blob: 065243c7eaadf29bfed615d65587ef8305198b01 [file] [log] [blame]
:mod:`sqlite3` --- DB-API 2.0 interface for SQLite databases
============================================================
.. module:: sqlite3
:synopsis: A DB-API 2.0 implementation using SQLite 3.x.
.. sectionauthor:: Gerhard Häring <gh@ghaering.de>
**Source code:** :source:`Lib/sqlite3/`
.. Make sure we always doctest the tutorial with an empty database.
.. testsetup::
import sqlite3
src = sqlite3.connect(":memory:", isolation_level=None)
dst = sqlite3.connect("tutorial.db", isolation_level=None)
src.backup(dst)
del src, dst
.. _sqlite3-intro:
SQLite is a C library that provides a lightweight disk-based database that
doesn't require a separate server process and allows accessing the database
using a nonstandard variant of the SQL query language. Some applications can use
SQLite for internal data storage. It's also possible to prototype an
application using SQLite and then port the code to a larger database such as
PostgreSQL or Oracle.
The :mod:`!sqlite3` module was written by Gerhard Häring. It provides an SQL interface
compliant with the DB-API 2.0 specification described by :pep:`249`, and
requires SQLite 3.7.15 or newer.
This document includes four main sections:
* :ref:`sqlite3-tutorial` teaches how to use the :mod:`!sqlite3` module.
* :ref:`sqlite3-reference` describes the classes and functions this module
defines.
* :ref:`sqlite3-howtos` details how to handle specific tasks.
* :ref:`sqlite3-explanation` provides in-depth background on
transaction control.
.. seealso::
https://www.sqlite.org
The SQLite web page; the documentation describes the syntax and the
available data types for the supported SQL dialect.
https://www.w3schools.com/sql/
Tutorial, reference and examples for learning SQL syntax.
:pep:`249` - Database API Specification 2.0
PEP written by Marc-André Lemburg.
.. We use the following practises for SQL code:
- UPPERCASE for keywords
- snake_case for schema
- single quotes for string literals
- singular for table names
- if needed, use double quotes for table and column names
.. _sqlite3-tutorial:
Tutorial
--------
In this tutorial, you will create a database of Monty Python movies
using basic :mod:`!sqlite3` functionality.
It assumes a fundamental understanding of database concepts,
including `cursors`_ and `transactions`_.
First, we need to create a new database and open
a database connection to allow :mod:`!sqlite3` to work with it.
Call :func:`sqlite3.connect` to to create a connection to
the database :file:`tutorial.db` in the current working directory,
implicitly creating it if it does not exist:
.. testcode::
import sqlite3
con = sqlite3.connect("tutorial.db")
The returned :class:`Connection` object ``con``
represents the connection to the on-disk database.
In order to execute SQL statements and fetch results from SQL queries,
we will need to use a database cursor.
Call :meth:`con.cursor() <Connection.cursor>` to create the :class:`Cursor`:
.. testcode::
cur = con.cursor()
Now that we've got a database connection and a cursor,
we can create a database table ``movie`` with columns for title,
release year, and review score.
For simplicity, we can just use column names in the table declaration --
thanks to the `flexible typing`_ feature of SQLite,
specifying the data types is optional.
Execute the ``CREATE TABLE`` statement
by calling :meth:`cur.execute(...) <Cursor.execute>`:
.. testcode::
cur.execute("CREATE TABLE movie(title, year, score)")
.. Ideally, we'd use sqlite_schema instead of sqlite_master below,
but SQLite versions older than 3.33.0 do not recognise that variant.
We can verify that the new table has been created by querying
the ``sqlite_master`` table built-in to SQLite,
which should now contain an entry for the ``movie`` table definition
(see `The Schema Table`_ for details).
Execute that query by calling :meth:`cur.execute(...) <Cursor.execute>`,
assign the result to ``res``,
and call :meth:`res.fetchone() <Cursor.fetchone>` to fetch the resulting row:
.. doctest::
>>> res = cur.execute("SELECT name FROM sqlite_master")
>>> res.fetchone()
('movie',)
We can see that the table has been created,
as the query returns a :class:`tuple` containing the table's name.
If we query ``sqlite_master`` for a non-existent table ``spam``,
:meth:`!res.fetchone()` will return ``None``:
.. doctest::
>>> res = cur.execute("SELECT name FROM sqlite_master WHERE name='spam'")
>>> res.fetchone() is None
True
Now, add two rows of data supplied as SQL literals
by executing an ``INSERT`` statement,
once again by calling :meth:`cur.execute(...) <Cursor.execute>`:
.. testcode::
cur.execute("""
INSERT INTO movie VALUES
('Monty Python and the Holy Grail', 1975, 8.2),
('And Now for Something Completely Different', 1971, 7.5)
""")
The ``INSERT`` statement implicitly opens a transaction,
which needs to be committed before changes are saved in the database
(see :ref:`sqlite3-controlling-transactions` for details).
Call :meth:`con.commit() <Connection.commit>` on the connection object
to commit the transaction:
.. testcode::
con.commit()
We can verify that the data was inserted correctly
by executing a ``SELECT`` query.
Use the now-familiar :meth:`cur.execute(...) <Cursor.execute>` to
assign the result to ``res``,
and call :meth:`res.fetchall() <Cursor.fetchall>` to return all resulting rows:
.. doctest::
>>> res = cur.execute("SELECT score FROM movie")
>>> res.fetchall()
[(8.2,), (7.5,)]
The result is a :class:`list` of two :class:`!tuple`\s, one per row,
each containing that row's ``score`` value.
Now, insert three more rows by calling
:meth:`cur.executemany(...) <Cursor.executemany>`:
.. testcode::
data = [
("Monty Python Live at the Hollywood Bowl", 1982, 7.9),
("Monty Python's The Meaning of Life", 1983, 7.5),
("Monty Python's Life of Brian", 1979, 8.0),
]
cur.executemany("INSERT INTO movie VALUES(?, ?, ?)", data)
con.commit() # Remember to commit the transaction after executing INSERT.
Notice that ``?`` placeholders are used to bind ``data`` to the query.
Always use placeholders instead of :ref:`string formatting <tut-formatting>`
to bind Python values to SQL statements,
to avoid `SQL injection attacks`_
(see :ref:`sqlite3-placeholders` for more details).
We can verify that the new rows were inserted
by executing a ``SELECT`` query,
this time iterating over the results of the query:
.. doctest::
>>> for row in cur.execute("SELECT year, title FROM movie ORDER BY year"):
... print(row)
(1971, 'And Now for Something Completely Different')
(1975, 'Monty Python and the Holy Grail')
(1979, "Monty Python's Life of Brian")
(1982, 'Monty Python Live at the Hollywood Bowl')
(1983, "Monty Python's The Meaning of Life")
Each row is a two-item :class:`tuple` of ``(year, title)``,
matching the columns selected in the query.
Finally, verify that the database has been written to disk
by calling :meth:`con.close() <Connection.close>`
to close the existing connection, opening a new one,
creating a new cursor, then querying the database:
.. doctest::
>>> con.close()
>>> new_con = sqlite3.connect("tutorial.db")
>>> new_cur = new_con.cursor()
>>> res = new_cur.execute("SELECT title, year FROM movie ORDER BY score DESC")
>>> title, year = res.fetchone()
>>> print(f'The highest scoring Monty Python movie is {title!r}, released in {year}')
The highest scoring Monty Python movie is 'Monty Python and the Holy Grail', released in 1975
You've now created an SQLite database using the :mod:`!sqlite3` module,
inserted data and retrieved values from it in multiple ways.
.. _SQL injection attacks: https://en.wikipedia.org/wiki/SQL_injection
.. _The Schema Table: https://www.sqlite.org/schematab.html
.. _cursors: https://en.wikipedia.org/wiki/Cursor_(databases)
.. _flexible typing: https://www.sqlite.org/flextypegood.html
.. _sqlite_master: https://www.sqlite.org/schematab.html
.. _transactions: https://en.wikipedia.org/wiki/Database_transaction
.. seealso::
* :ref:`sqlite3-howtos` for further reading:
* :ref:`sqlite3-placeholders`
* :ref:`sqlite3-adapters`
* :ref:`sqlite3-converters`
* :ref:`sqlite3-connection-context-manager`
* :ref:`sqlite3-howto-row-factory`
* :ref:`sqlite3-explanation` for in-depth background on transaction control.
.. _sqlite3-reference:
Reference
---------
.. We keep the old sqlite3-module-contents ref to prevent breaking links.
.. _sqlite3-module-contents:
.. _sqlite3-module-functions:
Module functions
^^^^^^^^^^^^^^^^
.. function:: connect(database, timeout=5.0, detect_types=0, \
isolation_level="DEFERRED", check_same_thread=True, \
factory=sqlite3.Connection, cached_statements=100, \
uri=False)
Open a connection to an SQLite database.
:param database:
The path to the database file to be opened.
Pass ``":memory:"`` to open a connection to a database that is
in RAM instead of on disk.
:type database: :term:`path-like object`
:param float timeout:
How many seconds the connection should wait before raising
an exception, if the database is locked by another connection.
If another connection opens a transaction to modify the database,
it will be locked until that transaction is committed.
Default five seconds.
:param int detect_types:
Control whether and how data types not
:ref:`natively supported by SQLite <sqlite3-types>`
are looked up to be converted to Python types,
using the converters registered with :func:`register_converter`.
Set it to any combination (using ``|``, bitwise or) of
:const:`PARSE_DECLTYPES` and :const:`PARSE_COLNAMES`
to enable this.
Column names takes precedence over declared types if both flags are set.
Types cannot be detected for generated fields (for example ``max(data)``),
even when the *detect_types* parameter is set; :class:`str` will be
returned instead.
By default (``0``), type detection is disabled.
:param isolation_level:
The :attr:`~Connection.isolation_level` of the connection,
controlling whether and how transactions are implicitly opened.
Can be ``"DEFERRED"`` (default), ``"EXCLUSIVE"`` or ``"IMMEDIATE"``;
or ``None`` to disable opening transactions implicitly.
See :ref:`sqlite3-controlling-transactions` for more.
:type isolation_level: str | None
:param bool check_same_thread:
If ``True`` (default), only the creating thread may use the connection.
If ``False``, the connection may be shared across multiple threads;
if so, write operations should be serialized by the user to avoid data
corruption.
:param Connection factory:
A custom subclass of :class:`Connection` to create the connection with,
if not the default :class:`Connection` class.
:param int cached_statements:
The number of statements that :mod:`!sqlite3`
should internally cache for this connection, to avoid parsing overhead.
By default, 100 statements.
:param bool uri:
If set to ``True``, *database* is interpreted as a
:abbr:`URI (Uniform Resource Identifier)` with a file path
and an optional query string.
The scheme part *must* be ``"file:"``,
and the path can be relative or absolute.
The query string allows passing parameters to SQLite,
enabling various :ref:`sqlite3-uri-tricks`.
:rtype: Connection
.. audit-event:: sqlite3.connect database sqlite3.connect
.. audit-event:: sqlite3.connect/handle connection_handle sqlite3.connect
.. versionadded:: 3.4
The *uri* parameter.
.. versionchanged:: 3.7
*database* can now also be a :term:`path-like object`, not only a string.
.. versionadded:: 3.10
The ``sqlite3.connect/handle`` auditing event.
.. function:: complete_statement(statement)
Return ``True`` if the string *statement* appears to contain
one or more complete SQL statements.
No syntactic verification or parsing of any kind is performed,
other than checking that there are no unclosed string literals
and the statement is terminated by a semicolon.
For example:
.. doctest::
>>> sqlite3.complete_statement("SELECT foo FROM bar;")
True
>>> sqlite3.complete_statement("SELECT foo")
False
This function may be useful during command-line input
to determine if the entered text seems to form a complete SQL statement,
or if additional input is needed before calling :meth:`~Cursor.execute`.
.. function:: enable_callback_tracebacks(flag, /)
Enable or disable callback tracebacks.
By default you will not get any tracebacks in user-defined functions,
aggregates, converters, authorizer callbacks etc. If you want to debug them,
you can call this function with *flag* set to ``True``. Afterwards, you will
get tracebacks from callbacks on ``sys.stderr``. Use ``False`` to
disable the feature again.
.. function:: register_adapter(type, adapter, /)
Register an *adapter* callable to adapt the Python type *type* into an
SQLite type.
The adapter is called with a Python object of type *type* as its sole
argument, and must return a value of a
:ref:`type that SQLite natively understands <sqlite3-types>`.
.. function:: register_converter(typename, converter, /)
Register the *converter* callable to convert SQLite objects of type
*typename* into a Python object of a specific type.
The converter is invoked for all SQLite values of type *typename*;
it is passed a :class:`bytes` object and should return an object of the
desired Python type.
Consult the parameter *detect_types* of
:func:`connect` for information regarding how type detection works.
Note: *typename* and the name of the type in your query are matched
case-insensitively.
.. _sqlite3-module-constants:
Module constants
^^^^^^^^^^^^^^^^
.. data:: PARSE_COLNAMES
Pass this flag value to the *detect_types* parameter of
:func:`connect` to look up a converter function by
using the type name, parsed from the query column name,
as the converter dictionary key.
The type name must be wrapped in square brackets (``[]``).
.. code-block:: sql
SELECT p as "p [point]" FROM test; ! will look up converter "point"
This flag may be combined with :const:`PARSE_DECLTYPES` using the ``|``
(bitwise or) operator.
.. data:: PARSE_DECLTYPES
Pass this flag value to the *detect_types* parameter of
:func:`connect` to look up a converter function using
the declared types for each column.
The types are declared when the database table is created.
:mod:`!sqlite3` will look up a converter function using the first word of the
declared type as the converter dictionary key.
For example:
.. code-block:: sql
CREATE TABLE test(
i integer primary key, ! will look up a converter named "integer"
p point, ! will look up a converter named "point"
n number(10) ! will look up a converter named "number"
)
This flag may be combined with :const:`PARSE_COLNAMES` using the ``|``
(bitwise or) operator.
.. data:: SQLITE_OK
SQLITE_DENY
SQLITE_IGNORE
Flags that should be returned by the *authorizer_callback* callable
passed to :meth:`Connection.set_authorizer`, to indicate whether:
* Access is allowed (:const:`!SQLITE_OK`),
* The SQL statement should be aborted with an error (:const:`!SQLITE_DENY`)
* The column should be treated as a ``NULL`` value (:const:`!SQLITE_IGNORE`)
.. data:: apilevel
String constant stating the supported DB-API level. Required by the DB-API.
Hard-coded to ``"2.0"``.
.. data:: paramstyle
String constant stating the type of parameter marker formatting expected by
the :mod:`!sqlite3` module. Required by the DB-API. Hard-coded to
``"qmark"``.
.. note::
The ``named`` DB-API parameter style is also supported.
.. data:: sqlite_version
Version number of the runtime SQLite library as a :class:`string <str>`.
.. data:: sqlite_version_info
Version number of the runtime SQLite library as a :class:`tuple` of
:class:`integers <int>`.
.. data:: threadsafety
Integer constant required by the DB-API, stating the level of thread safety
the :mod:`!sqlite3` module supports. Currently hard-coded to ``1``, meaning
*"Threads may share the module, but not connections."* However, this may not
always be true. You can check the underlying SQLite library's compile-time
threaded mode using the following query::
import sqlite3
con = sqlite3.connect(":memory:")
con.execute("""
select * from pragma_compile_options
where compile_options like 'THREADSAFE=%'
""").fetchall()
Note that the `SQLITE_THREADSAFE levels
<https://sqlite.org/compile.html#threadsafe>`_ do not match the DB-API 2.0
``threadsafety`` levels.
.. data:: version
Version number of this module as a :class:`string <str>`.
This is not the version of the SQLite library.
.. data:: version_info
Version number of this module as a :class:`tuple` of :class:`integers <int>`.
This is not the version of the SQLite library.
.. _sqlite3-connection-objects:
Connection objects
^^^^^^^^^^^^^^^^^^
.. class:: Connection
Each open SQLite database is represented by a ``Connection`` object,
which is created using :func:`sqlite3.connect`.
Their main purpose is creating :class:`Cursor` objects,
and :ref:`sqlite3-controlling-transactions`.
.. seealso::
* :ref:`sqlite3-connection-shortcuts`
* :ref:`sqlite3-connection-context-manager`
An SQLite database connection has the following attributes and methods:
.. method:: cursor(factory=Cursor)
Create and return a :class:`Cursor` object.
The cursor method accepts a single optional parameter *factory*. If
supplied, this must be a callable returning an instance of :class:`Cursor`
or its subclasses.
.. method:: commit()
Commit any pending transaction to the database.
If there is no open transaction, this method is a no-op.
.. method:: rollback()
Roll back to the start of any pending transaction.
If there is no open transaction, this method is a no-op.
.. method:: close()
Close the database connection.
Any pending transaction is not committed implicitly;
make sure to :meth:`commit` before closing
to avoid losing pending changes.
.. method:: execute(sql, parameters=(), /)
Create a new :class:`Cursor` object and call
:meth:`~Cursor.execute` on it with the given *sql* and *parameters*.
Return the new cursor object.
.. method:: executemany(sql, parameters, /)
Create a new :class:`Cursor` object and call
:meth:`~Cursor.executemany` on it with the given *sql* and *parameters*.
Return the new cursor object.
.. method:: executescript(sql_script, /)
Create a new :class:`Cursor` object and call
:meth:`~Cursor.executescript` on it with the given *sql_script*.
Return the new cursor object.
.. method:: create_function(name, narg, func, *, deterministic=False)
Create or remove a user-defined SQL function.
:param str name:
The name of the SQL function.
:param int narg:
The number of arguments the SQL function can accept.
If ``-1``, it may take any number of arguments.
:param func:
A callable that is called when the SQL function is invoked.
The callable must return :ref:`a type natively supported by SQLite
<sqlite3-types>`.
Set to ``None`` to remove an existing SQL function.
:type func: :term:`callback` | None
:param bool deterministic:
If ``True``, the created SQL function is marked as
`deterministic <https://sqlite.org/deterministic.html>`_,
which allows SQLite to perform additional optimizations.
:raises NotSupportedError:
If *deterministic* is used with SQLite versions older than 3.8.3.
.. versionadded:: 3.8
The *deterministic* parameter.
Example:
.. doctest::
>>> import hashlib
>>> def md5sum(t):
... return hashlib.md5(t).hexdigest()
>>> con = sqlite3.connect(":memory:")
>>> con.create_function("md5", 1, md5sum)
>>> for row in con.execute("SELECT md5(?)", (b"foo",)):
... print(row)
('acbd18db4cc2f85cedef654fccc4a4d8',)
.. method:: create_aggregate(name, /, n_arg, aggregate_class)
Create or remove a user-defined SQL aggregate function.
:param str name:
The name of the SQL aggregate function.
:param int n_arg:
The number of arguments the SQL aggregate function can accept.
If ``-1``, it may take any number of arguments.
:param aggregate_class:
A class must implement the following methods:
* ``step()``: Add a row to the aggregate.
* ``finalize()``: Return the final result of the aggregate as
:ref:`a type natively supported by SQLite <sqlite3-types>`.
The number of arguments that the ``step()`` method must accept
is controlled by *n_arg*.
Set to ``None`` to remove an existing SQL aggregate function.
:type aggregate_class: :term:`class` | None
Example:
.. testcode::
class MySum:
def __init__(self):
self.count = 0
def step(self, value):
self.count += value
def finalize(self):
return self.count
con = sqlite3.connect(":memory:")
con.create_aggregate("mysum", 1, MySum)
cur = con.execute("CREATE TABLE test(i)")
cur.execute("INSERT INTO test(i) VALUES(1)")
cur.execute("INSERT INTO test(i) VALUES(2)")
cur.execute("SELECT mysum(i) FROM test")
print(cur.fetchone()[0])
con.close()
.. testoutput::
:hide:
3
.. method:: create_collation(name, callable)
Create a collation named *name* using the collating function *callable*.
*callable* is passed two :class:`string <str>` arguments,
and it should return an :class:`integer <int>`:
* ``1`` if the first is ordered higher than the second
* ``-1`` if the first is ordered lower than the second
* ``0`` if they are ordered equal
The following example shows a reverse sorting collation:
.. testcode::
def collate_reverse(string1, string2):
if string1 == string2:
return 0
elif string1 < string2:
return 1
else:
return -1
con = sqlite3.connect(":memory:")
con.create_collation("reverse", collate_reverse)
cur = con.execute("CREATE TABLE test(x)")
cur.executemany("INSERT INTO test(x) VALUES(?)", [("a",), ("b",)])
cur.execute("SELECT x FROM test ORDER BY x COLLATE reverse")
for row in cur:
print(row)
con.close()
.. testoutput::
:hide:
('b',)
('a',)
Remove a collation function by setting *callable* to ``None``.
.. method:: interrupt()
Call this method from a different thread to abort any queries that might
be executing on the connection.
Aborted queries will raise an exception.
.. method:: set_authorizer(authorizer_callback)
Register callable *authorizer_callback* to be invoked for each attempt to
access a column of a table in the database. The callback should return
one of :const:`SQLITE_OK`, :const:`SQLITE_DENY`, or :const:`SQLITE_IGNORE`
to signal how access to the column should be handled
by the underlying SQLite library.
The first argument to the callback signifies what kind of operation is to be
authorized. The second and third argument will be arguments or ``None``
depending on the first argument. The 4th argument is the name of the database
("main", "temp", etc.) if applicable. The 5th argument is the name of the
inner-most trigger or view that is responsible for the access attempt or
``None`` if this access attempt is directly from input SQL code.
Please consult the SQLite documentation about the possible values for the first
argument and the meaning of the second and third argument depending on the first
one. All necessary constants are available in the :mod:`!sqlite3` module.
.. method:: set_progress_handler(progress_handler, n)
Register callable *progress_handler* to be invoked for every *n*
instructions of the SQLite virtual machine. This is useful if you want to
get called from SQLite during long-running operations, for example to update
a GUI.
If you want to clear any previously installed progress handler, call the
method with ``None`` for *progress_handler*.
Returning a non-zero value from the handler function will terminate the
currently executing query and cause it to raise an :exc:`OperationalError`
exception.
.. method:: set_trace_callback(trace_callback)
Register callable *trace_callback* to be invoked for each SQL statement
that is actually executed by the SQLite backend.
The only argument passed to the callback is the statement (as
:class:`str`) that is being executed. The return value of the callback is
ignored. Note that the backend does not only run statements passed to the
:meth:`Cursor.execute` methods. Other sources include the
:ref:`transaction management <sqlite3-controlling-transactions>` of the
:mod:`!sqlite3` module and the execution of triggers defined in the current
database.
Passing ``None`` as *trace_callback* will disable the trace callback.
.. note::
Exceptions raised in the trace callback are not propagated. As a
development and debugging aid, use
:meth:`~sqlite3.enable_callback_tracebacks` to enable printing
tracebacks from exceptions raised in the trace callback.
.. versionadded:: 3.3
.. method:: enable_load_extension(enabled, /)
Enable the SQLite engine to load SQLite extensions from shared libraries
if *enabled* is ``True``;
else, disallow loading SQLite extensions.
SQLite extensions can define new functions,
aggregates or whole new virtual table implementations. One well-known
extension is the fulltext-search extension distributed with SQLite.
.. note::
The :mod:`!sqlite3` module is not built with loadable extension support by
default, because some platforms (notably macOS) have SQLite
libraries which are compiled without this feature.
To get loadable extension support,
you must pass the :option:`--enable-loadable-sqlite-extensions` option
to :program:`configure`.
.. audit-event:: sqlite3.enable_load_extension connection,enabled sqlite3.Connection.enable_load_extension
.. versionadded:: 3.2
.. versionchanged:: 3.10
Added the ``sqlite3.enable_load_extension`` auditing event.
.. testsetup:: sqlite3.loadext
import sqlite3
con = sqlite3.connect(":memory:")
.. testcode:: sqlite3.loadext
:skipif: True # not testable at the moment
con.enable_load_extension(True)
# Load the fulltext search extension
con.execute("select load_extension('./fts3.so')")
# alternatively you can load the extension using an API call:
# con.load_extension("./fts3.so")
# disable extension loading again
con.enable_load_extension(False)
# example from SQLite wiki
con.execute("CREATE VIRTUAL TABLE recipe USING fts3(name, ingredients)")
con.executescript("""
INSERT INTO recipe (name, ingredients) VALUES('broccoli stew', 'broccoli peppers cheese tomatoes');
INSERT INTO recipe (name, ingredients) VALUES('pumpkin stew', 'pumpkin onions garlic celery');
INSERT INTO recipe (name, ingredients) VALUES('broccoli pie', 'broccoli cheese onions flour');
INSERT INTO recipe (name, ingredients) VALUES('pumpkin pie', 'pumpkin sugar flour butter');
""")
for row in con.execute("SELECT rowid, name, ingredients FROM recipe WHERE name MATCH 'pie'"):
print(row)
con.close()
.. testoutput:: sqlite3.loadext
:hide:
(2, 'broccoli pie', 'broccoli cheese onions flour')
(3, 'pumpkin pie', 'pumpkin sugar flour butter')
.. method:: load_extension(path, /)
Load an SQLite extension from a shared library located at *path*.
Enable extension loading with :meth:`enable_load_extension` before
calling this method.
.. audit-event:: sqlite3.load_extension connection,path sqlite3.Connection.load_extension
.. versionadded:: 3.2
.. versionchanged:: 3.10
Added the ``sqlite3.load_extension`` auditing event.
.. method:: iterdump
Return an :term:`iterator` to dump the database as SQL source code.
Useful when saving an in-memory database for later restoration.
Similar to the ``.dump`` command in the :program:`sqlite3` shell.
Example:
.. testcode::
# Convert file example.db to SQL dump file dump.sql
con = sqlite3.connect('example.db')
with open('dump.sql', 'w') as f:
for line in con.iterdump():
f.write('%s\n' % line)
con.close()
.. method:: backup(target, *, pages=-1, progress=None, name="main", sleep=0.250)
Create a backup of an SQLite database.
Works even if the database is being accessed by other clients
or concurrently by the same connection.
:param Connection target:
The database connection to save the backup to.
:param int pages:
The number of pages to copy at a time.
If equal to or less than ``0``,
the entire database is copied in a single step.
Defaults to ``-1``.
:param progress:
If set to a callable, it is invoked with three integer arguments for
every backup iteration:
the *status* of the last iteration,
the *remaining* number of pages still to be copied,
and the *total* number of pages.
Defaults to ``None``.
:type progress: :term:`callback` | None
:param str name:
The name of the database to back up.
Either ``"main"`` (the default) for the main database,
``"temp"`` for the temporary database,
or the name of a custom database as attached using the
``ATTACH DATABASE`` SQL statement.
:param float sleep:
The number of seconds to sleep between successive attempts
to back up remaining pages.
Example 1, copy an existing database into another:
.. testcode::
def progress(status, remaining, total):
print(f'Copied {total-remaining} of {total} pages...')
src = sqlite3.connect('example.db')
dst = sqlite3.connect('backup.db')
with dst:
src.backup(dst, pages=1, progress=progress)
dst.close()
src.close()
.. testoutput::
:hide:
Copied 0 of 0 pages...
Example 2, copy an existing database into a transient copy:
.. testcode::
src = sqlite3.connect('example.db')
dst = sqlite3.connect(':memory:')
src.backup(dst)
.. versionadded:: 3.7
.. attribute:: in_transaction
This read-only attribute corresponds to the low-level SQLite
`autocommit mode`_.
``True`` if a transaction is active (there are uncommitted changes),
``False`` otherwise.
.. versionadded:: 3.2
.. attribute:: isolation_level
This attribute controls the :ref:`transaction handling
<sqlite3-controlling-transactions>` performed by :mod:`!sqlite3`.
If set to ``None``, transactions are never implicitly opened.
If set to one of ``"DEFERRED"``, ``"IMMEDIATE"``, or ``"EXCLUSIVE"``,
corresponding to the underlying `SQLite transaction behaviour`_,
implicit :ref:`transaction management
<sqlite3-controlling-transactions>` is performed.
If not overridden by the *isolation_level* parameter of :func:`connect`,
the default is ``""``, which is an alias for ``"DEFERRED"``.
.. attribute:: row_factory
The initial :attr:`~Cursor.row_factory`
for :class:`Cursor` objects created from this connection.
Assigning to this attribute does not affect the :attr:`!row_factory`
of existing cursors belonging to this connection, only new ones.
Is ``None`` by default,
meaning each row is returned as a :class:`tuple`.
See :ref:`sqlite3-howto-row-factory` for more details.
.. attribute:: text_factory
A callable that accepts a :class:`bytes` parameter and returns a text
representation of it.
The callable is invoked for SQLite values with the ``TEXT`` data type.
By default, this attribute is set to :class:`str`.
If you want to return ``bytes`` instead, set *text_factory* to ``bytes``.
Example:
.. testcode::
con = sqlite3.connect(":memory:")
cur = con.cursor()
AUSTRIA = "Österreich"
# by default, rows are returned as str
cur.execute("SELECT ?", (AUSTRIA,))
row = cur.fetchone()
assert row[0] == AUSTRIA
# but we can make sqlite3 always return bytestrings ...
con.text_factory = bytes
cur.execute("SELECT ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) is bytes
# the bytestrings will be encoded in UTF-8, unless you stored garbage in the
# database ...
assert row[0] == AUSTRIA.encode("utf-8")
# we can also implement a custom text_factory ...
# here we implement one that appends "foo" to all strings
con.text_factory = lambda x: x.decode("utf-8") + "foo"
cur.execute("SELECT ?", ("bar",))
row = cur.fetchone()
assert row[0] == "barfoo"
con.close()
.. attribute:: total_changes
Return the total number of database rows that have been modified, inserted, or
deleted since the database connection was opened.
.. _sqlite3-cursor-objects:
Cursor objects
^^^^^^^^^^^^^^
A ``Cursor`` object represents a `database cursor`_
which is used to execute SQL statements,
and manage the context of a fetch operation.
Cursors are created using :meth:`Connection.cursor`,
or by using any of the :ref:`connection shortcut methods
<sqlite3-connection-shortcuts>`.
Cursor objects are :term:`iterators <iterator>`,
meaning that if you :meth:`~Cursor.execute` a ``SELECT`` query,
you can simply iterate over the cursor to fetch the resulting rows:
.. testsetup:: sqlite3.cursor
import sqlite3
con = sqlite3.connect(":memory:", isolation_level=None)
cur = con.execute("CREATE TABLE data(t)")
cur.execute("INSERT INTO data VALUES(1)")
.. testcode:: sqlite3.cursor
for row in cur.execute("SELECT t FROM data"):
print(row)
.. testoutput:: sqlite3.cursor
:hide:
(1,)
.. _database cursor: https://en.wikipedia.org/wiki/Cursor_(databases)
.. class:: Cursor
A :class:`Cursor` instance has the following attributes and methods.
.. index:: single: ? (question mark); in SQL statements
.. index:: single: : (colon); in SQL statements
.. method:: execute(sql, parameters=(), /)
Execute SQL statement *sql*.
Bind values to the statement using :ref:`placeholders
<sqlite3-placeholders>` that map to the :term:`sequence` or :class:`dict`
*parameters*.
:meth:`execute` will only execute a single SQL statement. If you try to execute
more than one statement with it, it will raise a :exc:`Warning`. Use
:meth:`executescript` if you want to execute multiple SQL statements with one
call.
If :attr:`~Connection.isolation_level` is not ``None``,
*sql* is an ``INSERT``, ``UPDATE``, ``DELETE``, or ``REPLACE`` statement,
and there is no open transaction,
a transaction is implicitly opened before executing *sql*.
.. method:: executemany(sql, parameters, /)
Execute :ref:`parameterized <sqlite3-placeholders>` SQL statement *sql*
against all parameter sequences or mappings found in the sequence
*parameters*. It is also possible to use an
:term:`iterator` yielding parameters instead of a sequence.
Uses the same implicit transaction handling as :meth:`~Cursor.execute`.
Example:
.. testcode:: sqlite3.cursor
rows = [
("row1",),
("row2",),
]
# cur is an sqlite3.Cursor object
cur.executemany("INSERT INTO data VALUES(?)", rows)
.. method:: executescript(sql_script, /)
Execute the SQL statements in *sql_script*.
If there is a pending transaction,
an implicit ``COMMIT`` statement is executed first.
No other implicit transaction control is performed;
any transaction control must be added to *sql_script*.
*sql_script* must be a :class:`string <str>`.
Example:
.. testcode:: sqlite3.cursor
# cur is an sqlite3.Cursor object
cur.executescript("""
BEGIN;
CREATE TABLE person(firstname, lastname, age);
CREATE TABLE book(title, author, published);
CREATE TABLE publisher(name, address);
COMMIT;
""")
.. method:: fetchone()
If :attr:`~Cursor.row_factory` is ``None``,
return the next row query result set as a :class:`tuple`.
Else, pass it to the row factory and return its result.
Return ``None`` if no more data is available.
.. method:: fetchmany(size=cursor.arraysize)
Return the next set of rows of a query result as a :class:`list`.
Return an empty list if no more rows are available.
The number of rows to fetch per call is specified by the *size* parameter.
If *size* is not given, :attr:`arraysize` determines the number of rows
to be fetched.
If fewer than *size* rows are available,
as many rows as are available are returned.
Note there are performance considerations involved with the *size* parameter.
For optimal performance, it is usually best to use the arraysize attribute.
If the *size* parameter is used, then it is best for it to retain the same
value from one :meth:`fetchmany` call to the next.
.. method:: fetchall()
Return all (remaining) rows of a query result as a :class:`list`.
Return an empty list if no rows are available.
Note that the :attr:`arraysize` attribute can affect the performance of
this operation.
.. method:: close()
Close the cursor now (rather than whenever ``__del__`` is called).
The cursor will be unusable from this point forward; a :exc:`ProgrammingError`
exception will be raised if any operation is attempted with the cursor.
.. method:: setinputsizes(sizes, /)
Required by the DB-API. Does nothing in :mod:`!sqlite3`.
.. method:: setoutputsize(size, column=None, /)
Required by the DB-API. Does nothing in :mod:`!sqlite3`.
.. attribute:: arraysize
Read/write attribute that controls the number of rows returned by :meth:`fetchmany`.
The default value is 1 which means a single row would be fetched per call.
.. attribute:: connection
Read-only attribute that provides the SQLite database :class:`Connection`
belonging to the cursor. A :class:`Cursor` object created by
calling :meth:`con.cursor() <Connection.cursor>` will have a
:attr:`connection` attribute that refers to *con*:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> cur = con.cursor()
>>> cur.connection == con
True
.. attribute:: description
Read-only attribute that provides the column names of the last query. To
remain compatible with the Python DB API, it returns a 7-tuple for each
column where the last six items of each tuple are ``None``.
It is set for ``SELECT`` statements without any matching rows as well.
.. attribute:: lastrowid
Read-only attribute that provides the row id of the last inserted row. It
is only updated after successful ``INSERT`` or ``REPLACE`` statements
using the :meth:`execute` method. For other statements, after
:meth:`executemany` or :meth:`executescript`, or if the insertion failed,
the value of ``lastrowid`` is left unchanged. The initial value of
``lastrowid`` is ``None``.
.. note::
Inserts into ``WITHOUT ROWID`` tables are not recorded.
.. versionchanged:: 3.6
Added support for the ``REPLACE`` statement.
.. attribute:: rowcount
Read-only attribute that provides the number of modified rows for
``INSERT``, ``UPDATE``, ``DELETE``, and ``REPLACE`` statements;
is ``-1`` for other statements,
including :abbr:`CTE (Common Table Expression)` queries.
It is only updated by the :meth:`execute` and :meth:`executemany` methods.
.. attribute:: row_factory
Control how a row fetched from this :class:`!Cursor` is represented.
If ``None``, a row is represented as a :class:`tuple`.
Can be set to the included :class:`sqlite3.Row`;
or a :term:`callable` that accepts two arguments,
a :class:`Cursor` object and the :class:`!tuple` of row values,
and returns a custom object representing an SQLite row.
Defaults to what :attr:`Connection.row_factory` was set to
when the :class:`!Cursor` was created.
Assigning to this attribute does not affect
:attr:`Connection.row_factory` of the parent connection.
See :ref:`sqlite3-howto-row-factory` for more details.
.. The sqlite3.Row example used to be a how-to. It has now been incorporated
into the Row reference. We keep the anchor here in order not to break
existing links.
.. _sqlite3-columns-by-name:
.. _sqlite3-row-objects:
Row objects
^^^^^^^^^^^
.. class:: Row
A :class:`!Row` instance serves as a highly optimized
:attr:`~Connection.row_factory` for :class:`Connection` objects.
It supports iteration, equality testing, :func:`len`,
and :term:`mapping` access by column name and index.
Two :class:`!Row` objects compare equal
if they have identical column names and values.
See :ref:`sqlite3-howto-row-factory` for more details.
.. method:: keys
Return a :class:`list` of column names as :class:`strings <str>`.
Immediately after a query,
it is the first member of each tuple in :attr:`Cursor.description`.
.. versionchanged:: 3.5
Added support of slicing.
PrepareProtocol objects
^^^^^^^^^^^^^^^^^^^^^^^
.. class:: PrepareProtocol
The PrepareProtocol type's single purpose is to act as a :pep:`246` style
adaption protocol for objects that can :ref:`adapt themselves
<sqlite3-conform>` to :ref:`native SQLite types <sqlite3-types>`.
.. _sqlite3-exceptions:
Exceptions
^^^^^^^^^^
The exception hierarchy is defined by the DB-API 2.0 (:pep:`249`).
.. exception:: Warning
This exception is raised by :mod:`!sqlite3` if an SQL query is not a
:class:`string <str>`, or if multiple statements are passed to
:meth:`~Cursor.execute` or :meth:`~Cursor.executemany`.
``Warning`` is a subclass of :exc:`Exception`.
.. exception:: Error
The base class of the other exceptions in this module.
Use this to catch all errors with one single :keyword:`except` statement.
``Error`` is a subclass of :exc:`Exception`.
.. exception:: InterfaceError
This exception is raised by :mod:`!sqlite3` for fetch across rollback,
or if :mod:`!sqlite3` is unable to bind parameters.
``InterfaceError`` is a subclass of :exc:`Error`.
.. exception:: DatabaseError
Exception raised for errors that are related to the database.
This serves as the base exception for several types of database errors.
It is only raised implicitly through the specialised subclasses.
``DatabaseError`` is a subclass of :exc:`Error`.
.. exception:: DataError
Exception raised for errors caused by problems with the processed data,
like numeric values out of range, and strings which are too long.
``DataError`` is a subclass of :exc:`DatabaseError`.
.. exception:: OperationalError
Exception raised for errors that are related to the database's operation,
and not necessarily under the control of the programmer.
For example, the database path is not found,
or a transaction could not be processed.
``OperationalError`` is a subclass of :exc:`DatabaseError`.
.. exception:: IntegrityError
Exception raised when the relational integrity of the database is affected,
e.g. a foreign key check fails. It is a subclass of :exc:`DatabaseError`.
.. exception:: InternalError
Exception raised when SQLite encounters an internal error.
If this is raised, it may indicate that there is a problem with the runtime
SQLite library.
``InternalError`` is a subclass of :exc:`DatabaseError`.
.. exception:: ProgrammingError
Exception raised for :mod:`!sqlite3` API programming errors,
for example trying to operate on a closed :class:`Connection`,
or trying to execute non-DML statements with :meth:`~Cursor.executemany`.
``ProgrammingError`` is a subclass of :exc:`DatabaseError`.
.. exception:: NotSupportedError
Exception raised in case a method or database API is not supported by the
underlying SQLite library. For example, setting *deterministic* to
``True`` in :meth:`~Connection.create_function`, if the underlying SQLite library
does not support deterministic functions.
``NotSupportedError`` is a subclass of :exc:`DatabaseError`.
.. _sqlite3-types:
SQLite and Python types
^^^^^^^^^^^^^^^^^^^^^^^
SQLite natively supports the following types: ``NULL``, ``INTEGER``,
``REAL``, ``TEXT``, ``BLOB``.
The following Python types can thus be sent to SQLite without any problem:
+-------------------------------+-------------+
| Python type | SQLite type |
+===============================+=============+
| ``None`` | ``NULL`` |
+-------------------------------+-------------+
| :class:`int` | ``INTEGER`` |
+-------------------------------+-------------+
| :class:`float` | ``REAL`` |
+-------------------------------+-------------+
| :class:`str` | ``TEXT`` |
+-------------------------------+-------------+
| :class:`bytes` | ``BLOB`` |
+-------------------------------+-------------+
This is how SQLite types are converted to Python types by default:
+-------------+----------------------------------------------+
| SQLite type | Python type |
+=============+==============================================+
| ``NULL`` | ``None`` |
+-------------+----------------------------------------------+
| ``INTEGER`` | :class:`int` |
+-------------+----------------------------------------------+
| ``REAL`` | :class:`float` |
+-------------+----------------------------------------------+
| ``TEXT`` | depends on :attr:`~Connection.text_factory`, |
| | :class:`str` by default |
+-------------+----------------------------------------------+
| ``BLOB`` | :class:`bytes` |
+-------------+----------------------------------------------+
The type system of the :mod:`!sqlite3` module is extensible in two ways: you can
store additional Python types in an SQLite database via
:ref:`object adapters <sqlite3-adapters>`,
and you can let the :mod:`!sqlite3` module convert SQLite types to
Python types via :ref:`converters <sqlite3-converters>`.
.. _sqlite3-default-converters:
Default adapters and converters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There are default adapters for the date and datetime types in the datetime
module. They will be sent as ISO dates/ISO timestamps to SQLite.
The default converters are registered under the name "date" for
:class:`datetime.date` and under the name "timestamp" for
:class:`datetime.datetime`.
This way, you can use date/timestamps from Python without any additional
fiddling in most cases. The format of the adapters is also compatible with the
experimental SQLite date/time functions.
The following example demonstrates this.
.. literalinclude:: ../includes/sqlite3/pysqlite_datetime.py
If a timestamp stored in SQLite has a fractional part longer than 6
numbers, its value will be truncated to microsecond precision by the
timestamp converter.
.. note::
The default "timestamp" converter ignores UTC offsets in the database and
always returns a naive :class:`datetime.datetime` object. To preserve UTC
offsets in timestamps, either leave converters disabled, or register an
offset-aware converter with :func:`register_converter`.
.. _sqlite3-howtos:
How-to guides
-------------
.. _sqlite3-placeholders:
How to use placeholders to bind values in SQL queries
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SQL operations usually need to use values from Python variables. However,
beware of using Python's string operations to assemble queries, as they
are vulnerable to `SQL injection attacks`_. For example, an attacker can simply
close the single quote and inject ``OR TRUE`` to select all rows::
>>> # Never do this -- insecure!
>>> symbol = input()
' OR TRUE; --
>>> sql = "SELECT * FROM stocks WHERE symbol = '%s'" % symbol
>>> print(sql)
SELECT * FROM stocks WHERE symbol = '' OR TRUE; --'
>>> cur.execute(sql)
Instead, use the DB-API's parameter substitution. To insert a variable into a
query string, use a placeholder in the string, and substitute the actual values
into the query by providing them as a :class:`tuple` of values to the second
argument of the cursor's :meth:`~Cursor.execute` method.
An SQL statement may use one of two kinds of placeholders:
question marks (qmark style) or named placeholders (named style).
For the qmark style, *parameters* must be a
:term:`sequence` whose length must match the number of placeholders,
or a :exc:`ProgrammingError` is raised.
For the named style, *parameters* should be
an instance of a :class:`dict` (or a subclass),
which must contain keys for all named parameters;
any extra items are ignored.
Here's an example of both styles:
.. testcode::
con = sqlite3.connect(":memory:")
cur = con.execute("CREATE TABLE lang(name, first_appeared)")
# This is the named style used with executemany():
data = (
{"name": "C", "year": 1972},
{"name": "Fortran", "year": 1957},
{"name": "Python", "year": 1991},
{"name": "Go", "year": 2009},
)
cur.executemany("INSERT INTO lang VALUES(:name, :year)", data)
# This is the qmark style used in a SELECT query:
params = (1972,)
cur.execute("SELECT * FROM lang WHERE first_appeared = ?", params)
print(cur.fetchall())
.. testoutput::
:hide:
[('C', 1972)]
.. note::
:pep:`249` numeric placeholders are *not* supported.
If used, they will be interpreted as named placeholders.
.. _sqlite3-adapters:
How to adapt custom Python types to SQLite values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SQLite supports only a limited set of data types natively.
To store custom Python types in SQLite databases, *adapt* them to one of the
:ref:`Python types SQLite natively understands <sqlite3-types>`.
There are two ways to adapt Python objects to SQLite types:
letting your object adapt itself, or using an *adapter callable*.
The latter will take precedence above the former.
For a library that exports a custom type,
it may make sense to enable that type to adapt itself.
As an application developer, it may make more sense to take direct control by
registering custom adapter functions.
.. _sqlite3-conform:
How to write adaptable objects
""""""""""""""""""""""""""""""
Suppose we have a :class:`!Point` class that represents a pair of coordinates,
``x`` and ``y``, in a Cartesian coordinate system.
The coordinate pair will be stored as a text string in the database,
using a semicolon to separate the coordinates.
This can be implemented by adding a ``__conform__(self, protocol)``
method which returns the adapted value.
The object passed to *protocol* will be of type :class:`PrepareProtocol`.
.. testcode::
class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def __conform__(self, protocol):
if protocol is sqlite3.PrepareProtocol:
return f"{self.x};{self.y}"
con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("SELECT ?", (Point(4.0, -3.2),))
print(cur.fetchone()[0])
.. testoutput::
:hide:
4.0;-3.2
How to register adapter callables
"""""""""""""""""""""""""""""""""
The other possibility is to create a function that converts the Python object
to an SQLite-compatible type.
This function can then be registered using :func:`register_adapter`.
.. testcode::
class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def adapt_point(point):
return f"{point.x};{point.y}"
sqlite3.register_adapter(Point, adapt_point)
con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("SELECT ?", (Point(1.0, 2.5),))
print(cur.fetchone()[0])
.. testoutput::
:hide:
1.0;2.5
.. _sqlite3-converters:
How to convert SQLite values to custom Python types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Writing an adapter lets you convert *from* custom Python types *to* SQLite
values.
To be able to convert *from* SQLite values *to* custom Python types,
we use *converters*.
Let's go back to the :class:`!Point` class. We stored the x and y coordinates
separated via semicolons as strings in SQLite.
First, we'll define a converter function that accepts the string as a parameter
and constructs a :class:`!Point` object from it.
.. note::
Converter functions are **always** passed a :class:`bytes` object,
no matter the underlying SQLite data type.
.. testcode::
def convert_point(s):
x, y = map(float, s.split(b";"))
return Point(x, y)
We now need to tell :mod:`!sqlite3` when it should convert a given SQLite value.
This is done when connecting to a database, using the *detect_types* parameter
of :func:`connect`. There are three options:
* Implicit: set *detect_types* to :const:`PARSE_DECLTYPES`
* Explicit: set *detect_types* to :const:`PARSE_COLNAMES`
* Both: set *detect_types* to
``sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES``.
Column names take precedence over declared types.
The following example illustrates the implicit and explicit approaches:
.. testcode::
class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
return f"Point({self.x}, {self.y})"
def adapt_point(point):
return f"{point.x};{point.y}"
def convert_point(s):
x, y = list(map(float, s.split(b";")))
return Point(x, y)
# Register the adapter and converter
sqlite3.register_adapter(Point, adapt_point)
sqlite3.register_converter("point", convert_point)
# 1) Parse using declared types
p = Point(4.0, -3.2)
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
cur = con.execute("CREATE TABLE test(p point)")
cur.execute("INSERT INTO test(p) VALUES(?)", (p,))
cur.execute("SELECT p FROM test")
print("with declared types:", cur.fetchone()[0])
cur.close()
con.close()
# 2) Parse using column names
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
cur = con.execute("CREATE TABLE test(p)")
cur.execute("INSERT INTO test(p) VALUES(?)", (p,))
cur.execute('SELECT p AS "p [point]" FROM test')
print("with column names:", cur.fetchone()[0])
.. testoutput::
:hide:
with declared types: Point(4.0, -3.2)
with column names: Point(4.0, -3.2)
.. _sqlite3-adapter-converter-recipes:
Adapter and converter recipes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This section shows recipes for common adapters and converters.
.. testcode::
import datetime
import sqlite3
def adapt_date_iso(val):
"""Adapt datetime.date to ISO 8601 date."""
return val.isoformat()
def adapt_datetime_iso(val):
"""Adapt datetime.datetime to timezone-naive ISO 8601 date."""
return val.isoformat()
def adapt_datetime_epoch(val):
"""Adapt datetime.datetime to Unix timestamp."""
return int(val.timestamp())
sqlite3.register_adapter(datetime.date, adapt_date_iso)
sqlite3.register_adapter(datetime.datetime, adapt_datetime_iso)
sqlite3.register_adapter(datetime.datetime, adapt_datetime_epoch)
def convert_date(val):
"""Convert ISO 8601 date to datetime.date object."""
return datetime.date.fromisoformat(val.decode())
def convert_datetime(val):
"""Convert ISO 8601 datetime to datetime.datetime object."""
return datetime.datetime.fromisoformat(val.decode())
def convert_timestamp(val):
"""Convert Unix epoch timestamp to datetime.datetime object."""
return datetime.datetime.fromtimestamp(int(val))
sqlite3.register_converter("date", convert_date)
sqlite3.register_converter("datetime", convert_datetime)
sqlite3.register_converter("timestamp", convert_timestamp)
.. testcode::
:hide:
dt = datetime.datetime(2019, 5, 18, 15, 17, 8, 123456)
assert adapt_date_iso(dt.date()) == "2019-05-18"
assert convert_date(b"2019-05-18") == dt.date()
assert adapt_datetime_iso(dt) == "2019-05-18T15:17:08.123456"
assert convert_datetime(b"2019-05-18T15:17:08.123456") == dt
# Using current time as fromtimestamp() returns local date/time.
# Droping microseconds as adapt_datetime_epoch truncates fractional second part.
now = datetime.datetime.now().replace(microsecond=0)
current_timestamp = int(now.timestamp())
assert adapt_datetime_epoch(now) == current_timestamp
assert convert_timestamp(str(current_timestamp).encode()) == now
.. _sqlite3-connection-shortcuts:
How to use connection shortcut methods
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using the :meth:`~Connection.execute`,
:meth:`~Connection.executemany`, and :meth:`~Connection.executescript`
methods of the :class:`Connection` class, your code can
be written more concisely because you don't have to create the (often
superfluous) :class:`Cursor` objects explicitly. Instead, the :class:`Cursor`
objects are created implicitly and these shortcut methods return the cursor
objects. This way, you can execute a ``SELECT`` statement and iterate over it
directly using only a single call on the :class:`Connection` object.
.. testcode::
# Create and fill the table.
con = sqlite3.connect(":memory:")
con.execute("CREATE TABLE lang(name, first_appeared)")
data = [
("C++", 1985),
("Objective-C", 1984),
]
con.executemany("INSERT INTO lang(name, first_appeared) VALUES(?, ?)", data)
# Print the table contents
for row in con.execute("SELECT name, first_appeared FROM lang"):
print(row)
print("I just deleted", con.execute("DELETE FROM lang").rowcount, "rows")
# close() is not a shortcut method and it's not called automatically;
# the connection object should be closed manually
con.close()
.. testoutput::
:hide:
('C++', 1985)
('Objective-C', 1984)
I just deleted 2 rows
.. _sqlite3-connection-context-manager:
How to use the connection context manager
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A :class:`Connection` object can be used as a context manager that
automatically commits or rolls back open transactions when leaving the body of
the context manager.
If the body of the :keyword:`with` statement finishes without exceptions,
the transaction is committed.
If this commit fails,
or if the body of the ``with`` statement raises an uncaught exception,
the transaction is rolled back.
If there is no open transaction upon leaving the body of the ``with`` statement,
the context manager is a no-op.
.. note::
The context manager neither implicitly opens a new transaction
nor closes the connection.
.. testcode::
con = sqlite3.connect(":memory:")
con.execute("CREATE TABLE lang(id INTEGER PRIMARY KEY, name VARCHAR UNIQUE)")
# Successful, con.commit() is called automatically afterwards
with con:
con.execute("INSERT INTO lang(name) VALUES(?)", ("Python",))
# con.rollback() is called after the with block finishes with an exception,
# the exception is still raised and must be caught
try:
with con:
con.execute("INSERT INTO lang(name) VALUES(?)", ("Python",))
except sqlite3.IntegrityError:
print("couldn't add Python twice")
# Connection object used as context manager only commits or rollbacks transactions,
# so the connection object should be closed manually
con.close()
.. testoutput::
:hide:
couldn't add Python twice
.. _sqlite3-uri-tricks:
How to work with SQLite URIs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some useful URI tricks include:
* Open a database in read-only mode:
.. doctest::
>>> con = sqlite3.connect("file:tutorial.db?mode=ro", uri=True)
>>> con.execute("CREATE TABLE readonly(data)")
Traceback (most recent call last):
OperationalError: attempt to write a readonly database
* Do not implicitly create a new database file if it does not already exist;
will raise :exc:`~sqlite3.OperationalError` if unable to create a new file:
.. doctest::
>>> con = sqlite3.connect("file:nosuchdb.db?mode=rw", uri=True)
Traceback (most recent call last):
OperationalError: unable to open database file
* Create a shared named in-memory database:
.. testcode::
db = "file:mem1?mode=memory&cache=shared"
con1 = sqlite3.connect(db, uri=True)
con2 = sqlite3.connect(db, uri=True)
with con1:
con1.execute("CREATE TABLE shared(data)")
con1.execute("INSERT INTO shared VALUES(28)")
res = con2.execute("SELECT data FROM shared")
assert res.fetchone() == (28,)
More information about this feature, including a list of parameters,
can be found in the `SQLite URI documentation`_.
.. _SQLite URI documentation: https://www.sqlite.org/uri.html
.. _sqlite3-howto-row-factory:
How to create and use row factories
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By default, :mod:`!sqlite3` represents each row as a :class:`tuple`.
If a :class:`!tuple` does not suit your needs,
you can use the :class:`sqlite3.Row` class
or a custom :attr:`~Cursor.row_factory`.
While :attr:`!row_factory` exists as an attribute both on the
:class:`Cursor` and the :class:`Connection`,
it is recommended to set :class:`Connection.row_factory`,
so all cursors created from the connection will use the same row factory.
:class:`!Row` provides indexed and case-insensitive named access to columns,
with minimal memory overhead and performance impact over a :class:`!tuple`.
To use :class:`!Row` as a row factory,
assign it to the :attr:`!row_factory` attribute:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> con.row_factory = sqlite3.Row
Queries now return :class:`!Row` objects:
.. doctest::
>>> res = con.execute("SELECT 'Earth' AS name, 6378 AS radius")
>>> row = res.fetchone()
>>> row.keys()
['name', 'radius']
>>> row[0] # Access by index.
'Earth'
>>> row["name"] # Access by name.
'Earth'
>>> row["RADIUS"] # Column names are case-insensitive.
6378
You can create a custom :attr:`~Cursor.row_factory`
that returns each row as a :class:`dict`, with column names mapped to values:
.. testcode::
def dict_factory(cursor, row):
fields = [column[0] for column in cursor.description]
return {key: value for key, value in zip(fields, row)}
Using it, queries now return a :class:`!dict` instead of a :class:`!tuple`:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> con.row_factory = dict_factory
>>> for row in con.execute("SELECT 1 AS a, 2 AS b"):
... print(row)
{'a': 1, 'b': 2}
The following row factory returns a :term:`named tuple`:
.. testcode::
from collections import namedtuple
def namedtuple_factory(cursor, row):
fields = [column[0] for column in cursor.description]
cls = namedtuple("Row", fields)
return cls._make(row)
:func:`!namedtuple_factory` can be used as follows:
.. doctest::
>>> con = sqlite3.connect(":memory:")
>>> con.row_factory = namedtuple_factory
>>> cur = con.execute("SELECT 1 AS a, 2 AS b")
>>> row = cur.fetchone()
>>> row
Row(a=1, b=2)
>>> row[0] # Indexed access.
1
>>> row.b # Attribute access.
2
With some adjustments, the above recipe can be adapted to use a
:class:`~dataclasses.dataclass`, or any other custom class,
instead of a :class:`~collections.namedtuple`.
.. _sqlite3-explanation:
Explanation
-----------
.. _sqlite3-controlling-transactions:
Transaction control
^^^^^^^^^^^^^^^^^^^
The :mod:`!sqlite3` module does not adhere to the transaction handling recommended
by :pep:`249`.
If the connection attribute :attr:`~Connection.isolation_level`
is not ``None``,
new transactions are implicitly opened before
:meth:`~Cursor.execute` and :meth:`~Cursor.executemany` executes
``INSERT``, ``UPDATE``, ``DELETE``, or ``REPLACE`` statements;
for other statements, no implicit transaction handling is performed.
Use the :meth:`~Connection.commit` and :meth:`~Connection.rollback` methods
to respectively commit and roll back pending transactions.
You can choose the underlying `SQLite transaction behaviour`_ —
that is, whether and what type of ``BEGIN`` statements :mod:`!sqlite3`
implicitly executes –
via the :attr:`~Connection.isolation_level` attribute.
If :attr:`~Connection.isolation_level` is set to ``None``,
no transactions are implicitly opened at all.
This leaves the underlying SQLite library in `autocommit mode`_,
but also allows the user to perform their own transaction handling
using explicit SQL statements.
The underlying SQLite library autocommit mode can be queried using the
:attr:`~Connection.in_transaction` attribute.
The :meth:`~Cursor.executescript` method implicitly commits
any pending transaction before execution of the given SQL script,
regardless of the value of :attr:`~Connection.isolation_level`.
.. versionchanged:: 3.6
:mod:`!sqlite3` used to implicitly commit an open transaction before DDL
statements. This is no longer the case.
.. _autocommit mode:
https://www.sqlite.org/lang_transaction.html#implicit_versus_explicit_transactions
.. _SQLite transaction behaviour:
https://www.sqlite.org/lang_transaction.html#deferred_immediate_and_exclusive_transactions