blob: 304c04212181fed903a806c1b11b43d6820f9394 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2013 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package com.google.protobuf.nano;
import java.io.IOException;
import java.nio.BufferOverflowException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.ReadOnlyBufferException;
/**
* Encodes and writes protocol message fields.
*
* <p>This class contains two kinds of methods: methods that write specific
* protocol message constructs and field types (e.g. {@link #writeTag} and
* {@link #writeInt32}) and methods that write low-level values (e.g.
* {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are
* writing encoded protocol messages, you should use the former methods, but if
* you are writing some other format of your own design, use the latter.
*
* <p>This class is totally unsynchronized.
*
* @author kneton@google.com Kenton Varda
*/
public final class CodedOutputByteBufferNano {
/* max bytes per java UTF-16 char in UTF-8 */
private static final int MAX_UTF8_EXPANSION = 3;
private final ByteBuffer buffer;
private CodedOutputByteBufferNano(final byte[] buffer, final int offset,
final int length) {
this(ByteBuffer.wrap(buffer, offset, length));
}
private CodedOutputByteBufferNano(final ByteBuffer buffer) {
this.buffer = buffer;
this.buffer.order(ByteOrder.LITTLE_ENDIAN);
}
/**
* Create a new {@code CodedOutputStream} that writes directly to the given
* byte array. If more bytes are written than fit in the array,
* {@link OutOfSpaceException} will be thrown. Writing directly to a flat
* array is faster than writing to an {@code OutputStream}.
*/
public static CodedOutputByteBufferNano newInstance(final byte[] flatArray) {
return newInstance(flatArray, 0, flatArray.length);
}
/**
* Create a new {@code CodedOutputStream} that writes directly to the given
* byte array slice. If more bytes are written than fit in the slice,
* {@link OutOfSpaceException} will be thrown. Writing directly to a flat
* array is faster than writing to an {@code OutputStream}.
*/
public static CodedOutputByteBufferNano newInstance(final byte[] flatArray,
final int offset,
final int length) {
return new CodedOutputByteBufferNano(flatArray, offset, length);
}
// -----------------------------------------------------------------
/** Write a {@code double} field, including tag, to the stream. */
public void writeDouble(final int fieldNumber, final double value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64);
writeDoubleNoTag(value);
}
/** Write a {@code float} field, including tag, to the stream. */
public void writeFloat(final int fieldNumber, final float value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32);
writeFloatNoTag(value);
}
/** Write a {@code uint64} field, including tag, to the stream. */
public void writeUInt64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeUInt64NoTag(value);
}
/** Write an {@code int64} field, including tag, to the stream. */
public void writeInt64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeInt64NoTag(value);
}
/** Write an {@code int32} field, including tag, to the stream. */
public void writeInt32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeInt32NoTag(value);
}
/** Write a {@code fixed64} field, including tag, to the stream. */
public void writeFixed64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64);
writeFixed64NoTag(value);
}
/** Write a {@code fixed32} field, including tag, to the stream. */
public void writeFixed32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32);
writeFixed32NoTag(value);
}
/** Write a {@code bool} field, including tag, to the stream. */
public void writeBool(final int fieldNumber, final boolean value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeBoolNoTag(value);
}
/** Write a {@code string} field, including tag, to the stream. */
public void writeString(final int fieldNumber, final String value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
writeStringNoTag(value);
}
/** Write a {@code group} field, including tag, to the stream. */
public void writeGroup(final int fieldNumber, final MessageNano value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_START_GROUP);
writeGroupNoTag(value);
writeTag(fieldNumber, WireFormatNano.WIRETYPE_END_GROUP);
}
/** Write an embedded message field, including tag, to the stream. */
public void writeMessage(final int fieldNumber, final MessageNano value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
writeMessageNoTag(value);
}
/** Write a {@code bytes} field, including tag, to the stream. */
public void writeBytes(final int fieldNumber, final byte[] value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value);
}
/** Write a {@code bytes} field, including tag, to the stream. */
public void writeBytes(final int fieldNumber, final byte[] value,
final int offset, final int length)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value, offset, length);
}
/** Write a {@code uint32} field, including tag, to the stream. */
public void writeUInt32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeUInt32NoTag(value);
}
/**
* Write an enum field, including tag, to the stream. Caller is responsible
* for converting the enum value to its numeric value.
*/
public void writeEnum(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeEnumNoTag(value);
}
/** Write an {@code sfixed32} field, including tag, to the stream. */
public void writeSFixed32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32);
writeSFixed32NoTag(value);
}
/** Write an {@code sfixed64} field, including tag, to the stream. */
public void writeSFixed64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64);
writeSFixed64NoTag(value);
}
/** Write an {@code sint32} field, including tag, to the stream. */
public void writeSInt32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeSInt32NoTag(value);
}
/** Write an {@code sint64} field, including tag, to the stream. */
public void writeSInt64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
writeSInt64NoTag(value);
}
/**
* Write a MessageSet extension field to the stream. For historical reasons,
* the wire format differs from normal fields.
*/
// public void writeMessageSetExtension(final int fieldNumber,
// final MessageMicro value)
// throws IOException {
// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP);
// writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber);
// writeMessage(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP);
// }
/**
* Write an unparsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
// public void writeRawMessageSetExtension(final int fieldNumber,
// final ByteStringMicro value)
// throws IOException {
// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP);
// writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber);
// writeBytes(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP);
// }
// -----------------------------------------------------------------
/** Write a {@code double} field to the stream. */
public void writeDoubleNoTag(final double value) throws IOException {
writeRawLittleEndian64(Double.doubleToLongBits(value));
}
/** Write a {@code float} field to the stream. */
public void writeFloatNoTag(final float value) throws IOException {
writeRawLittleEndian32(Float.floatToIntBits(value));
}
/** Write a {@code uint64} field to the stream. */
public void writeUInt64NoTag(final long value) throws IOException {
writeRawVarint64(value);
}
/** Write an {@code int64} field to the stream. */
public void writeInt64NoTag(final long value) throws IOException {
writeRawVarint64(value);
}
/** Write an {@code int32} field to the stream. */
public void writeInt32NoTag(final int value) throws IOException {
if (value >= 0) {
writeRawVarint32(value);
} else {
// Must sign-extend.
writeRawVarint64(value);
}
}
/** Write a {@code fixed64} field to the stream. */
public void writeFixed64NoTag(final long value) throws IOException {
writeRawLittleEndian64(value);
}
/** Write a {@code fixed32} field to the stream. */
public void writeFixed32NoTag(final int value) throws IOException {
writeRawLittleEndian32(value);
}
/** Write a {@code bool} field to the stream. */
public void writeBoolNoTag(final boolean value) throws IOException {
writeRawByte(value ? 1 : 0);
}
/** Write a {@code string} field to the stream. */
public void writeStringNoTag(final String value) throws IOException {
// UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()),
// and at most 3 times of it. Optimize for the case where we know this length results in a
// constant varint length - saves measuring length of the string.
try {
final int minLengthVarIntSize = computeRawVarint32Size(value.length());
final int maxLengthVarIntSize = computeRawVarint32Size(value.length() * MAX_UTF8_EXPANSION);
if (minLengthVarIntSize == maxLengthVarIntSize) {
int oldPosition = buffer.position();
// Buffer.position, when passed a position that is past its limit, throws
// IllegalArgumentException, and this class is documented to throw
// OutOfSpaceException instead.
if (buffer.remaining() < minLengthVarIntSize) {
throw new OutOfSpaceException(oldPosition + minLengthVarIntSize, buffer.limit());
}
buffer.position(oldPosition + minLengthVarIntSize);
encode(value, buffer);
int newPosition = buffer.position();
buffer.position(oldPosition);
writeRawVarint32(newPosition - oldPosition - minLengthVarIntSize);
buffer.position(newPosition);
} else {
writeRawVarint32(encodedLength(value));
encode(value, buffer);
}
} catch (BufferOverflowException e) {
final OutOfSpaceException outOfSpaceException = new OutOfSpaceException(buffer.position(),
buffer.limit());
outOfSpaceException.initCause(e);
throw outOfSpaceException;
}
}
// These UTF-8 handling methods are copied from Guava's Utf8 class.
/**
* Returns the number of bytes in the UTF-8-encoded form of {@code sequence}. For a string,
* this method is equivalent to {@code string.getBytes(UTF_8).length}, but is more efficient in
* both time and space.
*
* @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired
* surrogates)
*/
private static int encodedLength(CharSequence sequence) {
// Warning to maintainers: this implementation is highly optimized.
int utf16Length = sequence.length();
int utf8Length = utf16Length;
int i = 0;
// This loop optimizes for pure ASCII.
while (i < utf16Length && sequence.charAt(i) < 0x80) {
i++;
}
// This loop optimizes for chars less than 0x800.
for (; i < utf16Length; i++) {
char c = sequence.charAt(i);
if (c < 0x800) {
utf8Length += ((0x7f - c) >>> 31); // branch free!
} else {
utf8Length += encodedLengthGeneral(sequence, i);
break;
}
}
if (utf8Length < utf16Length) {
// Necessary and sufficient condition for overflow because of maximum 3x expansion
throw new IllegalArgumentException("UTF-8 length does not fit in int: "
+ (utf8Length + (1L << 32)));
}
return utf8Length;
}
private static int encodedLengthGeneral(CharSequence sequence, int start) {
int utf16Length = sequence.length();
int utf8Length = 0;
for (int i = start; i < utf16Length; i++) {
char c = sequence.charAt(i);
if (c < 0x800) {
utf8Length += (0x7f - c) >>> 31; // branch free!
} else {
utf8Length += 2;
// jdk7+: if (Character.isSurrogate(c)) {
if (Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE) {
// Check that we have a well-formed surrogate pair.
int cp = Character.codePointAt(sequence, i);
if (cp < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
throw new IllegalArgumentException("Unpaired surrogate at index " + i);
}
i++;
}
}
}
return utf8Length;
}
/**
* Encodes {@code sequence} into UTF-8, in {@code byteBuffer}. For a string, this method is
* equivalent to {@code buffer.put(string.getBytes(UTF_8))}, but is more efficient in both time
* and space. Bytes are written starting at the current position. This method requires paired
* surrogates, and therefore does not support chunking.
*
* <p>To ensure sufficient space in the output buffer, either call {@link #encodedLength} to
* compute the exact amount needed, or leave room for {@code 3 * sequence.length()}, which is the
* largest possible number of bytes that any input can be encoded to.
*
* @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired
* surrogates)
* @throws BufferOverflowException if {@code sequence} encoded in UTF-8 does not fit in
* {@code byteBuffer}'s remaining space.
* @throws ReadOnlyBufferException if {@code byteBuffer} is a read-only buffer.
*/
private static void encode(CharSequence sequence, ByteBuffer byteBuffer) {
if (byteBuffer.isReadOnly()) {
throw new ReadOnlyBufferException();
} else if (byteBuffer.hasArray()) {
try {
int encoded = encode(sequence,
byteBuffer.array(),
byteBuffer.arrayOffset() + byteBuffer.position(),
byteBuffer.remaining());
byteBuffer.position(encoded - byteBuffer.arrayOffset());
} catch (ArrayIndexOutOfBoundsException e) {
BufferOverflowException boe = new BufferOverflowException();
boe.initCause(e);
throw boe;
}
} else {
encodeDirect(sequence, byteBuffer);
}
}
private static void encodeDirect(CharSequence sequence, ByteBuffer byteBuffer) {
int utf16Length = sequence.length();
for (int i = 0; i < utf16Length; i++) {
final char c = sequence.charAt(i);
if (c < 0x80) { // ASCII
byteBuffer.put((byte) c);
} else if (c < 0x800) { // 11 bits, two UTF-8 bytes
byteBuffer.put((byte) ((0xF << 6) | (c >>> 6)));
byteBuffer.put((byte) (0x80 | (0x3F & c)));
} else if (c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) {
// Maximium single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes
byteBuffer.put((byte) ((0xF << 5) | (c >>> 12)));
byteBuffer.put((byte) (0x80 | (0x3F & (c >>> 6))));
byteBuffer.put((byte) (0x80 | (0x3F & c)));
} else {
final char low;
if (i + 1 == sequence.length()
|| !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) {
throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1));
}
int codePoint = Character.toCodePoint(c, low);
byteBuffer.put((byte) ((0xF << 4) | (codePoint >>> 18)));
byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 12))));
byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 6))));
byteBuffer.put((byte) (0x80 | (0x3F & codePoint)));
}
}
}
private static int encode(CharSequence sequence, byte[] bytes, int offset, int length) {
int utf16Length = sequence.length();
int j = offset;
int i = 0;
int limit = offset + length;
// Designed to take advantage of
// https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination
for (char c; i < utf16Length && i + j < limit && (c = sequence.charAt(i)) < 0x80; i++) {
bytes[j + i] = (byte) c;
}
if (i == utf16Length) {
return j + utf16Length;
}
j += i;
for (char c; i < utf16Length; i++) {
c = sequence.charAt(i);
if (c < 0x80 && j < limit) {
bytes[j++] = (byte) c;
} else if (c < 0x800 && j <= limit - 2) { // 11 bits, two UTF-8 bytes
bytes[j++] = (byte) ((0xF << 6) | (c >>> 6));
bytes[j++] = (byte) (0x80 | (0x3F & c));
} else if ((c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) && j <= limit - 3) {
// Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes
bytes[j++] = (byte) ((0xF << 5) | (c >>> 12));
bytes[j++] = (byte) (0x80 | (0x3F & (c >>> 6)));
bytes[j++] = (byte) (0x80 | (0x3F & c));
} else if (j <= limit - 4) {
// Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8 bytes
final char low;
if (i + 1 == sequence.length()
|| !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) {
throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1));
}
int codePoint = Character.toCodePoint(c, low);
bytes[j++] = (byte) ((0xF << 4) | (codePoint >>> 18));
bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 12)));
bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 6)));
bytes[j++] = (byte) (0x80 | (0x3F & codePoint));
} else {
throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + j);
}
}
return j;
}
// End guava UTF-8 methods
/** Write a {@code group} field to the stream. */
public void writeGroupNoTag(final MessageNano value) throws IOException {
value.writeTo(this);
}
/** Write an embedded message field to the stream. */
public void writeMessageNoTag(final MessageNano value) throws IOException {
writeRawVarint32(value.getCachedSize());
value.writeTo(this);
}
/** Write a {@code bytes} field to the stream. */
public void writeBytesNoTag(final byte[] value) throws IOException {
writeRawVarint32(value.length);
writeRawBytes(value);
}
/** Write a {@code bytes} field to the stream. */
public void writeBytesNoTag(final byte[] value, final int offset, final int length)
throws IOException {
writeRawVarint32(length);
writeRawBytes(value, offset, length);
}
/** Write a {@code uint32} field to the stream. */
public void writeUInt32NoTag(final int value) throws IOException {
writeRawVarint32(value);
}
/**
* Write an enum field to the stream. Caller is responsible
* for converting the enum value to its numeric value.
*/
public void writeEnumNoTag(final int value) throws IOException {
writeRawVarint32(value);
}
/** Write an {@code sfixed32} field to the stream. */
public void writeSFixed32NoTag(final int value) throws IOException {
writeRawLittleEndian32(value);
}
/** Write an {@code sfixed64} field to the stream. */
public void writeSFixed64NoTag(final long value) throws IOException {
writeRawLittleEndian64(value);
}
/** Write an {@code sint32} field to the stream. */
public void writeSInt32NoTag(final int value) throws IOException {
writeRawVarint32(encodeZigZag32(value));
}
/** Write an {@code sint64} field to the stream. */
public void writeSInt64NoTag(final long value) throws IOException {
writeRawVarint64(encodeZigZag64(value));
}
// =================================================================
/**
* Compute the number of bytes that would be needed to encode a
* {@code double} field, including tag.
*/
public static int computeDoubleSize(final int fieldNumber,
final double value) {
return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code float} field, including tag.
*/
public static int computeFloatSize(final int fieldNumber, final float value) {
return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint64} field, including tag.
*/
public static int computeUInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int64} field, including tag.
*/
public static int computeInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int32} field, including tag.
*/
public static int computeInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed64} field, including tag.
*/
public static int computeFixed64Size(final int fieldNumber,
final long value) {
return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed32} field, including tag.
*/
public static int computeFixed32Size(final int fieldNumber,
final int value) {
return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bool} field, including tag.
*/
public static int computeBoolSize(final int fieldNumber,
final boolean value) {
return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code string} field, including tag.
*/
public static int computeStringSize(final int fieldNumber,
final String value) {
return computeTagSize(fieldNumber) + computeStringSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field, including tag.
*/
public static int computeGroupSize(final int fieldNumber,
final MessageNano value) {
return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* embedded message field, including tag.
*/
public static int computeMessageSize(final int fieldNumber,
final MessageNano value) {
return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field, including tag.
*/
public static int computeBytesSize(final int fieldNumber,
final byte[] value) {
return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field of the given length, including tag.
*/
public static int computeBytesSize(final int fieldNumber,
final int length) {
return computeTagSize(fieldNumber) + computeBytesSizeNoTag(length);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint32} field, including tag.
*/
public static int computeUInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* enum field, including tag. Caller is responsible for converting the
* enum value to its numeric value.
*/
public static int computeEnumSize(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed32} field, including tag.
*/
public static int computeSFixed32Size(final int fieldNumber,
final int value) {
return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed64} field, including tag.
*/
public static int computeSFixed64Size(final int fieldNumber,
final long value) {
return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint32} field, including tag.
*/
public static int computeSInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint64} field, including tag.
*/
public static int computeSInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* MessageSet extension to the stream. For historical reasons,
* the wire format differs from normal fields.
*/
// public static int computeMessageSetExtensionSize(
// final int fieldNumber, final MessageMicro value) {
// return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 +
// computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) +
// computeMessageSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
// }
/**
* Compute the number of bytes that would be needed to encode an
* unparsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
// public static int computeRawMessageSetExtensionSize(
// final int fieldNumber, final ByteStringMicro value) {
// return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 +
// computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) +
// computeBytesSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
// }
// -----------------------------------------------------------------
/**
* Compute the number of bytes that would be needed to encode a
* {@code double} field, including tag.
*/
public static int computeDoubleSizeNoTag(final double value) {
return LITTLE_ENDIAN_64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code float} field, including tag.
*/
public static int computeFloatSizeNoTag(final float value) {
return LITTLE_ENDIAN_32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint64} field, including tag.
*/
public static int computeUInt64SizeNoTag(final long value) {
return computeRawVarint64Size(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int64} field, including tag.
*/
public static int computeInt64SizeNoTag(final long value) {
return computeRawVarint64Size(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int32} field, including tag.
*/
public static int computeInt32SizeNoTag(final int value) {
if (value >= 0) {
return computeRawVarint32Size(value);
} else {
// Must sign-extend.
return 10;
}
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed64} field.
*/
public static int computeFixed64SizeNoTag(final long value) {
return LITTLE_ENDIAN_64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed32} field.
*/
public static int computeFixed32SizeNoTag(final int value) {
return LITTLE_ENDIAN_32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bool} field.
*/
public static int computeBoolSizeNoTag(final boolean value) {
return 1;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code string} field.
*/
public static int computeStringSizeNoTag(final String value) {
final int length = encodedLength(value);
return computeRawVarint32Size(length) + length;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field.
*/
public static int computeGroupSizeNoTag(final MessageNano value) {
return value.getSerializedSize();
}
/**
* Compute the number of bytes that would be needed to encode an embedded
* message field.
*/
public static int computeMessageSizeNoTag(final MessageNano value) {
final int size = value.getSerializedSize();
return computeRawVarint32Size(size) + size;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field.
*/
public static int computeBytesSizeNoTag(final byte[] value) {
return computeRawVarint32Size(value.length) + value.length;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field of the given length.
*/
public static int computeBytesSizeNoTag(final int length) {
return computeRawVarint32Size(length) + length;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint32} field.
*/
public static int computeUInt32SizeNoTag(final int value) {
return computeRawVarint32Size(value);
}
/**
* Compute the number of bytes that would be needed to encode an enum field.
* Caller is responsible for converting the enum value to its numeric value.
*/
public static int computeEnumSizeNoTag(final int value) {
return computeRawVarint32Size(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed32} field.
*/
public static int computeSFixed32SizeNoTag(final int value) {
return LITTLE_ENDIAN_32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed64} field.
*/
public static int computeSFixed64SizeNoTag(final long value) {
return LITTLE_ENDIAN_64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint32} field.
*/
public static int computeSInt32SizeNoTag(final int value) {
return computeRawVarint32Size(encodeZigZag32(value));
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint64} field.
*/
public static int computeSInt64SizeNoTag(final long value) {
return computeRawVarint64Size(encodeZigZag64(value));
}
// =================================================================
/**
* If writing to a flat array, return the space left in the array.
* Otherwise, throws {@code UnsupportedOperationException}.
*/
public int spaceLeft() {
return buffer.remaining();
}
/**
* Verifies that {@link #spaceLeft()} returns zero. It's common to create
* a byte array that is exactly big enough to hold a message, then write to
* it with a {@code CodedOutputStream}. Calling {@code checkNoSpaceLeft()}
* after writing verifies that the message was actually as big as expected,
* which can help catch bugs.
*/
public void checkNoSpaceLeft() {
if (spaceLeft() != 0) {
throw new IllegalStateException(
"Did not write as much data as expected.");
}
}
/**
* Returns the position within the internal buffer.
*/
public int position() {
return buffer.position();
}
/**
* Resets the position within the internal buffer to zero.
*
* @see #position
* @see #spaceLeft
*/
public void reset() {
buffer.clear();
}
/**
* If you create a CodedOutputStream around a simple flat array, you must
* not attempt to write more bytes than the array has space. Otherwise,
* this exception will be thrown.
*/
public static class OutOfSpaceException extends IOException {
private static final long serialVersionUID = -6947486886997889499L;
OutOfSpaceException(int position, int limit) {
super("CodedOutputStream was writing to a flat byte array and ran " +
"out of space (pos " + position + " limit " + limit + ").");
}
}
/** Write a single byte. */
public void writeRawByte(final byte value) throws IOException {
if (!buffer.hasRemaining()) {
// We're writing to a single buffer.
throw new OutOfSpaceException(buffer.position(), buffer.limit());
}
buffer.put(value);
}
/** Write a single byte, represented by an integer value. */
public void writeRawByte(final int value) throws IOException {
writeRawByte((byte) value);
}
/** Write an array of bytes. */
public void writeRawBytes(final byte[] value) throws IOException {
writeRawBytes(value, 0, value.length);
}
/** Write part of an array of bytes. */
public void writeRawBytes(final byte[] value, int offset, int length)
throws IOException {
if (buffer.remaining() >= length) {
buffer.put(value, offset, length);
} else {
// We're writing to a single buffer.
throw new OutOfSpaceException(buffer.position(), buffer.limit());
}
}
/** Encode and write a tag. */
public void writeTag(final int fieldNumber, final int wireType)
throws IOException {
writeRawVarint32(WireFormatNano.makeTag(fieldNumber, wireType));
}
/** Compute the number of bytes that would be needed to encode a tag. */
public static int computeTagSize(final int fieldNumber) {
return computeRawVarint32Size(WireFormatNano.makeTag(fieldNumber, 0));
}
/**
* Encode and write a varint. {@code value} is treated as
* unsigned, so it won't be sign-extended if negative.
*/
public void writeRawVarint32(int value) throws IOException {
while (true) {
if ((value & ~0x7F) == 0) {
writeRawByte(value);
return;
} else {
writeRawByte((value & 0x7F) | 0x80);
value >>>= 7;
}
}
}
/**
* Compute the number of bytes that would be needed to encode a varint.
* {@code value} is treated as unsigned, so it won't be sign-extended if
* negative.
*/
public static int computeRawVarint32Size(final int value) {
if ((value & (0xffffffff << 7)) == 0) return 1;
if ((value & (0xffffffff << 14)) == 0) return 2;
if ((value & (0xffffffff << 21)) == 0) return 3;
if ((value & (0xffffffff << 28)) == 0) return 4;
return 5;
}
/** Encode and write a varint. */
public void writeRawVarint64(long value) throws IOException {
while (true) {
if ((value & ~0x7FL) == 0) {
writeRawByte((int)value);
return;
} else {
writeRawByte(((int)value & 0x7F) | 0x80);
value >>>= 7;
}
}
}
/** Compute the number of bytes that would be needed to encode a varint. */
public static int computeRawVarint64Size(final long value) {
if ((value & (0xffffffffffffffffL << 7)) == 0) return 1;
if ((value & (0xffffffffffffffffL << 14)) == 0) return 2;
if ((value & (0xffffffffffffffffL << 21)) == 0) return 3;
if ((value & (0xffffffffffffffffL << 28)) == 0) return 4;
if ((value & (0xffffffffffffffffL << 35)) == 0) return 5;
if ((value & (0xffffffffffffffffL << 42)) == 0) return 6;
if ((value & (0xffffffffffffffffL << 49)) == 0) return 7;
if ((value & (0xffffffffffffffffL << 56)) == 0) return 8;
if ((value & (0xffffffffffffffffL << 63)) == 0) return 9;
return 10;
}
/** Write a little-endian 32-bit integer. */
public void writeRawLittleEndian32(final int value) throws IOException {
if (buffer.remaining() < 4) {
throw new OutOfSpaceException(buffer.position(), buffer.limit());
}
buffer.putInt(value);
}
public static final int LITTLE_ENDIAN_32_SIZE = 4;
/** Write a little-endian 64-bit integer. */
public void writeRawLittleEndian64(final long value) throws IOException {
if (buffer.remaining() < 8) {
throw new OutOfSpaceException(buffer.position(), buffer.limit());
}
buffer.putLong(value);
}
public static final int LITTLE_ENDIAN_64_SIZE = 8;
/**
* Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers
* into values that can be efficiently encoded with varint. (Otherwise,
* negative values must be sign-extended to 64 bits to be varint encoded,
* thus always taking 10 bytes on the wire.)
*
* @param n A signed 32-bit integer.
* @return An unsigned 32-bit integer, stored in a signed int because
* Java has no explicit unsigned support.
*/
public static int encodeZigZag32(final int n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 31);
}
/**
* Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers
* into values that can be efficiently encoded with varint. (Otherwise,
* negative values must be sign-extended to 64 bits to be varint encoded,
* thus always taking 10 bytes on the wire.)
*
* @param n A signed 64-bit integer.
* @return An unsigned 64-bit integer, stored in a signed int because
* Java has no explicit unsigned support.
*/
public static long encodeZigZag64(final long n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 63);
}
}