blob: d593239fb9313946fbc09cb4689a721bc7bad91d [file] [log] [blame]
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fuzzer/FuzzedDataProvider.h>
#include "Eigen/Core"
namespace {
static constexpr Eigen::Index kEigenTestMaxSize = 64;
static constexpr Eigen::Index kEigenIndexOne = static_cast<Eigen::Index>(1);
template <typename T>
T ConsumeValue(FuzzedDataProvider* stream) {
return stream->ConsumeIntegral<T>();
}
template <>
float ConsumeValue(FuzzedDataProvider* stream) {
return stream->ConsumeFloatingPoint<float>();
}
template <>
double ConsumeValue(FuzzedDataProvider* stream) {
return stream->ConsumeFloatingPoint<double>();
}
template <>
long double ConsumeValue(FuzzedDataProvider* stream) {
return stream->ConsumeFloatingPoint<long double>();
}
template <>
std::complex<float> ConsumeValue(FuzzedDataProvider* stream) {
return std::complex<float>(stream->ConsumeFloatingPoint<float>(),
stream->ConsumeFloatingPoint<float>());
}
template <>
std::complex<double> ConsumeValue(FuzzedDataProvider* stream) {
return std::complex<float>(stream->ConsumeFloatingPoint<double>(),
stream->ConsumeFloatingPoint<double>());
}
template <typename MatrixType>
MatrixType GenerateTestMatrix(size_t rows, size_t cols,
FuzzedDataProvider* stream) {
std::vector<typename MatrixType::value_type> test_data(rows * cols);
for (auto& value : test_data) {
value = ConsumeValue<typename MatrixType::value_type>(stream);
}
Eigen::Map<MatrixType> mapped_map(test_data.data(), rows, cols);
return MatrixType(mapped_map);
}
template <typename MatrixType>
void basicStuff(const MatrixType& m, FuzzedDataProvider* stream) {
typedef typename MatrixType::Scalar Scalar;
typedef Eigen::Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Eigen::Matrix<Scalar, MatrixType::RowsAtCompileTime,
MatrixType::RowsAtCompileTime>
SquareMatrixType;
Eigen::Index rows = m.rows();
Eigen::Index cols = m.cols();
MatrixType m1 = GenerateTestMatrix<MatrixType>(rows, cols, stream),
m2 = GenerateTestMatrix<MatrixType>(rows, cols, stream),
m3(rows, cols), mzero = MatrixType::Zero(rows, cols),
square = GenerateTestMatrix<
Eigen::Matrix<Scalar, MatrixType::RowsAtCompileTime,
MatrixType::RowsAtCompileTime>>(rows, rows,
stream);
VectorType v1 = GenerateTestMatrix<VectorType>(rows, 1, stream),
vzero = VectorType::Zero(rows);
SquareMatrixType sm1 = SquareMatrixType::Random(rows, rows), sm2(rows, rows);
Scalar x = ConsumeValue<typename MatrixType::Scalar>(stream);
Eigen::Index r = stream->ConsumeIntegralInRange(
std::min(kEigenIndexOne, rows - 1), rows - 1),
c = stream->ConsumeIntegralInRange(
std::min(kEigenIndexOne, cols - 1), cols - 1);
m1.coeffRef(r, c) = x;
m1(r, c) = x;
v1.coeffRef(r) = x;
v1(r) = x;
v1[r] = x;
Eigen::Index r1 = stream->ConsumeIntegralInRange(
static_cast<Eigen::Index>(0),
std::min(static_cast<Eigen::Index>(127), rows - 1));
x = v1(static_cast<char>(r1));
x = v1(static_cast<signed char>(r1));
x = v1(static_cast<unsigned char>(r1));
x = v1(static_cast<signed short>(r1));
x = v1(static_cast<unsigned short>(r1));
x = v1(static_cast<signed int>(r1));
x = v1(static_cast<unsigned int>(r1));
x = v1(static_cast<signed long>(r1));
x = v1(static_cast<unsigned long>(r1));
x = v1(static_cast<long long int>(r1));
x = v1(static_cast<unsigned long long int>(r1));
// now test copying a row-vector into a (column-)vector and conversely.
square.col(r) = square.row(r).eval();
Eigen::Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
Eigen::Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
rv = square.row(r);
cv = square.col(r);
cv.transpose();
m3.real() = m1.real();
m1 = m2;
sm2.setZero();
for (Eigen::Index i = 0; i < rows; ++i) sm2.col(i) = sm1.row(i);
sm2.setZero();
for (Eigen::Index i = 0; i < rows; ++i) sm2.col(i).noalias() = sm1.row(i);
sm2.setZero();
for (Eigen::Index i = 0; i < rows; ++i) sm2.col(i).noalias() += sm1.row(i);
sm2.setZero();
for (Eigen::Index i = 0; i < rows; ++i) sm2.col(i).noalias() -= sm1.row(i);
}
template <typename MatrixType>
void basicStuffComplex(const MatrixType& m, FuzzedDataProvider* stream) {
typedef typename MatrixType::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Matrix<RealScalar, MatrixType::RowsAtCompileTime,
MatrixType::ColsAtCompileTime>
RealMatrixType;
Eigen::Index rows = m.rows();
Eigen::Index cols = m.cols();
RealMatrixType rm1 = GenerateTestMatrix<RealMatrixType>(rows, cols, stream),
rm2 = GenerateTestMatrix<RealMatrixType>(rows, cols, stream);
MatrixType cm(rows, cols);
cm.real() = rm1;
cm.imag() = rm2;
rm1.setZero();
rm2.setZero();
rm1 = cm.real();
rm2 = cm.imag();
cm.real().setZero();
}
} // namespace
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
FuzzedDataProvider stream(data, size);
basicStuff(
Eigen::MatrixXcf(
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize),
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize)),
&stream);
basicStuff(
Eigen::MatrixXi(
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize),
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize)),
&stream);
basicStuff(
Eigen::MatrixXcd(
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize),
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize)),
&stream);
basicStuff(
Eigen::Matrix<long double, Eigen::Dynamic, Eigen::Dynamic>(
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize),
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize)),
&stream);
basicStuffComplex(
Eigen::MatrixXcf(
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize),
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize)),
&stream);
basicStuffComplex(
Eigen::MatrixXcd(
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize),
stream.ConsumeIntegralInRange(kEigenIndexOne, kEigenTestMaxSize)),
&stream);
return 0;
}