| |
| #include "Python.h" |
| #include "pycore_ceval.h" // _PyEval_SignalReceived() |
| #include "pycore_initconfig.h" // _PyStatus_OK() |
| #include "pycore_interp.h" // _Py_RunGC() |
| #include "pycore_pyerrors.h" // _PyErr_GetRaisedException() |
| #include "pycore_pylifecycle.h" // _PyErr_Print() |
| #include "pycore_pymem.h" // _PyMem_IsPtrFreed() |
| #include "pycore_pystats.h" // _Py_PrintSpecializationStats() |
| |
| /* |
| Notes about the implementation: |
| |
| - The GIL is just a boolean variable (locked) whose access is protected |
| by a mutex (gil_mutex), and whose changes are signalled by a condition |
| variable (gil_cond). gil_mutex is taken for short periods of time, |
| and therefore mostly uncontended. |
| |
| - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be |
| able to release the GIL on demand by another thread. A volatile boolean |
| variable (gil_drop_request) is used for that purpose, which is checked |
| at every turn of the eval loop. That variable is set after a wait of |
| `interval` microseconds on `gil_cond` has timed out. |
| |
| [Actually, another volatile boolean variable (eval_breaker) is used |
| which ORs several conditions into one. Volatile booleans are |
| sufficient as inter-thread signalling means since Python is run |
| on cache-coherent architectures only.] |
| |
| - A thread wanting to take the GIL will first let pass a given amount of |
| time (`interval` microseconds) before setting gil_drop_request. This |
| encourages a defined switching period, but doesn't enforce it since |
| opcodes can take an arbitrary time to execute. |
| |
| The `interval` value is available for the user to read and modify |
| using the Python API `sys.{get,set}switchinterval()`. |
| |
| - When a thread releases the GIL and gil_drop_request is set, that thread |
| ensures that another GIL-awaiting thread gets scheduled. |
| It does so by waiting on a condition variable (switch_cond) until |
| the value of last_holder is changed to something else than its |
| own thread state pointer, indicating that another thread was able to |
| take the GIL. |
| |
| This is meant to prohibit the latency-adverse behaviour on multi-core |
| machines where one thread would speculatively release the GIL, but still |
| run and end up being the first to re-acquire it, making the "timeslices" |
| much longer than expected. |
| (Note: this mechanism is enabled with FORCE_SWITCHING above) |
| */ |
| |
| // GH-89279: Force inlining by using a macro. |
| #if defined(_MSC_VER) && SIZEOF_INT == 4 |
| #define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value))) |
| #else |
| #define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL) |
| #endif |
| |
| /* bpo-40010: eval_breaker should be recomputed if there |
| is a pending signal: signal received by another thread which cannot |
| handle signals. |
| Similarly, we set CALLS_TO_DO and ASYNC_EXCEPTION to match the thread. |
| */ |
| static inline void |
| update_eval_breaker_from_thread(PyInterpreterState *interp, PyThreadState *tstate) |
| { |
| if (tstate == NULL) { |
| return; |
| } |
| |
| if (_Py_IsMainThread()) { |
| int32_t calls_to_do = _Py_atomic_load_int32_relaxed( |
| &_PyRuntime.ceval.pending_mainthread.calls_to_do); |
| if (calls_to_do) { |
| _Py_set_eval_breaker_bit(interp, _PY_CALLS_TO_DO_BIT, 1); |
| } |
| if (_Py_ThreadCanHandleSignals(interp)) { |
| if (_Py_atomic_load_int(&_PyRuntime.signals.is_tripped)) { |
| _Py_set_eval_breaker_bit(interp, _PY_SIGNALS_PENDING_BIT, 1); |
| } |
| } |
| } |
| if (tstate->async_exc != NULL) { |
| _Py_set_eval_breaker_bit(interp, _PY_ASYNC_EXCEPTION_BIT, 1); |
| } |
| } |
| |
| static inline void |
| SET_GIL_DROP_REQUEST(PyInterpreterState *interp) |
| { |
| _Py_set_eval_breaker_bit(interp, _PY_GIL_DROP_REQUEST_BIT, 1); |
| } |
| |
| |
| static inline void |
| RESET_GIL_DROP_REQUEST(PyInterpreterState *interp) |
| { |
| _Py_set_eval_breaker_bit(interp, _PY_GIL_DROP_REQUEST_BIT, 0); |
| } |
| |
| |
| static inline void |
| SIGNAL_PENDING_CALLS(PyInterpreterState *interp) |
| { |
| _Py_set_eval_breaker_bit(interp, _PY_CALLS_TO_DO_BIT, 1); |
| } |
| |
| |
| static inline void |
| UNSIGNAL_PENDING_CALLS(PyInterpreterState *interp) |
| { |
| _Py_set_eval_breaker_bit(interp, _PY_CALLS_TO_DO_BIT, 0); |
| } |
| |
| /* |
| * Implementation of the Global Interpreter Lock (GIL). |
| */ |
| |
| #include <stdlib.h> |
| #include <errno.h> |
| |
| #include "condvar.h" |
| |
| #define MUTEX_INIT(mut) \ |
| if (PyMUTEX_INIT(&(mut))) { \ |
| Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); }; |
| #define MUTEX_FINI(mut) \ |
| if (PyMUTEX_FINI(&(mut))) { \ |
| Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); }; |
| #define MUTEX_LOCK(mut) \ |
| if (PyMUTEX_LOCK(&(mut))) { \ |
| Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); }; |
| #define MUTEX_UNLOCK(mut) \ |
| if (PyMUTEX_UNLOCK(&(mut))) { \ |
| Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); }; |
| |
| #define COND_INIT(cond) \ |
| if (PyCOND_INIT(&(cond))) { \ |
| Py_FatalError("PyCOND_INIT(" #cond ") failed"); }; |
| #define COND_FINI(cond) \ |
| if (PyCOND_FINI(&(cond))) { \ |
| Py_FatalError("PyCOND_FINI(" #cond ") failed"); }; |
| #define COND_SIGNAL(cond) \ |
| if (PyCOND_SIGNAL(&(cond))) { \ |
| Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); }; |
| #define COND_WAIT(cond, mut) \ |
| if (PyCOND_WAIT(&(cond), &(mut))) { \ |
| Py_FatalError("PyCOND_WAIT(" #cond ") failed"); }; |
| #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ |
| { \ |
| int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \ |
| if (r < 0) \ |
| Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \ |
| if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \ |
| timeout_result = 1; \ |
| else \ |
| timeout_result = 0; \ |
| } \ |
| |
| |
| #define DEFAULT_INTERVAL 5000 |
| |
| static void _gil_initialize(struct _gil_runtime_state *gil) |
| { |
| gil->locked = -1; |
| gil->interval = DEFAULT_INTERVAL; |
| } |
| |
| static int gil_created(struct _gil_runtime_state *gil) |
| { |
| if (gil == NULL) { |
| return 0; |
| } |
| return (_Py_atomic_load_int_acquire(&gil->locked) >= 0); |
| } |
| |
| static void create_gil(struct _gil_runtime_state *gil) |
| { |
| MUTEX_INIT(gil->mutex); |
| #ifdef FORCE_SWITCHING |
| MUTEX_INIT(gil->switch_mutex); |
| #endif |
| COND_INIT(gil->cond); |
| #ifdef FORCE_SWITCHING |
| COND_INIT(gil->switch_cond); |
| #endif |
| _Py_atomic_store_ptr_relaxed(&gil->last_holder, 0); |
| _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked); |
| _Py_atomic_store_int_release(&gil->locked, 0); |
| } |
| |
| static void destroy_gil(struct _gil_runtime_state *gil) |
| { |
| /* some pthread-like implementations tie the mutex to the cond |
| * and must have the cond destroyed first. |
| */ |
| COND_FINI(gil->cond); |
| MUTEX_FINI(gil->mutex); |
| #ifdef FORCE_SWITCHING |
| COND_FINI(gil->switch_cond); |
| MUTEX_FINI(gil->switch_mutex); |
| #endif |
| _Py_atomic_store_int_release(&gil->locked, -1); |
| _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); |
| } |
| |
| #ifdef HAVE_FORK |
| static void recreate_gil(struct _gil_runtime_state *gil) |
| { |
| _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); |
| /* XXX should we destroy the old OS resources here? */ |
| create_gil(gil); |
| } |
| #endif |
| |
| static void |
| drop_gil(PyInterpreterState *interp, PyThreadState *tstate) |
| { |
| struct _ceval_state *ceval = &interp->ceval; |
| /* If tstate is NULL, the caller is indicating that we're releasing |
| the GIL for the last time in this thread. This is particularly |
| relevant when the current thread state is finalizing or its |
| interpreter is finalizing (either may be in an inconsistent |
| state). In that case the current thread will definitely |
| never try to acquire the GIL again. */ |
| // XXX It may be more correct to check tstate->_status.finalizing. |
| // XXX assert(tstate == NULL || !tstate->_status.cleared); |
| |
| struct _gil_runtime_state *gil = ceval->gil; |
| if (!_Py_atomic_load_ptr_relaxed(&gil->locked)) { |
| Py_FatalError("drop_gil: GIL is not locked"); |
| } |
| |
| /* tstate is allowed to be NULL (early interpreter init) */ |
| if (tstate != NULL) { |
| /* Sub-interpreter support: threads might have been switched |
| under our feet using PyThreadState_Swap(). Fix the GIL last |
| holder variable so that our heuristics work. */ |
| _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate); |
| } |
| |
| MUTEX_LOCK(gil->mutex); |
| _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1); |
| _Py_atomic_store_int_relaxed(&gil->locked, 0); |
| COND_SIGNAL(gil->cond); |
| MUTEX_UNLOCK(gil->mutex); |
| |
| #ifdef FORCE_SWITCHING |
| /* We check tstate first in case we might be releasing the GIL for |
| the last time in this thread. In that case there's a possible |
| race with tstate->interp getting deleted after gil->mutex is |
| unlocked and before the following code runs, leading to a crash. |
| We can use (tstate == NULL) to indicate the thread is done with |
| the GIL, and that's the only time we might delete the |
| interpreter, so checking tstate first prevents the crash. |
| See https://github.com/python/cpython/issues/104341. */ |
| if (tstate != NULL && _Py_eval_breaker_bit_is_set(interp, _PY_GIL_DROP_REQUEST_BIT)) { |
| MUTEX_LOCK(gil->switch_mutex); |
| /* Not switched yet => wait */ |
| if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate) |
| { |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| RESET_GIL_DROP_REQUEST(tstate->interp); |
| /* NOTE: if COND_WAIT does not atomically start waiting when |
| releasing the mutex, another thread can run through, take |
| the GIL and drop it again, and reset the condition |
| before we even had a chance to wait for it. */ |
| COND_WAIT(gil->switch_cond, gil->switch_mutex); |
| } |
| MUTEX_UNLOCK(gil->switch_mutex); |
| } |
| #endif |
| } |
| |
| |
| /* Take the GIL. |
| |
| The function saves errno at entry and restores its value at exit. |
| |
| tstate must be non-NULL. */ |
| static void |
| take_gil(PyThreadState *tstate) |
| { |
| int err = errno; |
| |
| assert(tstate != NULL); |
| /* We shouldn't be using a thread state that isn't viable any more. */ |
| // XXX It may be more correct to check tstate->_status.finalizing. |
| // XXX assert(!tstate->_status.cleared); |
| |
| if (_PyThreadState_MustExit(tstate)) { |
| /* bpo-39877: If Py_Finalize() has been called and tstate is not the |
| thread which called Py_Finalize(), exit immediately the thread. |
| |
| This code path can be reached by a daemon thread after Py_Finalize() |
| completes. In this case, tstate is a dangling pointer: points to |
| PyThreadState freed memory. */ |
| PyThread_exit_thread(); |
| } |
| |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| PyInterpreterState *interp = tstate->interp; |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| |
| /* Check that _PyEval_InitThreads() was called to create the lock */ |
| assert(gil_created(gil)); |
| |
| MUTEX_LOCK(gil->mutex); |
| |
| if (!_Py_atomic_load_int_relaxed(&gil->locked)) { |
| goto _ready; |
| } |
| |
| int drop_requested = 0; |
| while (_Py_atomic_load_int_relaxed(&gil->locked)) { |
| unsigned long saved_switchnum = gil->switch_number; |
| |
| unsigned long interval = (gil->interval >= 1 ? gil->interval : 1); |
| int timed_out = 0; |
| COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out); |
| |
| /* If we timed out and no switch occurred in the meantime, it is time |
| to ask the GIL-holding thread to drop it. */ |
| if (timed_out && |
| _Py_atomic_load_int_relaxed(&gil->locked) && |
| gil->switch_number == saved_switchnum) |
| { |
| if (_PyThreadState_MustExit(tstate)) { |
| MUTEX_UNLOCK(gil->mutex); |
| // gh-96387: If the loop requested a drop request in a previous |
| // iteration, reset the request. Otherwise, drop_gil() can |
| // block forever waiting for the thread which exited. Drop |
| // requests made by other threads are also reset: these threads |
| // may have to request again a drop request (iterate one more |
| // time). |
| if (drop_requested) { |
| RESET_GIL_DROP_REQUEST(interp); |
| } |
| PyThread_exit_thread(); |
| } |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| SET_GIL_DROP_REQUEST(interp); |
| drop_requested = 1; |
| } |
| } |
| |
| _ready: |
| #ifdef FORCE_SWITCHING |
| /* This mutex must be taken before modifying gil->last_holder: |
| see drop_gil(). */ |
| MUTEX_LOCK(gil->switch_mutex); |
| #endif |
| /* We now hold the GIL */ |
| _Py_atomic_store_int_relaxed(&gil->locked, 1); |
| _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1); |
| |
| if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) { |
| _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate); |
| ++gil->switch_number; |
| } |
| |
| #ifdef FORCE_SWITCHING |
| COND_SIGNAL(gil->switch_cond); |
| MUTEX_UNLOCK(gil->switch_mutex); |
| #endif |
| |
| if (_PyThreadState_MustExit(tstate)) { |
| /* bpo-36475: If Py_Finalize() has been called and tstate is not |
| the thread which called Py_Finalize(), exit immediately the |
| thread. |
| |
| This code path can be reached by a daemon thread which was waiting |
| in take_gil() while the main thread called |
| wait_for_thread_shutdown() from Py_Finalize(). */ |
| MUTEX_UNLOCK(gil->mutex); |
| drop_gil(interp, tstate); |
| PyThread_exit_thread(); |
| } |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| RESET_GIL_DROP_REQUEST(interp); |
| update_eval_breaker_from_thread(interp, tstate); |
| |
| MUTEX_UNLOCK(gil->mutex); |
| |
| errno = err; |
| } |
| |
| void _PyEval_SetSwitchInterval(unsigned long microseconds) |
| { |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| assert(gil != NULL); |
| gil->interval = microseconds; |
| } |
| |
| unsigned long _PyEval_GetSwitchInterval(void) |
| { |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| assert(gil != NULL); |
| return gil->interval; |
| } |
| |
| |
| int |
| _PyEval_ThreadsInitialized(void) |
| { |
| /* XXX This is only needed for an assert in PyGILState_Ensure(), |
| * which currently does not work with subinterpreters. |
| * Thus we only use the main interpreter. */ |
| PyInterpreterState *interp = _PyInterpreterState_Main(); |
| if (interp == NULL) { |
| return 0; |
| } |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| return gil_created(gil); |
| } |
| |
| // Function removed in the Python 3.13 API but kept in the stable ABI. |
| PyAPI_FUNC(int) |
| PyEval_ThreadsInitialized(void) |
| { |
| return _PyEval_ThreadsInitialized(); |
| } |
| |
| static inline int |
| current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate) |
| { |
| if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) != tstate) { |
| return 0; |
| } |
| return _Py_atomic_load_int_relaxed(&gil->locked); |
| } |
| |
| static void |
| init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil) |
| { |
| assert(gil_created(gil)); |
| interp->ceval.gil = gil; |
| interp->ceval.own_gil = 0; |
| } |
| |
| static void |
| init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil) |
| { |
| assert(!gil_created(gil)); |
| create_gil(gil); |
| assert(gil_created(gil)); |
| interp->ceval.gil = gil; |
| interp->ceval.own_gil = 1; |
| } |
| |
| PyStatus |
| _PyEval_InitGIL(PyThreadState *tstate, int own_gil) |
| { |
| assert(tstate->interp->ceval.gil == NULL); |
| if (!own_gil) { |
| /* The interpreter will share the main interpreter's instead. */ |
| PyInterpreterState *main_interp = _PyInterpreterState_Main(); |
| assert(tstate->interp != main_interp); |
| struct _gil_runtime_state *gil = main_interp->ceval.gil; |
| init_shared_gil(tstate->interp, gil); |
| assert(!current_thread_holds_gil(gil, tstate)); |
| } |
| else { |
| PyThread_init_thread(); |
| init_own_gil(tstate->interp, &tstate->interp->_gil); |
| } |
| |
| // Lock the GIL and mark the current thread as attached. |
| _PyThreadState_Attach(tstate); |
| |
| return _PyStatus_OK(); |
| } |
| |
| void |
| _PyEval_FiniGIL(PyInterpreterState *interp) |
| { |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| if (gil == NULL) { |
| /* It was already finalized (or hasn't been initialized yet). */ |
| assert(!interp->ceval.own_gil); |
| return; |
| } |
| else if (!interp->ceval.own_gil) { |
| #ifdef Py_DEBUG |
| PyInterpreterState *main_interp = _PyInterpreterState_Main(); |
| assert(main_interp != NULL && interp != main_interp); |
| assert(interp->ceval.gil == main_interp->ceval.gil); |
| #endif |
| interp->ceval.gil = NULL; |
| return; |
| } |
| |
| if (!gil_created(gil)) { |
| /* First Py_InitializeFromConfig() call: the GIL doesn't exist |
| yet: do nothing. */ |
| return; |
| } |
| |
| destroy_gil(gil); |
| assert(!gil_created(gil)); |
| interp->ceval.gil = NULL; |
| } |
| |
| // Function removed in the Python 3.13 API but kept in the stable ABI. |
| PyAPI_FUNC(void) |
| PyEval_InitThreads(void) |
| { |
| /* Do nothing: kept for backward compatibility */ |
| } |
| |
| void |
| _PyEval_Fini(void) |
| { |
| #ifdef Py_STATS |
| _Py_PrintSpecializationStats(1); |
| #endif |
| } |
| |
| // Function removed in the Python 3.13 API but kept in the stable ABI. |
| PyAPI_FUNC(void) |
| PyEval_AcquireLock(void) |
| { |
| PyThreadState *tstate = _PyThreadState_GET(); |
| _Py_EnsureTstateNotNULL(tstate); |
| |
| take_gil(tstate); |
| } |
| |
| // Function removed in the Python 3.13 API but kept in the stable ABI. |
| PyAPI_FUNC(void) |
| PyEval_ReleaseLock(void) |
| { |
| PyThreadState *tstate = _PyThreadState_GET(); |
| /* This function must succeed when the current thread state is NULL. |
| We therefore avoid PyThreadState_Get() which dumps a fatal error |
| in debug mode. */ |
| drop_gil(tstate->interp, tstate); |
| } |
| |
| void |
| _PyEval_AcquireLock(PyThreadState *tstate) |
| { |
| _Py_EnsureTstateNotNULL(tstate); |
| take_gil(tstate); |
| } |
| |
| void |
| _PyEval_ReleaseLock(PyInterpreterState *interp, PyThreadState *tstate) |
| { |
| /* If tstate is NULL then we do not expect the current thread |
| to acquire the GIL ever again. */ |
| assert(tstate == NULL || tstate->interp == interp); |
| drop_gil(interp, tstate); |
| } |
| |
| void |
| PyEval_AcquireThread(PyThreadState *tstate) |
| { |
| _Py_EnsureTstateNotNULL(tstate); |
| _PyThreadState_Attach(tstate); |
| } |
| |
| void |
| PyEval_ReleaseThread(PyThreadState *tstate) |
| { |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| _PyThreadState_Detach(tstate); |
| } |
| |
| #ifdef HAVE_FORK |
| /* This function is called from PyOS_AfterFork_Child to destroy all threads |
| which are not running in the child process, and clear internal locks |
| which might be held by those threads. */ |
| PyStatus |
| _PyEval_ReInitThreads(PyThreadState *tstate) |
| { |
| assert(tstate->interp == _PyInterpreterState_Main()); |
| |
| struct _gil_runtime_state *gil = tstate->interp->ceval.gil; |
| if (!gil_created(gil)) { |
| return _PyStatus_OK(); |
| } |
| recreate_gil(gil); |
| |
| take_gil(tstate); |
| |
| struct _pending_calls *pending = &tstate->interp->ceval.pending; |
| if (_PyThread_at_fork_reinit(&pending->lock) < 0) { |
| return _PyStatus_ERR("Can't reinitialize pending calls lock"); |
| } |
| |
| /* Destroy all threads except the current one */ |
| _PyThreadState_DeleteExcept(tstate); |
| return _PyStatus_OK(); |
| } |
| #endif |
| |
| /* This function is used to signal that async exceptions are waiting to be |
| raised. */ |
| |
| void |
| _PyEval_SignalAsyncExc(PyInterpreterState *interp) |
| { |
| _Py_set_eval_breaker_bit(interp, _PY_ASYNC_EXCEPTION_BIT, 1); |
| } |
| |
| PyThreadState * |
| PyEval_SaveThread(void) |
| { |
| PyThreadState *tstate = _PyThreadState_GET(); |
| _PyThreadState_Detach(tstate); |
| return tstate; |
| } |
| |
| void |
| PyEval_RestoreThread(PyThreadState *tstate) |
| { |
| _Py_EnsureTstateNotNULL(tstate); |
| _PyThreadState_Attach(tstate); |
| } |
| |
| |
| /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX |
| signal handlers or Mac I/O completion routines) can schedule calls |
| to a function to be called synchronously. |
| The synchronous function is called with one void* argument. |
| It should return 0 for success or -1 for failure -- failure should |
| be accompanied by an exception. |
| |
| If registry succeeds, the registry function returns 0; if it fails |
| (e.g. due to too many pending calls) it returns -1 (without setting |
| an exception condition). |
| |
| Note that because registry may occur from within signal handlers, |
| or other asynchronous events, calling malloc() is unsafe! |
| |
| Any thread can schedule pending calls, but only the main thread |
| will execute them. |
| There is no facility to schedule calls to a particular thread, but |
| that should be easy to change, should that ever be required. In |
| that case, the static variables here should go into the python |
| threadstate. |
| */ |
| |
| void |
| _PyEval_SignalReceived(PyInterpreterState *interp) |
| { |
| if (_Py_ThreadCanHandleSignals(interp)) { |
| _Py_set_eval_breaker_bit(interp, _PY_SIGNALS_PENDING_BIT, 1); |
| } |
| } |
| |
| /* Push one item onto the queue while holding the lock. */ |
| static int |
| _push_pending_call(struct _pending_calls *pending, |
| _Py_pending_call_func func, void *arg, int flags) |
| { |
| int i = pending->last; |
| int j = (i + 1) % NPENDINGCALLS; |
| if (j == pending->first) { |
| return -1; /* Queue full */ |
| } |
| pending->calls[i].func = func; |
| pending->calls[i].arg = arg; |
| pending->calls[i].flags = flags; |
| pending->last = j; |
| assert(pending->calls_to_do < NPENDINGCALLS); |
| pending->calls_to_do++; |
| return 0; |
| } |
| |
| static int |
| _next_pending_call(struct _pending_calls *pending, |
| int (**func)(void *), void **arg, int *flags) |
| { |
| int i = pending->first; |
| if (i == pending->last) { |
| /* Queue empty */ |
| assert(pending->calls[i].func == NULL); |
| return -1; |
| } |
| *func = pending->calls[i].func; |
| *arg = pending->calls[i].arg; |
| *flags = pending->calls[i].flags; |
| return i; |
| } |
| |
| /* Pop one item off the queue while holding the lock. */ |
| static void |
| _pop_pending_call(struct _pending_calls *pending, |
| int (**func)(void *), void **arg, int *flags) |
| { |
| int i = _next_pending_call(pending, func, arg, flags); |
| if (i >= 0) { |
| pending->calls[i] = (struct _pending_call){0}; |
| pending->first = (i + 1) % NPENDINGCALLS; |
| assert(pending->calls_to_do > 0); |
| pending->calls_to_do--; |
| } |
| } |
| |
| /* This implementation is thread-safe. It allows |
| scheduling to be made from any thread, and even from an executing |
| callback. |
| */ |
| |
| int |
| _PyEval_AddPendingCall(PyInterpreterState *interp, |
| _Py_pending_call_func func, void *arg, int flags) |
| { |
| assert(!(flags & _Py_PENDING_MAINTHREADONLY) |
| || _Py_IsMainInterpreter(interp)); |
| struct _pending_calls *pending = &interp->ceval.pending; |
| if (flags & _Py_PENDING_MAINTHREADONLY) { |
| /* The main thread only exists in the main interpreter. */ |
| assert(_Py_IsMainInterpreter(interp)); |
| pending = &_PyRuntime.ceval.pending_mainthread; |
| } |
| /* Ensure that _PyEval_InitState() was called |
| and that _PyEval_FiniState() is not called yet. */ |
| assert(pending->lock != NULL); |
| |
| PyThread_acquire_lock(pending->lock, WAIT_LOCK); |
| int result = _push_pending_call(pending, func, arg, flags); |
| PyThread_release_lock(pending->lock); |
| |
| /* signal main loop */ |
| SIGNAL_PENDING_CALLS(interp); |
| return result; |
| } |
| |
| int |
| Py_AddPendingCall(_Py_pending_call_func func, void *arg) |
| { |
| /* Legacy users of this API will continue to target the main thread |
| (of the main interpreter). */ |
| PyInterpreterState *interp = _PyInterpreterState_Main(); |
| return _PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY); |
| } |
| |
| static int |
| handle_signals(PyThreadState *tstate) |
| { |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| _Py_set_eval_breaker_bit(tstate->interp, _PY_SIGNALS_PENDING_BIT, 0); |
| if (!_Py_ThreadCanHandleSignals(tstate->interp)) { |
| return 0; |
| } |
| if (_PyErr_CheckSignalsTstate(tstate) < 0) { |
| /* On failure, re-schedule a call to handle_signals(). */ |
| _Py_set_eval_breaker_bit(tstate->interp, _PY_SIGNALS_PENDING_BIT, 1); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int |
| _make_pending_calls(struct _pending_calls *pending) |
| { |
| /* perform a bounded number of calls, in case of recursion */ |
| for (int i=0; i<NPENDINGCALLS; i++) { |
| _Py_pending_call_func func = NULL; |
| void *arg = NULL; |
| int flags = 0; |
| |
| /* pop one item off the queue while holding the lock */ |
| PyThread_acquire_lock(pending->lock, WAIT_LOCK); |
| _pop_pending_call(pending, &func, &arg, &flags); |
| PyThread_release_lock(pending->lock); |
| |
| /* having released the lock, perform the callback */ |
| if (func == NULL) { |
| break; |
| } |
| int res = func(arg); |
| if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) { |
| PyMem_RawFree(arg); |
| } |
| if (res != 0) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| make_pending_calls(PyInterpreterState *interp) |
| { |
| struct _pending_calls *pending = &interp->ceval.pending; |
| struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread; |
| |
| /* Only one thread (per interpreter) may run the pending calls |
| at once. In the same way, we don't do recursive pending calls. */ |
| PyThread_acquire_lock(pending->lock, WAIT_LOCK); |
| if (pending->busy) { |
| /* A pending call was added after another thread was already |
| handling the pending calls (and had already "unsignaled"). |
| Once that thread is done, it may have taken care of all the |
| pending calls, or there might be some still waiting. |
| Regardless, this interpreter's pending calls will stay |
| "signaled" until that first thread has finished. At that |
| point the next thread to trip the eval breaker will take |
| care of any remaining pending calls. Until then, though, |
| all the interpreter's threads will be tripping the eval |
| breaker every time it's checked. */ |
| PyThread_release_lock(pending->lock); |
| return 0; |
| } |
| pending->busy = 1; |
| PyThread_release_lock(pending->lock); |
| |
| /* unsignal before starting to call callbacks, so that any callback |
| added in-between re-signals */ |
| UNSIGNAL_PENDING_CALLS(interp); |
| |
| if (_make_pending_calls(pending) != 0) { |
| pending->busy = 0; |
| /* There might not be more calls to make, but we play it safe. */ |
| SIGNAL_PENDING_CALLS(interp); |
| return -1; |
| } |
| |
| if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) { |
| if (_make_pending_calls(pending_main) != 0) { |
| pending->busy = 0; |
| /* There might not be more calls to make, but we play it safe. */ |
| SIGNAL_PENDING_CALLS(interp); |
| return -1; |
| } |
| } |
| |
| pending->busy = 0; |
| return 0; |
| } |
| |
| void |
| _Py_FinishPendingCalls(PyThreadState *tstate) |
| { |
| assert(PyGILState_Check()); |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| if (make_pending_calls(tstate->interp) < 0) { |
| PyObject *exc = _PyErr_GetRaisedException(tstate); |
| PyErr_BadInternalCall(); |
| _PyErr_ChainExceptions1(exc); |
| _PyErr_Print(tstate); |
| } |
| } |
| |
| int |
| _PyEval_MakePendingCalls(PyThreadState *tstate) |
| { |
| int res; |
| |
| if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) { |
| /* Python signal handler doesn't really queue a callback: |
| it only signals that a signal was received, |
| see _PyEval_SignalReceived(). */ |
| res = handle_signals(tstate); |
| if (res != 0) { |
| return res; |
| } |
| } |
| |
| res = make_pending_calls(tstate->interp); |
| if (res != 0) { |
| return res; |
| } |
| |
| return 0; |
| } |
| |
| /* Py_MakePendingCalls() is a simple wrapper for the sake |
| of backward-compatibility. */ |
| int |
| Py_MakePendingCalls(void) |
| { |
| assert(PyGILState_Check()); |
| |
| PyThreadState *tstate = _PyThreadState_GET(); |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| /* Only execute pending calls on the main thread. */ |
| if (!_Py_IsMainThread() || !_Py_IsMainInterpreter(tstate->interp)) { |
| return 0; |
| } |
| return _PyEval_MakePendingCalls(tstate); |
| } |
| |
| void |
| _PyEval_InitState(PyInterpreterState *interp, PyThread_type_lock pending_lock) |
| { |
| _gil_initialize(&interp->_gil); |
| |
| struct _pending_calls *pending = &interp->ceval.pending; |
| assert(pending->lock == NULL); |
| pending->lock = pending_lock; |
| } |
| |
| void |
| _PyEval_FiniState(struct _ceval_state *ceval) |
| { |
| struct _pending_calls *pending = &ceval->pending; |
| if (pending->lock != NULL) { |
| PyThread_free_lock(pending->lock); |
| pending->lock = NULL; |
| } |
| } |
| |
| |
| /* Do periodic things, like check for signals and async I/0. |
| * We need to do reasonably frequently, but not too frequently. |
| * All loops should include a check of the eval breaker. |
| * We also check on return from any builtin function. |
| * |
| * ## More Details ### |
| * |
| * The eval loop (this function) normally executes the instructions |
| * of a code object sequentially. However, the runtime supports a |
| * number of out-of-band execution scenarios that may pause that |
| * sequential execution long enough to do that out-of-band work |
| * in the current thread using the current PyThreadState. |
| * |
| * The scenarios include: |
| * |
| * - cyclic garbage collection |
| * - GIL drop requests |
| * - "async" exceptions |
| * - "pending calls" (some only in the main thread) |
| * - signal handling (only in the main thread) |
| * |
| * When the need for one of the above is detected, the eval loop |
| * pauses long enough to handle the detected case. Then, if doing |
| * so didn't trigger an exception, the eval loop resumes executing |
| * the sequential instructions. |
| * |
| * To make this work, the eval loop periodically checks if any |
| * of the above needs to happen. The individual checks can be |
| * expensive if computed each time, so a while back we switched |
| * to using pre-computed, per-interpreter variables for the checks, |
| * and later consolidated that to a single "eval breaker" variable |
| * (now a PyInterpreterState field). |
| * |
| * For the longest time, the eval breaker check would happen |
| * frequently, every 5 or so times through the loop, regardless |
| * of what instruction ran last or what would run next. Then, in |
| * early 2021 (gh-18334, commit 4958f5d), we switched to checking |
| * the eval breaker less frequently, by hard-coding the check to |
| * specific places in the eval loop (e.g. certain instructions). |
| * The intent then was to check after returning from calls |
| * and on the back edges of loops. |
| * |
| * In addition to being more efficient, that approach keeps |
| * the eval loop from running arbitrary code between instructions |
| * that don't handle that well. (See gh-74174.) |
| * |
| * Currently, the eval breaker check happens on back edges in |
| * the control flow graph, which pretty much applies to all loops, |
| * and most calls. |
| * (See bytecodes.c for exact information.) |
| * |
| * One consequence of this approach is that it might not be obvious |
| * how to force any specific thread to pick up the eval breaker, |
| * or for any specific thread to not pick it up. Mostly this |
| * involves judicious uses of locks and careful ordering of code, |
| * while avoiding code that might trigger the eval breaker |
| * until so desired. |
| */ |
| int |
| _Py_HandlePending(PyThreadState *tstate) |
| { |
| PyInterpreterState *interp = tstate->interp; |
| |
| /* Pending signals */ |
| if (_Py_eval_breaker_bit_is_set(interp, _PY_SIGNALS_PENDING_BIT)) { |
| if (handle_signals(tstate) != 0) { |
| return -1; |
| } |
| } |
| |
| /* Pending calls */ |
| if (_Py_eval_breaker_bit_is_set(interp, _PY_CALLS_TO_DO_BIT)) { |
| if (make_pending_calls(interp) != 0) { |
| return -1; |
| } |
| } |
| |
| /* GC scheduled to run */ |
| if (_Py_eval_breaker_bit_is_set(interp, _PY_GC_SCHEDULED_BIT)) { |
| _Py_set_eval_breaker_bit(interp, _PY_GC_SCHEDULED_BIT, 0); |
| _Py_RunGC(tstate); |
| } |
| |
| /* GIL drop request */ |
| if (_Py_eval_breaker_bit_is_set(interp, _PY_GIL_DROP_REQUEST_BIT)) { |
| /* Give another thread a chance */ |
| _PyThreadState_Detach(tstate); |
| |
| /* Other threads may run now */ |
| |
| _PyThreadState_Attach(tstate); |
| } |
| |
| /* Check for asynchronous exception. */ |
| if (_Py_eval_breaker_bit_is_set(interp, _PY_ASYNC_EXCEPTION_BIT)) { |
| _Py_set_eval_breaker_bit(interp, _PY_ASYNC_EXCEPTION_BIT, 0); |
| if (tstate->async_exc != NULL) { |
| PyObject *exc = tstate->async_exc; |
| tstate->async_exc = NULL; |
| _PyErr_SetNone(tstate, exc); |
| Py_DECREF(exc); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |