64_t st[8U] = { 0U }; |
| Hacl_SHA2_Scalar32_sha384_init(st); |
| uint32_t rem = input_len % (uint32_t)128U; |
| FStar_UInt128_uint128 len_ = FStar_UInt128_uint64_to_uint128((uint64_t)input_len); |
| Hacl_SHA2_Scalar32_sha384_update_nblocks(input_len, ib, st); |
| uint32_t rem1 = input_len % (uint32_t)128U; |
| uint8_t *b0 = ib; |
| uint8_t *lb = b0 + input_len - rem1; |
| Hacl_SHA2_Scalar32_sha384_update_last(len_, rem, lb, st); |
| Hacl_SHA2_Scalar32_sha384_finish(st, rb); |
| } |
| |