blob: 1ff359e0d62c2fa99ee1905efa1f9ffdc14ac51e [file] [log] [blame]
/*
Copyright (c) 2013 Julien Pommier.
Small test & bench for PFFFT, comparing its performance with the scalar FFTPACK, FFTW, and Apple vDSP
How to build:
on linux, with fftw3:
gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm
on macos, without fftw3:
clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -framework Accelerate
on macos, with fftw3:
clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework Accelerate
as alternative: replace clang by gcc.
on windows, with visual c++:
cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c
build without SIMD instructions:
gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c fftpack.c -lm
*/
#include "pffft.h"
#include "fftpack.h"
#ifdef HAVE_GREEN_FFTS
#include "fftext.h"
#endif
#ifdef HAVE_KISS_FFT
#include <kiss_fft.h>
#include <kiss_fftr.h>
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <assert.h>
#include <string.h>
#ifdef HAVE_SYS_TIMES
# include <sys/times.h>
# include <unistd.h>
#endif
#ifdef HAVE_VECLIB
# include <Accelerate/Accelerate.h>
#endif
#ifdef HAVE_FFTW
# include <fftw3.h>
#endif
#define NUM_FFT_ALGOS 8
enum {
ALGO_FFTPACK = 0,
ALGO_VECLIB,
ALGO_FFTW_ESTIM,
ALGO_FFTW_AUTO,
ALGO_GREEN,
ALGO_KISS,
ALGO_PFFFT_U, /* = 6 */
ALGO_PFFFT_O /* = 7 */
};
#define NUM_TYPES 7
enum {
TYPE_PREP = 0, /* time for preparation in ms */
TYPE_DUR_NS = 1, /* time per fft in ns */
TYPE_DUR_FASTEST = 2, /* relative time to fastest */
TYPE_REL_PFFFT = 3, /* relative time to ALGO_PFFFT */
TYPE_ITER = 4, /* # of iterations in measurement */
TYPE_MFLOPS = 5, /* MFlops/sec */
TYPE_DUR_TOT = 6 /* test duration in sec */
};
// double tmeas[NUM_TYPES][NUM_FFT_ALGOS];
const char * algoName[NUM_FFT_ALGOS] = {
"FFTPack ",
"vDSP (vec) ",
"FFTW(estim) ",
"FFTW (auto) ",
"Green ",
"Kiss ",
"PFFFT-U(simd)", /* unordered */
"PFFFT (simd) " /* ordered */
};
int compiledInAlgo[NUM_FFT_ALGOS] = {
1, /* "FFTPack " */
#ifdef HAVE_VECLIB
1, /* "vDSP (vec) " */
#else
0,
#endif
#ifdef HAVE_FFTW
1, /* "FFTW(estim)" */
1, /* "FFTW (auto)" */
#else
0, 0,
#endif
#ifdef HAVE_GREEN_FFTS
1, /* "Green " */
#else
0,
#endif
#ifdef HAVE_KISS_FFT
1, /* "Kiss " */
#else
0,
#endif
1, /* "PFFFT_U " */
1 /* "PFFFT_O " */
};
const char * algoTableHeader[NUM_FFT_ALGOS][2] = {
{ "| real FFTPack ", "| cplx FFTPack " },
{ "| real vDSP ", "| cplx vDSP " },
{ "|real FFTWestim", "|cplx FFTWestim" },
{ "|real FFTWauto ", "|cplx FFTWauto " },
{ "| real Green ", "| cplx Green " },
{ "| real Kiss ", "| cplx Kiss " },
{ "| real PFFFT-U ", "| cplx PFFFT-U " },
{ "| real PFFFT ", "| cplx PFFFT " } };
const char * typeText[NUM_TYPES] = {
"preparation in ms",
"time per fft in ns",
"relative to fastest",
"relative to pffft",
"measured_num_iters",
"mflops",
"test duration in sec"
};
const char * typeFilenamePart[NUM_TYPES] = {
"1-preparation-in-ms",
"2-timePerFft-in-ns",
"3-rel-fastest",
"4-rel-pffft",
"5-num-iter",
"6-mflops",
"7-duration-in-sec"
};
#define SAVE_ALL_TYPES 0
const int saveType[NUM_TYPES] = {
1, /* "1-preparation-in-ms" */
0, /* "2-timePerFft-in-ns" */
0, /* "3-rel-fastest" */
1, /* "4-rel-pffft" */
1, /* "5-num-iter" */
1, /* "6-mflops" */
1, /* "7-duration-in-sec" */
};
#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)<(y)?(x):(y))
unsigned Log2(unsigned v) {
/* we don't need speed records .. obvious way is good enough */
/* https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious */
/* Find the log base 2 of an integer with the MSB N set in O(N) operations (the obvious way):
* unsigned v: 32-bit word to find the log base 2 of */
unsigned r = 0; /* r will be lg(v) */
while (v >>= 1)
{
r++;
}
return r;
}
double frand() {
return rand()/(double)RAND_MAX;
}
#if defined(HAVE_SYS_TIMES)
inline double uclock_sec(void) {
static double ttclk = 0.;
struct tms t;
if (ttclk == 0.)
ttclk = sysconf(_SC_CLK_TCK);
times(&t);
/* use only the user time of this process - not realtime, which depends on OS-scheduler .. */
return ((double)t.tms_utime)) / ttclk;
}
# else
double uclock_sec(void)
{ return (double)clock()/(double)CLOCKS_PER_SEC; }
#endif
/* compare results with the regular fftpack */
void pffft_validate_N(int N, int cplx) {
int Nfloat = N*(cplx?2:1);
int Nbytes = Nfloat * sizeof(float);
float *ref, *in, *out, *tmp, *tmp2;
PFFFT_Setup *s = pffft_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL);
int pass;
if (!s) { printf("Skipping N=%d, not supported\n", N); return; }
ref = pffft_aligned_malloc(Nbytes);
in = pffft_aligned_malloc(Nbytes);
out = pffft_aligned_malloc(Nbytes);
tmp = pffft_aligned_malloc(Nbytes);
tmp2 = pffft_aligned_malloc(Nbytes);
for (pass=0; pass < 2; ++pass) {
float ref_max = 0;
int k;
//printf("N=%d pass=%d cplx=%d\n", N, pass, cplx);
// compute reference solution with FFTPACK
if (pass == 0) {
float *wrk = malloc(2*Nbytes+15*sizeof(float));
for (k=0; k < Nfloat; ++k) {
ref[k] = in[k] = frand()*2-1;
out[k] = 1e30;
}
if (!cplx) {
rffti(N, wrk);
rfftf(N, ref, wrk);
// use our ordering for real ffts instead of the one of fftpack
{
float refN=ref[N-1];
for (k=N-2; k >= 1; --k) ref[k+1] = ref[k];
ref[1] = refN;
}
} else {
cffti(N, wrk);
cfftf(N, ref, wrk);
}
free(wrk);
}
for (k = 0; k < Nfloat; ++k) ref_max = MAX(ref_max, fabs(ref[k]));
// pass 0 : non canonical ordering of transform coefficients
if (pass == 0) {
// test forward transform, with different input / output
pffft_transform(s, in, tmp, 0, PFFFT_FORWARD);
memcpy(tmp2, tmp, Nbytes);
memcpy(tmp, in, Nbytes);
pffft_transform(s, tmp, tmp, 0, PFFFT_FORWARD);
for (k = 0; k < Nfloat; ++k) {
assert(tmp2[k] == tmp[k]);
}
// test reordering
pffft_zreorder(s, tmp, out, PFFFT_FORWARD);
pffft_zreorder(s, out, tmp, PFFFT_BACKWARD);
for (k = 0; k < Nfloat; ++k) {
assert(tmp2[k] == tmp[k]);
}
pffft_zreorder(s, tmp, out, PFFFT_FORWARD);
} else {
// pass 1 : canonical ordering of transform coeffs.
pffft_transform_ordered(s, in, tmp, 0, PFFFT_FORWARD);
memcpy(tmp2, tmp, Nbytes);
memcpy(tmp, in, Nbytes);
pffft_transform_ordered(s, tmp, tmp, 0, PFFFT_FORWARD);
for (k = 0; k < Nfloat; ++k) {
assert(tmp2[k] == tmp[k]);
}
memcpy(out, tmp, Nbytes);
}
{
for (k=0; k < Nfloat; ++k) {
if (!(fabs(ref[k] - out[k]) < 1e-3*ref_max)) {
printf("%s forward PFFFT mismatch found for N=%d\n", (cplx?"CPLX":"REAL"), N);
exit(1);
}
}
if (pass == 0) pffft_transform(s, tmp, out, 0, PFFFT_BACKWARD);
else pffft_transform_ordered(s, tmp, out, 0, PFFFT_BACKWARD);
memcpy(tmp2, out, Nbytes);
memcpy(out, tmp, Nbytes);
if (pass == 0) pffft_transform(s, out, out, 0, PFFFT_BACKWARD);
else pffft_transform_ordered(s, out, out, 0, PFFFT_BACKWARD);
for (k = 0; k < Nfloat; ++k) {
assert(tmp2[k] == out[k]);
out[k] *= 1.f/N;
}
for (k = 0; k < Nfloat; ++k) {
if (fabs(in[k] - out[k]) > 1e-3 * ref_max) {
printf("pass=%d, %s IFFFT does not match for N=%d\n", pass, (cplx?"CPLX":"REAL"), N); break;
exit(1);
}
}
}
// quick test of the circular convolution in fft domain
{
float conv_err = 0, conv_max = 0;
pffft_zreorder(s, ref, tmp, PFFFT_FORWARD);
memset(out, 0, Nbytes);
pffft_zconvolve_accumulate(s, ref, ref, out, 1.0);
pffft_zreorder(s, out, tmp2, PFFFT_FORWARD);
for (k=0; k < Nfloat; k += 2) {
float ar = tmp[k], ai=tmp[k+1];
if (cplx || k > 0) {
tmp[k] = ar*ar - ai*ai;
tmp[k+1] = 2*ar*ai;
} else {
tmp[0] = ar*ar;
tmp[1] = ai*ai;
}
}
for (k=0; k < Nfloat; ++k) {
float d = fabs(tmp[k] - tmp2[k]), e = fabs(tmp[k]);
if (d > conv_err) conv_err = d;
if (e > conv_max) conv_max = e;
}
if (conv_err > 1e-5*conv_max) {
printf("zconvolve error ? %g %g\n", conv_err, conv_max); exit(1);
}
}
}
printf("%s PFFFT is OK for N=%d\n", (cplx?"CPLX":"REAL"), N); fflush(stdout);
pffft_destroy_setup(s);
pffft_aligned_free(ref);
pffft_aligned_free(in);
pffft_aligned_free(out);
pffft_aligned_free(tmp);
pffft_aligned_free(tmp2);
}
void pffft_validate(int cplx) {
static int Ntest[] = { 16, 32, 64, 96, 128, 160, 192, 256, 288, 384, 5*96, 512, 576, 5*128, 800, 864, 1024, 2048, 2592, 4000, 4096, 12000, 36864, 0};
int k;
for (k = 0; Ntest[k]; ++k) {
int N = Ntest[k];
if (N == 16 && !cplx) continue;
pffft_validate_N(N, cplx);
}
}
int array_output_format = 1;
void print_table(const char *txt, FILE *tableFile) {
fprintf(stdout, "%s", txt);
if (tableFile && tableFile != stdout)
fprintf(tableFile, "%s", txt);
}
void print_table_flops(float mflops, FILE *tableFile) {
fprintf(stdout, "|%11.0f ", mflops);
if (tableFile && tableFile != stdout)
fprintf(tableFile, "|%11.0f ", mflops);
}
void print_table_fftsize(int N, FILE *tableFile) {
fprintf(stdout, "|%9d ", N);
if (tableFile && tableFile != stdout)
fprintf(tableFile, "|%9d ", N);
}
double show_output(const char *name, int N, int cplx, float flops, float t0, float t1, int max_iter, FILE *tableFile) {
double T = (double)(t1-t0)/2/max_iter * 1e9;
float mflops = flops/1e6/(t1 - t0 + 1e-16);
if (array_output_format) {
if (flops != -1)
print_table_flops(mflops, tableFile);
else
print_table("| n/a ", tableFile);
} else {
if (flops != -1) {
printf("N=%5d, %s %16s : %6.0f MFlops [t=%6.0f ns, %d runs]\n", N, (cplx?"CPLX":"REAL"), name, mflops, (t1-t0)/2/max_iter * 1e9, max_iter);
}
}
fflush(stdout);
return T;
}
void test_pffft_mem_align()
{
int N, k;
for ( N = 1; N < 4096; ++N ) {
float * p0 = pffft_aligned_malloc( N * sizeof(float) );
float * p = p0; /* pffft_aligned_addr(p0); */
for ( k = 0; k < N; ++k )
p[k] = k;
pffft_aligned_free(p0);
}
}
double cal_benchmark(int N, int cplx) {
const int log2N = Log2(N);
int Nfloat = (cplx ? N*2 : N);
int Nbytes = Nfloat * sizeof(float);
float *X = pffft_aligned_malloc(Nbytes), *Y = pffft_aligned_malloc(Nbytes), *Z = pffft_aligned_malloc(Nbytes);
double t0, t1, tstop, T, nI;
int k, iter;
assert( pffft_is_power_of_two(N) );
for (k = 0; k < Nfloat; ++k) {
X[k] = sqrtf(k+1);
}
/* PFFFT-U (unordered) benchmark */
PFFFT_Setup *s = pffft_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL);
assert(s);
iter = 0;
t0 = uclock_sec();
tstop = t0 + 0.25; /* benchmark duration: 250 ms */
do {
for ( k = 0; k < 512; ++k ) {
pffft_transform(s, X, Z, Y, PFFFT_FORWARD);
pffft_transform(s, X, Z, Y, PFFFT_BACKWARD);
++iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
pffft_destroy_setup(s);
pffft_aligned_free(X);
pffft_aligned_free(Y);
pffft_aligned_free(Z);
T = ( t1 - t0 ); /* duration per fft() */
nI = ((double)iter) * ( log2N * N ); /* number of iterations "normalized" to O(N) = N*log2(N) */
return (nI / T); /* normalized iterations per second */
}
void benchmark_ffts(int N, int cplx, int withFFTWfullMeas, double iterCal, double tmeas[NUM_TYPES][NUM_FFT_ALGOS], int haveAlgo[NUM_FFT_ALGOS], FILE *tableFile ) {
const int log2N = Log2(N);
int nextPow2N = pffft_next_power_of_two(N);
int log2NextN = Log2(nextPow2N);
#ifdef PFFFT_SIMD_DISABLE
int pffftPow2N = N;
#else
int pffftPow2N = ( cplx ? ( MAX(N, 16) ) : ( MAX(N, 32) ) );
#endif
int Nfloat = (cplx ? MAX(nextPow2N, pffftPow2N)*2 : MAX(nextPow2N, pffftPow2N));
int Nmax, k, iter;
int Nbytes = Nfloat * sizeof(float);
float *X = pffft_aligned_malloc(Nbytes + sizeof(float)), *Y = pffft_aligned_malloc(Nbytes + 2*sizeof(float) ), *Z = pffft_aligned_malloc(Nbytes);
double te, t0, t1, tstop, flops, Tfastest;
const double max_test_duration = 0.150; /* test duration 150 ms */
double numIter = max_test_duration * iterCal / ( log2N * N ); /* number of iteration for max_test_duration */
const int step_iter = MAX(1, ((int)(0.01 * numIter)) ); /* one hundredth */
int max_iter = MAX(1, ((int)numIter) ); /* minimum 1 iteration */
const float checkVal = 12345.0F;
/* printf("benchmark_ffts(N = %d, cplx = %d): Nfloat = %d, X_mem = 0x%p, X = %p\n", N, cplx, Nfloat, X_mem, X); */
memset( X, 0, Nfloat * sizeof(float) );
if ( Nfloat < 32 ) {
for (k = 0; k < Nfloat; k += 4)
X[k] = sqrtf(k+1);
} else {
for (k = 0; k < Nfloat; k += (Nfloat/16) )
X[k] = sqrtf(k+1);
}
for ( k = 0; k < NUM_TYPES; ++k )
{
for ( iter = 0; iter < NUM_FFT_ALGOS; ++iter )
tmeas[k][iter] = 0.0;
}
// FFTPack benchmark
Nmax = (cplx ? N*2 : N);
X[Nmax] = checkVal;
{
float *wrk = malloc(2*Nbytes + 15*sizeof(float));
te = uclock_sec();
if (cplx) cffti(N, wrk);
else rffti(N, wrk);
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
if (cplx) {
assert( X[Nmax] == checkVal );
cfftf(N, X, wrk);
assert( X[Nmax] == checkVal );
cfftb(N, X, wrk);
assert( X[Nmax] == checkVal );
} else {
assert( X[Nmax] == checkVal );
rfftf(N, X, wrk);
assert( X[Nmax] == checkVal );
rfftb(N, X, wrk);
assert( X[Nmax] == checkVal );
}
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
free(wrk);
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_FFTPACK] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_FFTPACK] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_FFTPACK] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_FFTPACK] = show_output("FFTPack", N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_FFTPACK] = (t0 - te) * 1e3;
haveAlgo[ALGO_FFTPACK] = 1;
}
#ifdef HAVE_VECLIB
Nmax = (cplx ? nextPow2N*2 : nextPow2N);
X[Nmax] = checkVal;
te = uclock_sec();
if ( 1 || pffft_is_power_of_two(N) ) {
FFTSetup setup;
setup = vDSP_create_fftsetup(log2NextN, FFT_RADIX2);
DSPSplitComplex zsamples;
zsamples.realp = &X[0];
zsamples.imagp = &X[Nfloat/2];
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
if (cplx) {
assert( X[Nmax] == checkVal );
vDSP_fft_zip(setup, &zsamples, 1, log2NextN, kFFTDirection_Forward);
assert( X[Nmax] == checkVal );
vDSP_fft_zip(setup, &zsamples, 1, log2NextN, kFFTDirection_Inverse);
assert( X[Nmax] == checkVal );
} else {
assert( X[Nmax] == checkVal );
vDSP_fft_zrip(setup, &zsamples, 1, log2NextN, kFFTDirection_Forward);
assert( X[Nmax] == checkVal );
vDSP_fft_zrip(setup, &zsamples, 1, log2NextN, kFFTDirection_Inverse);
assert( X[Nmax] == checkVal );
}
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
vDSP_destroy_fftsetup(setup);
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_VECLIB] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_VECLIB] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_VECLIB] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_VECLIB] = show_output("vDSP", N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_VECLIB] = (t0 - te) * 1e3;
haveAlgo[ALGO_VECLIB] = 1;
} else {
show_output("vDSP", N, cplx, -1, -1, -1, -1, tableFile);
}
#endif
#ifdef HAVE_FFTW
Nmax = (cplx ? N*2 : N);
X[Nmax] = checkVal;
{
/* int flags = (N <= (256*1024) ? FFTW_MEASURE : FFTW_ESTIMATE); measure takes a lot of time on largest ffts */
int flags = FFTW_ESTIMATE;
te = uclock_sec();
fftwf_plan planf, planb;
fftw_complex *in = (fftw_complex*) fftwf_malloc(sizeof(fftw_complex) * N);
fftw_complex *out = (fftw_complex*) fftwf_malloc(sizeof(fftw_complex) * N);
memset(in, 0, sizeof(fftw_complex) * N);
if (cplx) {
planf = fftwf_plan_dft_1d(N, (fftwf_complex*)in, (fftwf_complex*)out, FFTW_FORWARD, flags);
planb = fftwf_plan_dft_1d(N, (fftwf_complex*)in, (fftwf_complex*)out, FFTW_BACKWARD, flags);
} else {
planf = fftwf_plan_dft_r2c_1d(N, (float*)in, (fftwf_complex*)out, flags);
planb = fftwf_plan_dft_c2r_1d(N, (fftwf_complex*)in, (float*)out, flags);
}
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
assert( X[Nmax] == checkVal );
fftwf_execute(planf);
assert( X[Nmax] == checkVal );
fftwf_execute(planb);
assert( X[Nmax] == checkVal );
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
fftwf_destroy_plan(planf);
fftwf_destroy_plan(planb);
fftwf_free(in); fftwf_free(out);
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_FFTW_ESTIM] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_FFTW_ESTIM] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_FFTW_ESTIM] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_FFTW_ESTIM] = show_output((flags == FFTW_MEASURE ? algoName[ALGO_FFTW_AUTO] : algoName[ALGO_FFTW_ESTIM]), N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_FFTW_ESTIM] = (t0 - te) * 1e3;
haveAlgo[ALGO_FFTW_ESTIM] = 1;
}
Nmax = (cplx ? N*2 : N);
X[Nmax] = checkVal;
do {
/* int flags = (N <= (256*1024) ? FFTW_MEASURE : FFTW_ESTIMATE); measure takes a lot of time on largest ffts */
/* int flags = FFTW_MEASURE; */
#if ( defined(__arm__) || defined(__aarch64__) || defined(__arm64__) )
int limitFFTsize = 31; /* takes over a second on Raspberry Pi 3 B+ -- and much much more on higher ffts sizes! */
#else
int limitFFTsize = 2400; /* take over a second on i7 for fft size 2400 */
#endif
int flags = (N < limitFFTsize ? FFTW_MEASURE : (withFFTWfullMeas ? FFTW_MEASURE : FFTW_ESTIMATE));
if (flags == FFTW_ESTIMATE) {
show_output((flags == FFTW_MEASURE ? algoName[ALGO_FFTW_AUTO] : algoName[ALGO_FFTW_ESTIM]), N, cplx, -1, -1, -1, -1, tableFile);
/* copy values from estimation */
tmeas[TYPE_ITER][ALGO_FFTW_AUTO] = tmeas[TYPE_ITER][ALGO_FFTW_ESTIM];
tmeas[TYPE_DUR_TOT][ALGO_FFTW_AUTO] = tmeas[TYPE_DUR_TOT][ALGO_FFTW_ESTIM];
tmeas[TYPE_DUR_NS][ALGO_FFTW_AUTO] = tmeas[TYPE_DUR_NS][ALGO_FFTW_ESTIM];
tmeas[TYPE_PREP][ALGO_FFTW_AUTO] = tmeas[TYPE_PREP][ALGO_FFTW_ESTIM];
} else {
te = uclock_sec();
fftwf_plan planf, planb;
fftw_complex *in = (fftw_complex*) fftwf_malloc(sizeof(fftw_complex) * N);
fftw_complex *out = (fftw_complex*) fftwf_malloc(sizeof(fftw_complex) * N);
memset(in, 0, sizeof(fftw_complex) * N);
if (cplx) {
planf = fftwf_plan_dft_1d(N, (fftwf_complex*)in, (fftwf_complex*)out, FFTW_FORWARD, flags);
planb = fftwf_plan_dft_1d(N, (fftwf_complex*)in, (fftwf_complex*)out, FFTW_BACKWARD, flags);
} else {
planf = fftwf_plan_dft_r2c_1d(N, (float*)in, (fftwf_complex*)out, flags);
planb = fftwf_plan_dft_c2r_1d(N, (fftwf_complex*)in, (float*)out, flags);
}
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
assert( X[Nmax] == checkVal );
fftwf_execute(planf);
assert( X[Nmax] == checkVal );
fftwf_execute(planb);
assert( X[Nmax] == checkVal );
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
fftwf_destroy_plan(planf);
fftwf_destroy_plan(planb);
fftwf_free(in); fftwf_free(out);
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_FFTW_AUTO] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_FFTW_AUTO] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_FFTW_AUTO] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_FFTW_AUTO] = show_output((flags == FFTW_MEASURE ? algoName[ALGO_FFTW_AUTO] : algoName[ALGO_FFTW_ESTIM]), N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_FFTW_AUTO] = (t0 - te) * 1e3;
haveAlgo[ALGO_FFTW_AUTO] = 1;
}
} while (0);
#else
(void)withFFTWfullMeas;
#endif
#ifdef HAVE_GREEN_FFTS
Nmax = (cplx ? nextPow2N*2 : nextPow2N);
X[Nmax] = checkVal;
if ( 1 || pffft_is_power_of_two(N) )
{
te = uclock_sec();
fftInit(log2NextN);
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
if (cplx) {
assert( X[Nmax] == checkVal );
ffts(X, log2NextN, 1);
assert( X[Nmax] == checkVal );
iffts(X, log2NextN, 1);
assert( X[Nmax] == checkVal );
} else {
rffts(X, log2NextN, 1);
riffts(X, log2NextN, 1);
}
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
fftFree();
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_GREEN] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_GREEN] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_GREEN] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_GREEN] = show_output("Green", N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_GREEN] = (t0 - te) * 1e3;
haveAlgo[ALGO_GREEN] = 1;
} else {
show_output("Green", N, cplx, -1, -1, -1, -1, tableFile);
}
#endif
#ifdef HAVE_KISS_FFT
Nmax = (cplx ? nextPow2N*2 : nextPow2N);
X[Nmax] = checkVal;
if ( 1 || pffft_is_power_of_two(N) )
{
kiss_fft_cfg stf;
kiss_fft_cfg sti;
kiss_fftr_cfg stfr;
kiss_fftr_cfg stir;
te = uclock_sec();
if (cplx) {
stf = kiss_fft_alloc(nextPow2N, 0, 0, 0);
sti = kiss_fft_alloc(nextPow2N, 1, 0, 0);
} else {
stfr = kiss_fftr_alloc(nextPow2N, 0, 0, 0);
stir = kiss_fftr_alloc(nextPow2N, 1, 0, 0);
}
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
if (cplx) {
assert( X[Nmax] == checkVal );
kiss_fft(stf, (const kiss_fft_cpx *)X, (kiss_fft_cpx *)Y);
assert( X[Nmax] == checkVal );
kiss_fft(sti, (const kiss_fft_cpx *)Y, (kiss_fft_cpx *)X);
assert( X[Nmax] == checkVal );
} else {
assert( X[Nmax] == checkVal );
kiss_fftr(stfr, X, (kiss_fft_cpx *)Y);
assert( X[Nmax] == checkVal );
kiss_fftri(stir, (const kiss_fft_cpx *)Y, X);
assert( X[Nmax] == checkVal );
}
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
kiss_fft_cleanup();
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_KISS] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_KISS] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_KISS] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_KISS] = show_output("Kiss", N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_KISS] = (t0 - te) * 1e3;
haveAlgo[ALGO_KISS] = 1;
} else {
show_output("Kiss", N, cplx, -1, -1, -1, -1, tableFile);
}
#endif
// PFFFT-U (unordered) benchmark
Nmax = (cplx ? pffftPow2N*2 : pffftPow2N);
X[Nmax] = checkVal;
{
te = uclock_sec();
PFFFT_Setup *s = pffft_new_setup(pffftPow2N, cplx ? PFFFT_COMPLEX : PFFFT_REAL);
if (s) {
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
assert( X[Nmax] == checkVal );
pffft_transform(s, X, Z, Y, PFFFT_FORWARD);
assert( X[Nmax] == checkVal );
pffft_transform(s, X, Z, Y, PFFFT_BACKWARD);
assert( X[Nmax] == checkVal );
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
pffft_destroy_setup(s);
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_PFFFT_U] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_PFFFT_U] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_PFFFT_U] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_PFFFT_U] = show_output("PFFFT-U", N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_PFFFT_U] = (t0 - te) * 1e3;
haveAlgo[ALGO_PFFFT_U] = 1;
}
}
{
te = uclock_sec();
PFFFT_Setup *s = pffft_new_setup(pffftPow2N, cplx ? PFFFT_COMPLEX : PFFFT_REAL);
if (s) {
t0 = uclock_sec();
tstop = t0 + max_test_duration;
max_iter = 0;
do {
for ( k = 0; k < step_iter; ++k ) {
assert( X[Nmax] == checkVal );
pffft_transform_ordered(s, X, Z, Y, PFFFT_FORWARD);
assert( X[Nmax] == checkVal );
pffft_transform_ordered(s, X, Z, Y, PFFFT_BACKWARD);
assert( X[Nmax] == checkVal );
++max_iter;
}
t1 = uclock_sec();
} while ( t1 < tstop );
pffft_destroy_setup(s);
flops = (max_iter*2) * ((cplx ? 5 : 2.5)*N*log((double)N)/M_LN2); // see http://www.fftw.org/speed/method.html
tmeas[TYPE_ITER][ALGO_PFFFT_O] = max_iter;
tmeas[TYPE_MFLOPS][ALGO_PFFFT_O] = flops/1e6/(t1 - t0 + 1e-16);
tmeas[TYPE_DUR_TOT][ALGO_PFFFT_O] = t1 - t0;
tmeas[TYPE_DUR_NS][ALGO_PFFFT_O] = show_output("PFFFT", N, cplx, flops, t0, t1, max_iter, tableFile);
tmeas[TYPE_PREP][ALGO_PFFFT_O] = (t0 - te) * 1e3;
haveAlgo[ALGO_PFFFT_O] = 1;
}
}
if (!array_output_format)
{
printf("prepare/ms: ");
for ( iter = 0; iter < NUM_FFT_ALGOS; ++iter )
{
if ( haveAlgo[iter] && tmeas[TYPE_DUR_NS][iter] > 0.0 ) {
printf("%s %.3f ", algoName[iter], tmeas[TYPE_PREP][iter] );
}
}
printf("\n");
}
Tfastest = 0.0;
for ( iter = 0; iter < NUM_FFT_ALGOS; ++iter )
{
if ( Tfastest == 0.0 || ( tmeas[TYPE_DUR_NS][iter] != 0.0 && tmeas[TYPE_DUR_NS][iter] < Tfastest ) )
Tfastest = tmeas[TYPE_DUR_NS][iter];
}
if ( Tfastest > 0.0 )
{
if (!array_output_format)
printf("relative fast: ");
for ( iter = 0; iter < NUM_FFT_ALGOS; ++iter )
{
if ( haveAlgo[iter] && tmeas[TYPE_DUR_NS][iter] > 0.0 ) {
tmeas[TYPE_DUR_FASTEST][iter] = tmeas[TYPE_DUR_NS][iter] / Tfastest;
if (!array_output_format)
printf("%s %.3f ", algoName[iter], tmeas[TYPE_DUR_FASTEST][iter] );
}
}
if (!array_output_format)
printf("\n");
}
{
if (!array_output_format)
printf("relative pffft: ");
for ( iter = 0; iter < NUM_FFT_ALGOS; ++iter )
{
if ( haveAlgo[iter] && tmeas[TYPE_DUR_NS][iter] > 0.0 ) {
tmeas[TYPE_REL_PFFFT][iter] = tmeas[TYPE_DUR_NS][iter] / tmeas[TYPE_DUR_NS][ALGO_PFFFT_O];
if (!array_output_format)
printf("%s %.3f ", algoName[iter], tmeas[TYPE_REL_PFFFT][iter] );
}
}
if (!array_output_format)
printf("\n");
}
if (!array_output_format) {
printf("--\n");
}
pffft_aligned_free(X);
pffft_aligned_free(Y);
pffft_aligned_free(Z);
}
#ifndef PFFFT_SIMD_DISABLE
void validate_pffft_simd(); // a small function inside pffft.c that will detect compiler bugs with respect to simd instruction
#endif
int main(int argc, char **argv) {
/* unfortunately, the fft size must be a multiple of 16 for complex FFTs
and 32 for real FFTs -- a lot of stuff would need to be rewritten to
handle other cases (or maybe just switch to a scalar fft, I don't know..) */
#if 0 /* include powers of 2 ? */
#define NUMNONPOW2LENS 23
int NnonPow2[NUMNONPOW2LENS] = {
64, 96, 128, 160, 192, 256, 384, 5*96, 512, 5*128,
3*256, 800, 1024, 2048, 2400, 4096, 8192, 9*1024, 16384, 32768,
256*1024, 1024*1024, -1 };
#else
#define NUMNONPOW2LENS 11
int NnonPow2[NUMNONPOW2LENS] = {
96, 160, 192, 384, 5*96, 5*128,3*256, 800, 2400, 9*1024,
-1 };
#endif
#define NUMPOW2FFTLENS 21
#define MAXNUMFFTLENS MAX( NUMPOW2FFTLENS, NUMNONPOW2LENS )
int Npow2[NUMPOW2FFTLENS]; /* exp = 1 .. 20, -1 */
const int *Nvalues = NULL;
double tmeas[2][MAXNUMFFTLENS][NUM_TYPES][NUM_FFT_ALGOS];
double iterCalReal, iterCalCplx;
int benchReal=1, benchCplx=1, withFFTWfullMeas=0, outputTable2File=1, usePow2=1;
int realCplxIdx, typeIdx;
int i, k;
int smallestCplxN = pffft_simd_size()*pffft_simd_size();
int smallestRealN = 2*smallestCplxN;
FILE *tableFile = NULL;
int haveAlgo[NUM_FFT_ALGOS];
char acCsvFilename[32];
for ( k = 1; k <= NUMPOW2FFTLENS; ++k )
Npow2[k-1] = (k == NUMPOW2FFTLENS) ? -1 : (1 << k);
Nvalues = Npow2; /* set default .. for comparisons .. */
for ( i = 0; i < NUM_FFT_ALGOS; ++i )
haveAlgo[i] = 0;
for ( i = 1; i < argc; ++i ) {
if (!strcmp(argv[i], "--array-format") || !strcmp(argv[i], "--table")) {
array_output_format = 1;
}
else if (!strcmp(argv[i], "--no-tab")) {
array_output_format = 0;
}
else if (!strcmp(argv[i], "--real")) {
benchCplx = 0;
}
else if (!strcmp(argv[i], "--cplx")) {
benchReal = 0;
}
else if (!strcmp(argv[i], "--fftw-full-measure")) {
withFFTWfullMeas = 1;
}
else if (!strcmp(argv[i], "--non-pow2")) {
Nvalues = NnonPow2;
usePow2 = 0;
}
else /* if (!strcmp(argv[i], "--help")) */ {
printf("usage: %s [--array-format|--table] [--no-tab] [--real|--cplx] [--fftw-full-measure] [--non-pow2]\n", argv[0]);
exit(0);
}
}
#ifdef HAVE_FFTW
if (withFFTWfullMeas)
{
algoName[ALGO_FFTW_AUTO] = "FFTW(meas.)"; /* "FFTW (auto)" */
algoTableHeader[NUM_FFT_ALGOS][0] = "|real FFTWmeas "; /* "|real FFTWauto " */
algoTableHeader[NUM_FFT_ALGOS][0] = "|cplx FFTWmeas "; /* "|cplx FFTWauto " */
}
#endif
#ifdef PFFFT_SIMD_DISABLE
algoName[ALGO_PFFFT_U] = "PFFFT_U(scal)";
#else
validate_pffft_simd();
#endif
pffft_validate(1);
pffft_validate(0);
test_pffft_mem_align();
clock();
/* double TClockDur = 1.0 / CLOCKS_PER_SEC;
printf("clock() duration for CLOCKS_PER_SEC = %f sec = %f ms\n", TClockDur, 1000.0 * TClockDur );
*/
/* calibrate test duration */
{
double t0, t1, dur;
printf("calibrating fft benchmark duration at size N = 512 ..\n");
t0 = uclock_sec();
if (benchReal) {
iterCalReal = cal_benchmark(512, 0 /* real fft */);
printf("real fft iterCal = %f\n", iterCalReal);
}
if (benchCplx) {
iterCalCplx = cal_benchmark(512, 1 /* cplx fft */);
printf("cplx fft iterCal = %f\n", iterCalCplx);
}
t1 = uclock_sec();
dur = t1 - t0;
printf("calibration done in %f sec.\n", dur);
}
if (!array_output_format) {
if (benchReal) {
for (i=0; Nvalues[i] > 0; ++i)
benchmark_ffts(Nvalues[i], 0 /* real fft */, withFFTWfullMeas, iterCalReal, tmeas[0][i], haveAlgo, NULL);
}
if (benchCplx) {
for (i=0; Nvalues[i] > 0; ++i)
benchmark_ffts(Nvalues[i], 1 /* cplx fft */, withFFTWfullMeas, iterCalCplx, tmeas[1][i], haveAlgo, NULL);
}
} else {
if (outputTable2File) {
tableFile = fopen( usePow2 ? "bench-fft-table-pow2.txt" : "bench-fft-table-non2.txt", "w");
}
/* print table headers */
{
print_table("| input len ", tableFile);
for (realCplxIdx = 0; realCplxIdx < 2; ++realCplxIdx)
{
if ( (realCplxIdx == 0 && !benchReal) || (realCplxIdx == 1 && !benchCplx) )
continue;
for (k=0; k < NUM_FFT_ALGOS; ++k)
{
if ( compiledInAlgo[k] )
print_table(algoTableHeader[k][realCplxIdx], tableFile);
}
}
print_table("|\n", tableFile);
}
/* print table value seperators */
{
print_table("|----------", tableFile);
for (realCplxIdx = 0; realCplxIdx < 2; ++realCplxIdx)
{
if ( (realCplxIdx == 0 && !benchReal) || (realCplxIdx == 1 && !benchCplx) )
continue;
for (k=0; k < NUM_FFT_ALGOS; ++k)
{
if ( compiledInAlgo[k] )
print_table(":|-------------", tableFile);
}
}
print_table(":|\n", tableFile);
}
for (i=0; Nvalues[i] > 0; ++i) {
/* if ( Nvalues[i] >= smallestRealN && Nvalues[i] >= smallestCplxN ) */
{
double t0, t1;
print_table_fftsize(Nvalues[i], tableFile);
t0 = uclock_sec();
if (benchReal)
benchmark_ffts(Nvalues[i], 0, withFFTWfullMeas, iterCalReal, tmeas[0][i], haveAlgo, tableFile);
if (benchCplx)
benchmark_ffts(Nvalues[i], 1, withFFTWfullMeas, iterCalCplx, tmeas[1][i], haveAlgo, tableFile);
t1 = uclock_sec();
print_table("|\n", tableFile);
/* printf("all ffts for size %d took %f sec\n", Nvalues[i], t1-t0); */
(void)t0;
(void)t1;
}
}
fprintf(stdout, " (numbers are given in MFlops)\n");
if (outputTable2File) {
fclose(tableFile);
}
}
printf("\n\n");
printf("smallest cplx fft size: %d\n", smallestCplxN);
printf("smallest real fft size: %d\n", smallestRealN);
printf("\n");
printf("now writing .csv files ..\n");
for (realCplxIdx = 0; realCplxIdx < 2; ++realCplxIdx)
{
if ( (benchReal && realCplxIdx == 0) || (benchCplx && realCplxIdx == 1) )
{
for (typeIdx = 0; typeIdx < NUM_TYPES; ++typeIdx)
{
FILE *f = NULL;
if ( !(SAVE_ALL_TYPES || saveType[typeIdx]) )
continue;
acCsvFilename[0] = 0;
#ifdef PFFFT_SIMD_DISABLE
strcat(acCsvFilename, "scal-");
#else
strcat(acCsvFilename, "simd-");
#endif
strcat(acCsvFilename, (realCplxIdx == 0 ? "real-" : "cplx-"));
strcat(acCsvFilename, ( usePow2 ? "pow2-" : "non2-"));
strcat(acCsvFilename, typeFilenamePart[typeIdx]);
strcat(acCsvFilename, ".csv");
f = fopen(acCsvFilename, "w");
if (!f)
continue;
{
fprintf(f, "size, log2, ");
for (k=0; k < NUM_FFT_ALGOS; ++k)
if ( haveAlgo[k] )
fprintf(f, "%s, ", algoName[k]);
fprintf(f, "\n");
}
for (i=0; Nvalues[i] > 0; ++i)
{
if ( (benchReal && Nvalues[i] >= smallestRealN) || (benchCplx && Nvalues[i] >= smallestCplxN) )
{
fprintf(f, "%d, %.3f, ", Nvalues[i], log10((double)Nvalues[i])/log10(2.0) );
for (k=0; k < NUM_FFT_ALGOS; ++k)
if ( haveAlgo[k] )
fprintf(f, "%f, ", tmeas[realCplxIdx][i][typeIdx][k]);
fprintf(f, "\n");
}
}
fclose(f);
}
}
}
return 0;
}