blob: 6f30cce033389daedb24659a5ad1fc3b161a12df [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
syntax = "proto2";
option cc_enable_arenas = true;
package quipper;
// Stores information from a perf session generated via running:
// "perf record"
//
// See $kernel/tools/perf/design.txt for more details.
// Next tag: 17
message PerfDataProto {
// Perf event attribute. Stores the event description.
// This data structure is defined in the linux kernel:
// $kernel/include/uapi/linux/perf_event.h.
// Next tag: 42
message PerfEventAttr {
// Type of the event. Type is an enumeration and can be one of the values
// described at: $kernel/include/linux/perf_event.h.
// Example types are:
// PERF_TYPE_HARDWARE
// PERF_TYPE_SOFTWARE, etc.
optional uint32 type = 1;
// Size of the event data in bytes.
optional uint32 size = 2;
// The config stores the CPU-specific counter information.
optional uint64 config = 3;
// Sample period of the event. Indicates how often the event is
// triggered in terms of # of events. After |sample_period| events, an event
// will be recorded and stored.
optional uint64 sample_period = 4;
// Sample frequency of the event. Indicates how often the event is
// triggered in terms of # per second. The kernel will try to record
// |sample_freq| events per second.
optional uint64 sample_freq = 5;
// Sample type is a bitfield that records attributes of the sample. Example,
// whether an entire callchain was recorded, etc.
optional uint64 sample_type = 6;
// Bitfield that indicates whether reads on the counter will return the
// total time enabled and total time running.
optional uint64 read_format = 7;
// Indicates whether the counter starts off disabled.
optional bool disabled = 8;
// Indicates whether child processes inherit the counter.
optional bool inherit = 9;
// Indicates whether the counter is pinned to a particular CPU.
optional bool pinned = 10;
// Indicates whether this counter's group has exclusive access to the CPU's
// counters.
optional bool exclusive = 11;
// The following bits restrict events to be counted when the CPU is in user,
// kernel, hypervisor or idle modes.
optional bool exclude_user = 12;
optional bool exclude_kernel = 13;
optional bool exclude_hv = 14;
optional bool exclude_idle = 15;
// Indicates whether mmap events should be recorded.
optional bool mmap = 16;
// Indicates whether process comm information should be recorded upon
// process creation.
optional bool comm = 17;
// Indicates that we are in frequency mode, not period mode.
optional bool freq = 18;
// Indicates whether we have per-task counts.
optional bool inherit_stat = 19;
// Indicates whether we enable perf events after an exec() function call.
optional bool enable_on_exec = 20;
// Indicates whether we trace fork/exit.
optional bool task = 21;
// Indicates whether we are using a watermark to wake up.
optional bool watermark = 22;
// CPUs often "skid" when recording events. That means the instruction
// pointer may not be the same as the one that caused the counter overflow.
// Indicates the capabilities of the CPU in terms of recording precise
// instruction pointer.
optional uint32 precise_ip = 23;
// Indicates whether we have non-exec mmap data.
optional bool mmap_data = 24;
// If set, all the event types will have the same sample_type.
optional bool sample_id_all = 25;
// Indicates whether we are counting events from the host (when running a
// VM).
optional bool exclude_host = 26;
// Exclude events that happen on a guest OS.
optional bool exclude_guest = 27;
// Exclude kernel callchains.
optional bool exclude_callchain_kernel = 36;
// Exclude user callchains.
optional bool exclude_callchain_user = 37;
// Include mmap2 events that have inode data.
optional bool mmap2 = 38;
// Flag comm events that are due to an exec.
optional bool comm_exec = 39;
// Contains the number of events after which we wake up.
optional uint32 wakeup_events = 28;
// Contains the number of bytes after which we wake up.
optional uint32 wakeup_watermark = 29;
// Information about the type of the breakpoint.
optional uint32 bp_type = 30;
// Contains the breakpoint address.
optional uint64 bp_addr = 31;
// This is an extension of config (see above).
optional uint64 config1 = 32;
// The length of the breakpoint data in bytes.
optional uint64 bp_len = 33;
// This is an extension of config (see above).
optional uint64 config2 = 34;
// Contains the type of branch, example: user, kernel, call, return, etc.
optional uint64 branch_sample_type = 35;
// Defines set of user regs to dump on samples.
optional uint64 sample_regs_user = 40;
// Defines size of the user stack to dump on samples.
optional uint32 sample_stack_user = 41;
}
// Describes a perf.data file attribute.
// Next tag: 3
message PerfFileAttr {
optional PerfEventAttr attr = 1;
// List of perf file attribute ids. Each id describes an event.
repeated uint64 ids = 2;
}
// Protobuf version of the perf_event_type struct found in perf/util/event.h.
// Contains the name of the event (such as "cycles" or "branch-misses") and
// the event id (which is not unique).
// Next tag: 4
message PerfEventType {
// Event id. This is not unique across event types.
// The combination of the event id and the type field in PerfEventAttr is
// unique across event types.
optional uint64 id = 1;
// Event name.
optional string name = 2;
// Event name's md5 prefix.
optional uint64 name_md5_prefix = 3;
}
// This message contains information about a perf sample itself, as opposed to
// a perf event captured by a sample.
// Next tag: 7
message SampleInfo {
// Process ID / thread ID from which this sample was taken.
optional uint32 pid = 1;
optional uint32 tid = 2;
// Time this sample was taken (NOT the same as an event time).
// It is the number of nanoseconds since bootup.
optional uint64 sample_time_ns = 3;
// The ID of the sample's event type (cycles, instructions, etc).
// The event type IDs are defined in PerfFileAttr.
optional uint64 id = 4;
// The CPU on which this sample was taken.
optional uint32 cpu = 5;
// The stream id of the sample.
optional uint64 stream_id = 6;
}
// Next tag: 7
message CommEvent {
// Process id.
optional uint32 pid = 1;
// Thread id.
optional uint32 tid = 2;
// Comm string.
optional string comm = 3;
// Comm string's md5 prefix.
optional uint64 comm_md5_prefix = 4;
// Time the sample was taken.
// Deprecated, use |sample_info| instead.
optional uint64 sample_time = 5 [deprecated = true];
// Info about the perf sample containing this event.
optional SampleInfo sample_info = 6;
}
// Represents both mmap_event and mmap2_event.
// Next tag: 15
message MMapEvent {
// Process id.
optional uint32 pid = 1;
// Thread id.
optional uint32 tid = 2;
// Start address.
optional uint64 start = 3;
// Length.
optional uint64 len = 4;
// PG Offset.
optional uint64 pgoff = 5;
// Only in MMAP2 events, information about the mapped inode:
// Major/minor numbers
optional uint32 maj = 9;
optional uint32 min = 10;
// Inode number and generation.
optional uint64 ino = 11;
optional uint64 ino_generation = 12;
// Protection bits and flags.
optional uint32 prot = 13;
optional uint32 flags = 14;
// In both MMAP and MMAP2 events:
// Filename.
optional string filename = 6;
// Filename's md5 prefix.
optional uint64 filename_md5_prefix = 7;
// Info about the perf sample containing this event.
optional SampleInfo sample_info = 8;
}
// Next tag: 4
message ReadInfo {
optional uint64 time_enabled = 1;
optional uint64 time_running = 2;
message ReadValue {
optional uint64 value = 1;
optional uint64 id = 2;
}
// Based on the value of |PerfEventAttr::read_format & PERF_FORMAT_GROUP|,
// the read info could contain one or multiple read values and IDs. If the
// format is non-grouped, the repeated field will have only one entry.
repeated ReadValue read_value = 3;
}
// Next tag: 4
message BranchStackEntry {
// Branch source address.
optional uint64 from_ip = 1;
// Branch destination address.
optional uint64 to_ip = 2;
// Indicates a mispredicted branch.
optional bool mispredicted = 3;
}
// Next tag: 19
message SampleEvent {
// Instruction pointer.
optional uint64 ip = 1;
// Process id.
optional uint32 pid = 2;
// Thread id.
optional uint32 tid = 3;
// The time after boot when the sample was recorded, in nanoseconds.
optional uint64 sample_time_ns = 4;
// The address of the sample.
optional uint64 addr = 5;
// The id of the sample.
optional uint64 id = 6;
// The stream id of the sample.
optional uint64 stream_id = 7;
// The period of the sample.
optional uint64 period = 8;
// The CPU where the event was recorded.
optional uint32 cpu = 9;
// The raw size of the event in bytes.
optional uint32 raw_size = 10;
// The read field.
optional ReadInfo read_info = 18;
// Sample callchain info.
repeated uint64 callchain = 11;
// Branch stack info.
repeated BranchStackEntry branch_stack = 12;
// These are not yet implemented, but are listed as placeholders.
//
// optional RegsUser regs_user = 13;
// optional StackUser stack_user = 14;
// Sample weight for special events.
optional uint64 weight = 15;
// Sample data source flags.
optional uint64 data_src = 16;
// Sample transaction flags for special events.
optional uint64 transaction = 17;
}
// ForkEvent is used for both FORK and EXIT events, which have the same data
// format. We don't want to call this "ForkOrExitEvent", in case a separate
// exit event is introduced in the future.
// Next tag: 12
message ForkEvent {
// Forked process ID.
optional uint32 pid = 1;
// Parent process ID.
optional uint32 ppid = 2;
// Forked process thread ID.
optional uint32 tid = 3;
// Parent process thread ID.
optional uint32 ptid = 4;
// Time of fork event in nanoseconds since bootup.
optional uint64 fork_time_ns = 5;
// Info about the perf sample containing this event.
optional SampleInfo sample_info = 11;
}
// Next tag: 4
message LostEvent {
// Id of the event which has been lost. This should be an id found in a
// PerfFileAttr.
optional uint64 id = 1;
// Number of events that were lost.
optional uint64 lost = 2;
// Info about the perf sample containing this event.
optional SampleInfo sample_info = 3;
}
// Next tag: 5
message ThrottleEvent {
// Time of throttle event, in nanoseconds since system startup.
optional uint64 time_ns = 1;
// Event ID.
optional uint64 id = 2;
// Stream ID.
optional uint64 stream_id = 3;
// Info about the perf sample containing this event.
optional SampleInfo sample_info = 4;
}
// Next tag: 8
message ReadEvent {
// Process ID.
optional uint32 pid = 1;
// Thread ID.
optional uint32 tid = 2;
// Value of the event counter when it was queried.
optional uint64 value = 3;
// Time enabled.
optional uint64 time_enabled = 4;
// Time running.
optional uint64 time_running = 5;
// ID.
optional uint64 id = 6;
// Info about the perf sample containing this event.
optional SampleInfo sample_info = 7;
}
// Next tag: 7
message AuxEvent {
// Aux offset.
optional uint64 aux_offset = 1;
// Aux size.
optional uint64 aux_size = 2;
// Is the record was truncated to fit.
optional bool is_truncated = 3;
// Does the record contain snapshot from overwrite mode.
optional bool is_overwrite = 4;
// Does the record contain gaps.
optional bool is_partial = 5;
// Info about the perf sample containing this event.
optional SampleInfo sample_info = 6;
}
// Next tag: 8
message AuxtraceEvent {
// Size of AUX area tracing buffer.
optional uint64 size = 1;
// Offset as determined by aux_head / aux_tail members of struct
// perf_event_mmap_page.
optional uint64 offset = 2;
// Implementation specific reference determined when the data is recorded.
optional uint64 reference = 3;
// Index of AUX area tracing data buffer.
optional uint32 idx = 4;
// In per-thread mode, the tid this buffer is associated with.
optional uint32 tid = 5;
// In per-cpu mode, the cpu this buffer is associated with.
optional uint32 cpu = 6;
// The trace data.
optional bytes trace_data = 7;
}
// Next tag: 4
message EventHeader {
// Type of event.
optional uint32 type = 1;
optional uint32 misc = 2;
// Size of event.
optional uint32 size = 3;
}
// Next tag: 13
message PerfEvent {
optional EventHeader header = 1;
oneof event_type {
MMapEvent mmap_event = 2;
SampleEvent sample_event = 3;
CommEvent comm_event = 4;
// FORK and EXIT events are structurally identical. They only differ by
// the event type. But using two distinct fields allows us to
// differentiate between them without having to check the event type under
// |header|.
ForkEvent fork_event = 5;
ForkEvent exit_event = 9;
LostEvent lost_event = 6;
ThrottleEvent throttle_event = 7;
ReadEvent read_event = 8;
AuxEvent aux_event = 11;
AuxtraceEvent auxtrace_event = 12;
}
// Time after boot in nanoseconds corresponding to the event.
optional uint64 timestamp = 10;
}
// Next tag: 8
message PerfEventStats {
// Total number of events read from perf data.
optional uint32 num_events_read = 1;
// Total number of various types of events.
optional uint32 num_sample_events = 2;
optional uint32 num_mmap_events = 3;
optional uint32 num_fork_events = 4;
optional uint32 num_exit_events = 5;
// Number of sample events that were successfully mapped by the address
// mapper, a quipper module that is used to obscure addresses and convert
// them to DSO name + offset. Sometimes it fails to process sample events.
// This field allows us to track the success rate of the address mapper.
optional uint32 num_sample_events_mapped = 6;
// Whether address remapping was enabled.
optional bool did_remap = 7;
}
// Next tag: 3
message PerfUint32Metadata {
// Type of metadata, such as nrcpus.
optional uint32 type = 1;
// uint32 data.
repeated uint32 data = 2;
}
// Next tag: 3
message PerfUint64Metadata {
// Type of metadata, such as totalmem.
optional uint32 type = 1;
// uint64 data.
repeated uint64 data = 2;
}
// Next tag: 3
message PerfTracingMetadata {
// The trace event metadata.
optional bytes tracing_data = 1;
// Trace event metedata Md5sum prefix.
optional uint64 tracing_data_md5_prefix = 2;
}
// Next tag: 6
message PerfBuildID {
// Misc field in perf_event_header.
optional uint32 misc = 1;
// Process ID.
optional uint32 pid = 2;
// Build id. Should always contain kBuildIDArraySize bytes of data.
// perf_reader.h defines kBuildIDArraySize = 20.
optional bytes build_id_hash = 3;
// Filename.
optional string filename = 4;
// Filename Md5sum prefix.
optional uint64 filename_md5_prefix = 5;
}
// Next tag: 5
message PerfCPUTopologyMetadata {
// Core siblings.
repeated string core_siblings = 1;
// Core siblings' md5 prefixes.
repeated uint64 core_siblings_md5_prefix = 2;
// Thread siblings.
repeated string thread_siblings = 3;
// Thread siblings' md5 prefixes.
repeated uint64 thread_siblings_md5_prefix = 4;
}
// Next tag: 6
message PerfNodeTopologyMetadata {
// Node id.
optional uint32 id = 1;
// Total memory of the node.
optional uint64 total_memory = 2;
// Free memory of the node.
optional uint64 free_memory = 3;
// List of CPUs in the node.
optional string cpu_list = 4;
// CPU list's md5 prefix.
optional uint64 cpu_list_md5_prefix = 5;
}
// Next tag: 4
message PerfPMUMappingsMetadata {
// Mapping type.
optional uint32 type = 1;
// Mapping name.
optional string name = 2;
// Mapping name's md5 prefix.
optional uint64 name_md5_prefix = 3;
}
// Next tag: 5
message PerfGroupDescMetadata {
// Group name.
optional string name = 1;
// Group name's md5 prefix.
optional uint64 name_md5_prefix = 2;
// Group's leader index.
optional uint32 leader_idx = 3;
// Number of members in the group.
optional uint32 num_members = 4;
}
repeated PerfFileAttr file_attrs = 1;
repeated PerfEvent events = 2;
repeated PerfEventType event_types = 10;
// Time when quipper generated this perf data / protobuf, given as seconds
// since the epoch.
optional uint64 timestamp_sec = 3;
// Records some stats about the serialized perf events.
optional PerfEventStats stats = 4;
// Bit mask used to determine what metadata has been included.
// At the moment, only the first number is actually used.
// See adds_features in perf_reader.cc
repeated uint64 metadata_mask = 5;
optional PerfTracingMetadata tracing_data = 14;
repeated PerfBuildID build_ids = 7;
repeated PerfUint32Metadata uint32_metadata = 8;
repeated PerfUint64Metadata uint64_metadata = 9;
optional PerfCPUTopologyMetadata cpu_topology = 11;
repeated PerfNodeTopologyMetadata numa_topology = 12;
repeated PerfPMUMappingsMetadata pmu_mappings = 15;
repeated PerfGroupDescMetadata group_desc = 16;
// Next tag: 9
message StringMetadata {
// Next tag: 3
message StringAndMd5sumPrefix {
// The string value.
optional string value = 1;
// The string value's md5sum prefix.
optional uint64 value_md5_prefix = 2;
}
// Name of the machine, e.g. "localhost".
optional StringAndMd5sumPrefix hostname = 1;
// Kernel version, e.g. "3.4.0".
optional StringAndMd5sumPrefix kernel_version = 2;
// Perf version, e.g. "3.4.2642.g0aa604".
optional StringAndMd5sumPrefix perf_version = 3;
// CPU architecture family, e.g. "x86_64".
optional StringAndMd5sumPrefix architecture = 4;
// CPU description, e.g. "Intel(R) Celeron(R) CPU 867 @ 1.30GHz".
optional StringAndMd5sumPrefix cpu_description = 5;
// CPU ID string, with the format: "$VENDOR,$FAMILY,$MODEL,$STEP"
optional StringAndMd5sumPrefix cpu_id = 6;
// Command line used to run perf to collect this profile.
// This is split into string tokens to reflect the way it is stored in the
// raw perf data. e.g. "perf record -a -- sleep 2" become stored as:
// { "perf", "record", "-a", "--", "sleep", "2" }
repeated StringAndMd5sumPrefix perf_command_line_token = 7;
// The command line stored as a single string.
optional StringAndMd5sumPrefix perf_command_line_whole = 8;
}
optional StringMetadata string_metadata = 13;
extensions 32 to 100;
}