blob: abc90218053f1d27458820412e71ad9fa089dda0 [file] [log] [blame]
/* SHA512 module */
/* This module provides an interface to NIST's SHA-512 and SHA-384 Algorithms */
/* See below for information about the original code this module was
based upon. Additional work performed by:
Andrew Kuchling (amk@amk.ca)
Greg Stein (gstein@lyra.org)
Trevor Perrin (trevp@trevp.net)
Copyright (C) 2005 Gregory P. Smith (greg@krypto.org)
Licensed to PSF under a Contributor Agreement.
*/
/* SHA objects */
#include "Python.h"
#include "structmember.h"
#ifdef PY_LONG_LONG /* If no PY_LONG_LONG, don't compile anything! */
/* Endianness testing and definitions */
#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
#define PCT_LITTLE_ENDIAN 1
#define PCT_BIG_ENDIAN 0
/* Some useful types */
typedef unsigned char SHA_BYTE;
#if SIZEOF_INT == 4
typedef unsigned int SHA_INT32; /* 32-bit integer */
typedef unsigned PY_LONG_LONG SHA_INT64; /* 64-bit integer */
#else
/* not defined. compilation will die. */
#endif
/* The SHA block size and message digest sizes, in bytes */
#define SHA_BLOCKSIZE 128
#define SHA_DIGESTSIZE 64
/* The structure for storing SHA info */
typedef struct {
PyObject_HEAD
SHA_INT64 digest[8]; /* Message digest */
SHA_INT32 count_lo, count_hi; /* 64-bit bit count */
SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */
int Endianness;
int local; /* unprocessed amount in data */
int digestsize;
} SHAobject;
/* When run on a little-endian CPU we need to perform byte reversal on an
array of longwords. */
static void longReverse(SHA_INT64 *buffer, int byteCount, int Endianness)
{
SHA_INT64 value;
if ( Endianness == PCT_BIG_ENDIAN )
return;
byteCount /= sizeof(*buffer);
while (byteCount--) {
value = *buffer;
((unsigned char*)buffer)[0] = (unsigned char)(value >> 56) & 0xff;
((unsigned char*)buffer)[1] = (unsigned char)(value >> 48) & 0xff;
((unsigned char*)buffer)[2] = (unsigned char)(value >> 40) & 0xff;
((unsigned char*)buffer)[3] = (unsigned char)(value >> 32) & 0xff;
((unsigned char*)buffer)[4] = (unsigned char)(value >> 24) & 0xff;
((unsigned char*)buffer)[5] = (unsigned char)(value >> 16) & 0xff;
((unsigned char*)buffer)[6] = (unsigned char)(value >> 8) & 0xff;
((unsigned char*)buffer)[7] = (unsigned char)(value ) & 0xff;
buffer++;
}
}
static void SHAcopy(SHAobject *src, SHAobject *dest)
{
dest->Endianness = src->Endianness;
dest->local = src->local;
dest->digestsize = src->digestsize;
dest->count_lo = src->count_lo;
dest->count_hi = src->count_hi;
memcpy(dest->digest, src->digest, sizeof(src->digest));
memcpy(dest->data, src->data, sizeof(src->data));
}
/* ------------------------------------------------------------------------
*
* This code for the SHA-512 algorithm was noted as public domain. The
* original headers are pasted below.
*
* Several changes have been made to make it more compatible with the
* Python environment and desired interface.
*
*/
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
*/
/* SHA512 by Tom St Denis */
/* Various logical functions */
#define ROR64(x, y) \
( ((((x) & Py_ULL(0xFFFFFFFFFFFFFFFF))>>((unsigned PY_LONG_LONG)(y) & 63)) | \
((x)<<((unsigned PY_LONG_LONG)(64-((y) & 63))))) & Py_ULL(0xFFFFFFFFFFFFFFFF))
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) ROR64((x),(n))
#define R(x, n) (((x) & Py_ULL(0xFFFFFFFFFFFFFFFF)) >> ((unsigned PY_LONG_LONG)n))
#define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
#define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
#define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
#define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
static void
sha512_transform(SHAobject *sha_info)
{
int i;
SHA_INT64 S[8], W[80], t0, t1;
memcpy(W, sha_info->data, sizeof(sha_info->data));
longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness);
for (i = 16; i < 80; ++i) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
}
for (i = 0; i < 8; ++i) {
S[i] = sha_info->digest[i];
}
/* Compress */
#define RND(a,b,c,d,e,f,g,h,i,ki) \
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,Py_ULL(0x428a2f98d728ae22));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,Py_ULL(0x7137449123ef65cd));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,Py_ULL(0xb5c0fbcfec4d3b2f));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,Py_ULL(0xe9b5dba58189dbbc));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,Py_ULL(0x3956c25bf348b538));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,Py_ULL(0x59f111f1b605d019));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,Py_ULL(0x923f82a4af194f9b));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,Py_ULL(0xab1c5ed5da6d8118));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,Py_ULL(0xd807aa98a3030242));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,Py_ULL(0x12835b0145706fbe));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,Py_ULL(0x243185be4ee4b28c));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,Py_ULL(0x550c7dc3d5ffb4e2));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,Py_ULL(0x72be5d74f27b896f));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,Py_ULL(0x80deb1fe3b1696b1));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,Py_ULL(0x9bdc06a725c71235));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,Py_ULL(0xc19bf174cf692694));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,Py_ULL(0xe49b69c19ef14ad2));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,Py_ULL(0xefbe4786384f25e3));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,Py_ULL(0x0fc19dc68b8cd5b5));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,Py_ULL(0x240ca1cc77ac9c65));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,Py_ULL(0x2de92c6f592b0275));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,Py_ULL(0x4a7484aa6ea6e483));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,Py_ULL(0x5cb0a9dcbd41fbd4));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,Py_ULL(0x76f988da831153b5));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,Py_ULL(0x983e5152ee66dfab));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,Py_ULL(0xa831c66d2db43210));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,Py_ULL(0xb00327c898fb213f));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,Py_ULL(0xbf597fc7beef0ee4));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,Py_ULL(0xc6e00bf33da88fc2));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,Py_ULL(0xd5a79147930aa725));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,Py_ULL(0x06ca6351e003826f));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,Py_ULL(0x142929670a0e6e70));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,Py_ULL(0x27b70a8546d22ffc));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,Py_ULL(0x2e1b21385c26c926));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,Py_ULL(0x4d2c6dfc5ac42aed));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,Py_ULL(0x53380d139d95b3df));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,Py_ULL(0x650a73548baf63de));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,Py_ULL(0x766a0abb3c77b2a8));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,Py_ULL(0x81c2c92e47edaee6));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,Py_ULL(0x92722c851482353b));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,Py_ULL(0xa2bfe8a14cf10364));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,Py_ULL(0xa81a664bbc423001));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,Py_ULL(0xc24b8b70d0f89791));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,Py_ULL(0xc76c51a30654be30));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,Py_ULL(0xd192e819d6ef5218));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,Py_ULL(0xd69906245565a910));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,Py_ULL(0xf40e35855771202a));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,Py_ULL(0x106aa07032bbd1b8));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,Py_ULL(0x19a4c116b8d2d0c8));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,Py_ULL(0x1e376c085141ab53));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,Py_ULL(0x2748774cdf8eeb99));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,Py_ULL(0x34b0bcb5e19b48a8));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,Py_ULL(0x391c0cb3c5c95a63));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,Py_ULL(0x4ed8aa4ae3418acb));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,Py_ULL(0x5b9cca4f7763e373));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,Py_ULL(0x682e6ff3d6b2b8a3));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,Py_ULL(0x748f82ee5defb2fc));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,Py_ULL(0x78a5636f43172f60));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,Py_ULL(0x84c87814a1f0ab72));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,Py_ULL(0x8cc702081a6439ec));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,Py_ULL(0x90befffa23631e28));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,Py_ULL(0xa4506cebde82bde9));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,Py_ULL(0xbef9a3f7b2c67915));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,Py_ULL(0xc67178f2e372532b));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],64,Py_ULL(0xca273eceea26619c));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],65,Py_ULL(0xd186b8c721c0c207));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],66,Py_ULL(0xeada7dd6cde0eb1e));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],67,Py_ULL(0xf57d4f7fee6ed178));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],68,Py_ULL(0x06f067aa72176fba));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],69,Py_ULL(0x0a637dc5a2c898a6));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],70,Py_ULL(0x113f9804bef90dae));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],71,Py_ULL(0x1b710b35131c471b));
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],72,Py_ULL(0x28db77f523047d84));
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],73,Py_ULL(0x32caab7b40c72493));
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],74,Py_ULL(0x3c9ebe0a15c9bebc));
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],75,Py_ULL(0x431d67c49c100d4c));
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],76,Py_ULL(0x4cc5d4becb3e42b6));
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],77,Py_ULL(0x597f299cfc657e2a));
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],78,Py_ULL(0x5fcb6fab3ad6faec));
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],79,Py_ULL(0x6c44198c4a475817));
#undef RND
/* feedback */
for (i = 0; i < 8; i++) {
sha_info->digest[i] = sha_info->digest[i] + S[i];
}
}
/* initialize the SHA digest */
static void
sha512_init(SHAobject *sha_info)
{
TestEndianness(sha_info->Endianness)
sha_info->digest[0] = Py_ULL(0x6a09e667f3bcc908);
sha_info->digest[1] = Py_ULL(0xbb67ae8584caa73b);
sha_info->digest[2] = Py_ULL(0x3c6ef372fe94f82b);
sha_info->digest[3] = Py_ULL(0xa54ff53a5f1d36f1);
sha_info->digest[4] = Py_ULL(0x510e527fade682d1);
sha_info->digest[5] = Py_ULL(0x9b05688c2b3e6c1f);
sha_info->digest[6] = Py_ULL(0x1f83d9abfb41bd6b);
sha_info->digest[7] = Py_ULL(0x5be0cd19137e2179);
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
sha_info->digestsize = 64;
}
static void
sha384_init(SHAobject *sha_info)
{
TestEndianness(sha_info->Endianness)
sha_info->digest[0] = Py_ULL(0xcbbb9d5dc1059ed8);
sha_info->digest[1] = Py_ULL(0x629a292a367cd507);
sha_info->digest[2] = Py_ULL(0x9159015a3070dd17);
sha_info->digest[3] = Py_ULL(0x152fecd8f70e5939);
sha_info->digest[4] = Py_ULL(0x67332667ffc00b31);
sha_info->digest[5] = Py_ULL(0x8eb44a8768581511);
sha_info->digest[6] = Py_ULL(0xdb0c2e0d64f98fa7);
sha_info->digest[7] = Py_ULL(0x47b5481dbefa4fa4);
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
sha_info->digestsize = 48;
}
/* update the SHA digest */
static void
sha512_update(SHAobject *sha_info, SHA_BYTE *buffer, int count)
{
int i;
SHA_INT32 clo;
clo = sha_info->count_lo + ((SHA_INT32) count << 3);
if (clo < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo = clo;
sha_info->count_hi += (SHA_INT32) count >> 29;
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
sha512_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
sha512_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = count;
}
/* finish computing the SHA digest */
static void
sha512_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info)
{
int count;
SHA_INT32 lo_bit_count, hi_bit_count;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x7f);
((SHA_BYTE *) sha_info->data)[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 16) {
memset(((SHA_BYTE *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - count);
sha512_transform(sha_info);
memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 16);
}
else {
memset(((SHA_BYTE *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - 16 - count);
}
/* GJS: note that we add the hi/lo in big-endian. sha512_transform will
swap these values into host-order. */
sha_info->data[112] = 0;
sha_info->data[113] = 0;
sha_info->data[114] = 0;
sha_info->data[115] = 0;
sha_info->data[116] = 0;
sha_info->data[117] = 0;
sha_info->data[118] = 0;
sha_info->data[119] = 0;
sha_info->data[120] = (hi_bit_count >> 24) & 0xff;
sha_info->data[121] = (hi_bit_count >> 16) & 0xff;
sha_info->data[122] = (hi_bit_count >> 8) & 0xff;
sha_info->data[123] = (hi_bit_count >> 0) & 0xff;
sha_info->data[124] = (lo_bit_count >> 24) & 0xff;
sha_info->data[125] = (lo_bit_count >> 16) & 0xff;
sha_info->data[126] = (lo_bit_count >> 8) & 0xff;
sha_info->data[127] = (lo_bit_count >> 0) & 0xff;
sha512_transform(sha_info);
digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 56) & 0xff);
digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 48) & 0xff);
digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 40) & 0xff);
digest[ 3] = (unsigned char) ((sha_info->digest[0] >> 32) & 0xff);
digest[ 4] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
digest[ 5] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
digest[ 6] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
digest[ 7] = (unsigned char) ((sha_info->digest[0] ) & 0xff);
digest[ 8] = (unsigned char) ((sha_info->digest[1] >> 56) & 0xff);
digest[ 9] = (unsigned char) ((sha_info->digest[1] >> 48) & 0xff);
digest[10] = (unsigned char) ((sha_info->digest[1] >> 40) & 0xff);
digest[11] = (unsigned char) ((sha_info->digest[1] >> 32) & 0xff);
digest[12] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
digest[13] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
digest[14] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
digest[15] = (unsigned char) ((sha_info->digest[1] ) & 0xff);
digest[16] = (unsigned char) ((sha_info->digest[2] >> 56) & 0xff);
digest[17] = (unsigned char) ((sha_info->digest[2] >> 48) & 0xff);
digest[18] = (unsigned char) ((sha_info->digest[2] >> 40) & 0xff);
digest[19] = (unsigned char) ((sha_info->digest[2] >> 32) & 0xff);
digest[20] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
digest[21] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
digest[22] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
digest[23] = (unsigned char) ((sha_info->digest[2] ) & 0xff);
digest[24] = (unsigned char) ((sha_info->digest[3] >> 56) & 0xff);
digest[25] = (unsigned char) ((sha_info->digest[3] >> 48) & 0xff);
digest[26] = (unsigned char) ((sha_info->digest[3] >> 40) & 0xff);
digest[27] = (unsigned char) ((sha_info->digest[3] >> 32) & 0xff);
digest[28] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
digest[29] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
digest[30] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
digest[31] = (unsigned char) ((sha_info->digest[3] ) & 0xff);
digest[32] = (unsigned char) ((sha_info->digest[4] >> 56) & 0xff);
digest[33] = (unsigned char) ((sha_info->digest[4] >> 48) & 0xff);
digest[34] = (unsigned char) ((sha_info->digest[4] >> 40) & 0xff);
digest[35] = (unsigned char) ((sha_info->digest[4] >> 32) & 0xff);
digest[36] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
digest[37] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
digest[38] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
digest[39] = (unsigned char) ((sha_info->digest[4] ) & 0xff);
digest[40] = (unsigned char) ((sha_info->digest[5] >> 56) & 0xff);
digest[41] = (unsigned char) ((sha_info->digest[5] >> 48) & 0xff);
digest[42] = (unsigned char) ((sha_info->digest[5] >> 40) & 0xff);
digest[43] = (unsigned char) ((sha_info->digest[5] >> 32) & 0xff);
digest[44] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff);
digest[45] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff);
digest[46] = (unsigned char) ((sha_info->digest[5] >> 8) & 0xff);
digest[47] = (unsigned char) ((sha_info->digest[5] ) & 0xff);
digest[48] = (unsigned char) ((sha_info->digest[6] >> 56) & 0xff);
digest[49] = (unsigned char) ((sha_info->digest[6] >> 48) & 0xff);
digest[50] = (unsigned char) ((sha_info->digest[6] >> 40) & 0xff);
digest[51] = (unsigned char) ((sha_info->digest[6] >> 32) & 0xff);
digest[52] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff);
digest[53] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff);
digest[54] = (unsigned char) ((sha_info->digest[6] >> 8) & 0xff);
digest[55] = (unsigned char) ((sha_info->digest[6] ) & 0xff);
digest[56] = (unsigned char) ((sha_info->digest[7] >> 56) & 0xff);
digest[57] = (unsigned char) ((sha_info->digest[7] >> 48) & 0xff);
digest[58] = (unsigned char) ((sha_info->digest[7] >> 40) & 0xff);
digest[59] = (unsigned char) ((sha_info->digest[7] >> 32) & 0xff);
digest[60] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff);
digest[61] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff);
digest[62] = (unsigned char) ((sha_info->digest[7] >> 8) & 0xff);
digest[63] = (unsigned char) ((sha_info->digest[7] ) & 0xff);
}
/*
* End of copied SHA code.
*
* ------------------------------------------------------------------------
*/
static PyTypeObject SHA384type;
static PyTypeObject SHA512type;
static SHAobject *
newSHA384object(void)
{
return (SHAobject *)PyObject_New(SHAobject, &SHA384type);
}
static SHAobject *
newSHA512object(void)
{
return (SHAobject *)PyObject_New(SHAobject, &SHA512type);
}
/* Internal methods for a hash object */
static void
SHA512_dealloc(PyObject *ptr)
{
PyObject_Del(ptr);
}
/* External methods for a hash object */
PyDoc_STRVAR(SHA512_copy__doc__, "Return a copy of the hash object.");
static PyObject *
SHA512_copy(SHAobject *self, PyObject *unused)
{
SHAobject *newobj;
if (((PyObject*)self)->ob_type == &SHA512type) {
if ( (newobj = newSHA512object())==NULL)
return NULL;
} else {
if ( (newobj = newSHA384object())==NULL)
return NULL;
}
SHAcopy(self, newobj);
return (PyObject *)newobj;
}
PyDoc_STRVAR(SHA512_digest__doc__,
"Return the digest value as a string of binary data.");
static PyObject *
SHA512_digest(SHAobject *self, PyObject *unused)
{
unsigned char digest[SHA_DIGESTSIZE];
SHAobject temp;
SHAcopy(self, &temp);
sha512_final(digest, &temp);
return PyString_FromStringAndSize((const char *)digest, self->digestsize);
}
PyDoc_STRVAR(SHA512_hexdigest__doc__,
"Return the digest value as a string of hexadecimal digits.");
static PyObject *
SHA512_hexdigest(SHAobject *self, PyObject *unused)
{
unsigned char digest[SHA_DIGESTSIZE];
SHAobject temp;
PyObject *retval;
char *hex_digest;
int i, j;
/* Get the raw (binary) digest value */
SHAcopy(self, &temp);
sha512_final(digest, &temp);
/* Create a new string */
retval = PyString_FromStringAndSize(NULL, self->digestsize * 2);
if (!retval)
return NULL;
hex_digest = PyString_AsString(retval);
if (!hex_digest) {
Py_DECREF(retval);
return NULL;
}
/* Make hex version of the digest */
for (i=j=0; i<self->digestsize; i++) {
char c;
c = (digest[i] >> 4) & 0xf;
c = (c>9) ? c+'a'-10 : c + '0';
hex_digest[j++] = c;
c = (digest[i] & 0xf);
c = (c>9) ? c+'a'-10 : c + '0';
hex_digest[j++] = c;
}
return retval;
}
PyDoc_STRVAR(SHA512_update__doc__,
"Update this hash object's state with the provided string.");
static PyObject *
SHA512_update(SHAobject *self, PyObject *args)
{
Py_buffer buf;
if (!PyArg_ParseTuple(args, "s*:update", &buf))
return NULL;
sha512_update(self, buf.buf, buf.len);
PyBuffer_Release(&buf);
Py_RETURN_NONE;
}
static PyMethodDef SHA_methods[] = {
{"copy", (PyCFunction)SHA512_copy, METH_NOARGS, SHA512_copy__doc__},
{"digest", (PyCFunction)SHA512_digest, METH_NOARGS, SHA512_digest__doc__},
{"hexdigest", (PyCFunction)SHA512_hexdigest, METH_NOARGS, SHA512_hexdigest__doc__},
{"update", (PyCFunction)SHA512_update, METH_VARARGS, SHA512_update__doc__},
{NULL, NULL} /* sentinel */
};
static PyObject *
SHA512_get_block_size(PyObject *self, void *closure)
{
return PyInt_FromLong(SHA_BLOCKSIZE);
}
static PyObject *
SHA512_get_name(PyObject *self, void *closure)
{
if (((SHAobject *)self)->digestsize == 64)
return PyString_FromStringAndSize("SHA512", 6);
else
return PyString_FromStringAndSize("SHA384", 6);
}
static PyGetSetDef SHA_getseters[] = {
{"block_size",
(getter)SHA512_get_block_size, NULL,
NULL,
NULL},
{"name",
(getter)SHA512_get_name, NULL,
NULL,
NULL},
{NULL} /* Sentinel */
};
static PyMemberDef SHA_members[] = {
{"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
/* the old md5 and sha modules support 'digest_size' as in PEP 247.
* the old sha module also supported 'digestsize'. ugh. */
{"digestsize", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
{NULL} /* Sentinel */
};
static PyTypeObject SHA384type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_sha512.sha384", /*tp_name*/
sizeof(SHAobject), /*tp_size*/
0, /*tp_itemsize*/
/* methods */
SHA512_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
SHA_methods, /* tp_methods */
SHA_members, /* tp_members */
SHA_getseters, /* tp_getset */
};
static PyTypeObject SHA512type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_sha512.sha512", /*tp_name*/
sizeof(SHAobject), /*tp_size*/
0, /*tp_itemsize*/
/* methods */
SHA512_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
SHA_methods, /* tp_methods */
SHA_members, /* tp_members */
SHA_getseters, /* tp_getset */
};
/* The single module-level function: new() */
PyDoc_STRVAR(SHA512_new__doc__,
"Return a new SHA-512 hash object; optionally initialized with a string.");
static PyObject *
SHA512_new(PyObject *self, PyObject *args, PyObject *kwdict)
{
static char *kwlist[] = {"string", NULL};
SHAobject *new;
Py_buffer buf = { 0 };
if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s*:new", kwlist,
&buf)) {
return NULL;
}
if ((new = newSHA512object()) == NULL) {
PyBuffer_Release(&buf);
return NULL;
}
sha512_init(new);
if (PyErr_Occurred()) {
Py_DECREF(new);
PyBuffer_Release(&buf);
return NULL;
}
if (buf.len > 0) {
sha512_update(new, buf.buf, buf.len);
}
PyBuffer_Release(&buf);
return (PyObject *)new;
}
PyDoc_STRVAR(SHA384_new__doc__,
"Return a new SHA-384 hash object; optionally initialized with a string.");
static PyObject *
SHA384_new(PyObject *self, PyObject *args, PyObject *kwdict)
{
static char *kwlist[] = {"string", NULL};
SHAobject *new;
Py_buffer buf = { 0 };
if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s*:new", kwlist,
&buf)) {
return NULL;
}
if ((new = newSHA384object()) == NULL) {
PyBuffer_Release(&buf);
return NULL;
}
sha384_init(new);
if (PyErr_Occurred()) {
Py_DECREF(new);
PyBuffer_Release(&buf);
return NULL;
}
if (buf.len > 0) {
sha512_update(new, buf.buf, buf.len);
}
PyBuffer_Release(&buf);
return (PyObject *)new;
}
/* List of functions exported by this module */
static struct PyMethodDef SHA_functions[] = {
{"sha512", (PyCFunction)SHA512_new, METH_VARARGS|METH_KEYWORDS, SHA512_new__doc__},
{"sha384", (PyCFunction)SHA384_new, METH_VARARGS|METH_KEYWORDS, SHA384_new__doc__},
{NULL, NULL} /* Sentinel */
};
/* Initialize this module. */
#define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
PyMODINIT_FUNC
init_sha512(void)
{
PyObject *m;
Py_TYPE(&SHA384type) = &PyType_Type;
if (PyType_Ready(&SHA384type) < 0)
return;
Py_TYPE(&SHA512type) = &PyType_Type;
if (PyType_Ready(&SHA512type) < 0)
return;
m = Py_InitModule("_sha512", SHA_functions);
if (m == NULL)
return;
}
#endif