blob: d62d625147add39f7b9c4b701c422e2bd4dc1a94 [file] [log] [blame]
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cast/streaming/receiver.h"
#include <algorithm>
#include <utility>
#include "absl/types/span.h"
#include "cast/streaming/constants.h"
#include "cast/streaming/receiver_packet_router.h"
#include "cast/streaming/session_config.h"
#include "util/chrono_helpers.h"
#include "util/osp_logging.h"
#include "util/std_util.h"
namespace openscreen {
namespace cast {
// Conveniences for ensuring logging output includes the SSRC of the Receiver,
// to help distinguish one out of multiple instances in a Cast Streaming
// session.
//
// TODO(miu): Replace RECEIVER_VLOG's with trace event logging once the tracing
// infrastructure is ready.
#define RECEIVER_LOG(level) OSP_LOG_##level << "[SSRC:" << ssrc() << "] "
#define RECEIVER_VLOG OSP_VLOG << "[SSRC:" << ssrc() << "] "
Receiver::Receiver(Environment* environment,
ReceiverPacketRouter* packet_router,
SessionConfig config)
: now_(environment->now_function()),
packet_router_(packet_router),
config_(config),
rtcp_session_(config.sender_ssrc, config.receiver_ssrc, now_()),
rtcp_parser_(&rtcp_session_),
rtcp_builder_(&rtcp_session_),
stats_tracker_(config.rtp_timebase),
rtp_parser_(config.sender_ssrc),
rtp_timebase_(config.rtp_timebase),
crypto_(config.aes_secret_key, config.aes_iv_mask),
rtcp_buffer_capacity_(environment->GetMaxPacketSize()),
rtcp_buffer_(new uint8_t[rtcp_buffer_capacity_]),
rtcp_alarm_(environment->now_function(), environment->task_runner()),
smoothed_clock_offset_(ClockDriftSmoother::kDefaultTimeConstant),
consumption_alarm_(environment->now_function(),
environment->task_runner()) {
OSP_DCHECK(packet_router_);
OSP_DCHECK_EQ(checkpoint_frame(), FrameId::leader());
OSP_CHECK_GT(rtcp_buffer_capacity_, 0);
OSP_CHECK(rtcp_buffer_);
rtcp_builder_.SetPlayoutDelay(config.target_playout_delay);
playout_delay_changes_.emplace_back(FrameId::leader(),
config.target_playout_delay);
packet_router_->OnReceiverCreated(rtcp_session_.sender_ssrc(), this);
}
Receiver::~Receiver() {
packet_router_->OnReceiverDestroyed(rtcp_session_.sender_ssrc());
}
void Receiver::SetConsumer(Consumer* consumer) {
consumer_ = consumer;
ScheduleFrameReadyCheck();
}
void Receiver::SetPlayerProcessingTime(Clock::duration needed_time) {
player_processing_time_ = std::max(Clock::duration::zero(), needed_time);
}
void Receiver::RequestKeyFrame() {
if (!last_key_frame_received_.is_null() &&
last_frame_consumed_ >= last_key_frame_received_ &&
!rtcp_builder_.is_picture_loss_indicator_set()) {
rtcp_builder_.SetPictureLossIndicator(true);
SendRtcp();
}
}
int Receiver::AdvanceToNextFrame() {
const FrameId immediate_next_frame = last_frame_consumed_ + 1;
// Scan the queue for the next frame that should be consumed. Typically, this
// is the very next frame; but if it is incomplete and already late for
// playout, consider skipping-ahead.
for (FrameId f = immediate_next_frame; f <= latest_frame_expected_; ++f) {
PendingFrame& entry = GetQueueEntry(f);
if (entry.collector.is_complete()) {
const EncryptedFrame& encrypted_frame =
entry.collector.PeekAtAssembledFrame();
if (f == immediate_next_frame) { // Typical case.
RECEIVER_VLOG << "AdvanceToNextFrame: Next in sequence (" << f << ')';
return FrameCrypto::GetPlaintextSize(encrypted_frame);
}
if (encrypted_frame.dependency != EncodedFrame::DEPENDS_ON_ANOTHER) {
// Found a frame after skipping past some frames. Drop the ones being
// skipped, advancing |last_frame_consumed_| before returning.
RECEIVER_VLOG << "AdvanceToNextFrame: Skipping-ahead → " << f;
DropAllFramesBefore(f);
return FrameCrypto::GetPlaintextSize(encrypted_frame);
}
// Conclusion: The frame in the current queue entry is complete, but
// depends on a prior incomplete frame. Continue scanning...
}
// Do not consider skipping past this frame if its estimated capture time is
// unknown. The implication here is that, if |estimated_capture_time| is
// set, the Receiver also knows whether any target playout delay changes
// were communicated from the Sender in the frame's first RTP packet.
if (!entry.estimated_capture_time) {
break;
}
// If this incomplete frame is not yet late for playout, simply wait for the
// rest of its packets to come in. However, do schedule a check to
// re-examine things at the time it would become a late frame, to possibly
// skip-over it.
const auto playout_time =
*entry.estimated_capture_time + ResolveTargetPlayoutDelay(f);
if (playout_time > (now_() + player_processing_time_)) {
ScheduleFrameReadyCheck(playout_time);
break;
}
}
RECEIVER_VLOG << "AdvanceToNextFrame: No frames ready. Last consumed was "
<< last_frame_consumed_ << '.';
return kNoFramesReady;
}
EncodedFrame Receiver::ConsumeNextFrame(absl::Span<uint8_t> buffer) {
// Assumption: The required call to AdvanceToNextFrame() ensures that
// |last_frame_consumed_| is set to one before the frame to be consumed here.
const FrameId frame_id = last_frame_consumed_ + 1;
OSP_CHECK_LE(frame_id, checkpoint_frame());
// Decrypt the frame, populating the given output |frame|.
PendingFrame& entry = GetQueueEntry(frame_id);
OSP_DCHECK(entry.collector.is_complete());
EncodedFrame frame;
frame.data = buffer;
crypto_.Decrypt(entry.collector.PeekAtAssembledFrame(), &frame);
OSP_DCHECK(entry.estimated_capture_time);
frame.reference_time =
*entry.estimated_capture_time + ResolveTargetPlayoutDelay(frame_id);
RECEIVER_VLOG << "ConsumeNextFrame → " << frame.frame_id << ": "
<< frame.data.size() << " payload bytes, RTP Timestamp "
<< frame.rtp_timestamp
.ToTimeSinceOrigin<microseconds>(rtp_timebase_)
.count()
<< " µs, to play-out "
<< to_microseconds(frame.reference_time - now_()).count()
<< " µs from now.";
entry.Reset();
last_frame_consumed_ = frame_id;
// Ensure the Consumer is notified if there are already more frames ready for
// consumption, and it hasn't explicitly called AdvanceToNextFrame() to check
// for itself.
ScheduleFrameReadyCheck();
return frame;
}
void Receiver::OnReceivedRtpPacket(Clock::time_point arrival_time,
std::vector<uint8_t> packet) {
const absl::optional<RtpPacketParser::ParseResult> part =
rtp_parser_.Parse(packet);
if (!part) {
RECEIVER_LOG(WARN) << "Parsing of " << packet.size()
<< " bytes as an RTP packet failed.";
return;
}
stats_tracker_.OnReceivedValidRtpPacket(part->sequence_number,
part->rtp_timestamp, arrival_time);
// Ignore packets for frames the Receiver is no longer interested in.
if (part->frame_id <= checkpoint_frame()) {
return;
}
// Extend the range of frames known to this Receiver, within the capacity of
// this Receiver's queue. Prepare the FrameCollectors to receive any
// newly-discovered frames.
if (part->frame_id > latest_frame_expected_) {
const FrameId max_allowed_frame_id =
last_frame_consumed_ + kMaxUnackedFrames;
if (part->frame_id > max_allowed_frame_id) {
RECEIVER_VLOG << "Dropping RTP packet for " << part->frame_id
<< ": Too many frames are already in-flight.";
return;
}
do {
++latest_frame_expected_;
GetQueueEntry(latest_frame_expected_)
.collector.set_frame_id(latest_frame_expected_);
} while (latest_frame_expected_ < part->frame_id);
RECEIVER_VLOG << "Advanced latest frame expected to "
<< latest_frame_expected_;
}
// Start-up edge case: Blatantly drop the first packet of all frames until the
// Receiver has processed at least one Sender Report containing the necessary
// clock-drift and lip-sync information (see OnReceivedRtcpPacket()). This is
// an inescapable data dependency. Note that this special case should almost
// never trigger, since a well-behaving Sender will send the first Sender
// Report RTCP packet before any of the RTP packets.
if (!last_sender_report_ && part->packet_id == FramePacketId{0}) {
RECEIVER_LOG(WARN) << "Dropping packet 0 of frame " << part->frame_id
<< " because it arrived before the first Sender Report.";
// Note: The Sender will have to re-transmit this dropped packet after the
// Sender Report to allow the Receiver to move forward.
return;
}
PendingFrame& pending_frame = GetQueueEntry(part->frame_id);
FrameCollector& collector = pending_frame.collector;
if (collector.is_complete()) {
// An extra, redundant |packet| was received. Do nothing since the frame was
// already complete.
return;
}
if (!collector.CollectRtpPacket(*part, &packet)) {
return; // Bad data in the parsed packet. Ignore it.
}
// The first packet in a frame contains timing information critical for
// computing this frame's (and all future frames') playout time. Process that,
// but only once.
if (part->packet_id == FramePacketId{0} &&
!pending_frame.estimated_capture_time) {
// Estimate the original capture time of this frame (at the Sender), in
// terms of the Receiver's clock: First, start with a reference time point
// from the Sender's clock (the one from the last Sender Report). Then,
// translate it into the equivalent reference time point in terms of the
// Receiver's clock by applying the measured offset between the two clocks.
// Finally, apply the RTP timestamp difference between the Sender Report and
// this frame to determine what the original capture time of this frame was.
pending_frame.estimated_capture_time =
last_sender_report_->reference_time + smoothed_clock_offset_.Current() +
(part->rtp_timestamp - last_sender_report_->rtp_timestamp)
.ToDuration<Clock::duration>(rtp_timebase_);
// If a target playout delay change was included in this packet, record it.
if (part->new_playout_delay > milliseconds::zero()) {
RECEIVER_VLOG << "Target playout delay changes to "
<< part->new_playout_delay.count() << " ms, as of "
<< part->frame_id;
RecordNewTargetPlayoutDelay(part->frame_id, part->new_playout_delay);
}
// Now that the estimated capture time is known, other frames may have just
// become ready, per the frame-skipping logic in AdvanceToNextFrame().
ScheduleFrameReadyCheck();
}
if (!collector.is_complete()) {
return; // Wait for the rest of the packets to come in.
}
const EncryptedFrame& encrypted_frame = collector.PeekAtAssembledFrame();
// Whenever a key frame has been received, the decoder has what it needs to
// recover. In this case, clear the PLI condition.
if (encrypted_frame.dependency == EncryptedFrame::KEY_FRAME) {
rtcp_builder_.SetPictureLossIndicator(false);
last_key_frame_received_ = part->frame_id;
}
// If this just-completed frame is the one right after the checkpoint frame,
// advance the checkpoint forward.
if (part->frame_id == (checkpoint_frame() + 1)) {
AdvanceCheckpoint(part->frame_id);
}
// Since a frame has become complete, schedule a check to see whether this or
// any other frames have become ready for consumption.
ScheduleFrameReadyCheck();
}
void Receiver::OnReceivedRtcpPacket(Clock::time_point arrival_time,
std::vector<uint8_t> packet) {
absl::optional<SenderReportParser::SenderReportWithId> parsed_report =
rtcp_parser_.Parse(packet);
if (!parsed_report) {
RECEIVER_LOG(WARN) << "Parsing of " << packet.size()
<< " bytes as an RTCP packet failed.";
return;
}
last_sender_report_ = std::move(parsed_report);
last_sender_report_arrival_time_ = arrival_time;
// Measure the offset between the Sender's clock and the Receiver's Clock.
// This will be used to translate reference timestamps from the Sender into
// timestamps that represent the exact same moment in time at the Receiver.
//
// Note: Due to design limitations in the Cast Streaming spec, the Receiver
// has no way to compute how long it took the Sender Report to travel over the
// network. The calculation here just ignores that, and so the
// |measured_offset| below will be larger than the true value by that amount.
// This will have the effect of a later-than-configured playout delay.
const Clock::duration measured_offset =
arrival_time - last_sender_report_->reference_time;
smoothed_clock_offset_.Update(arrival_time, measured_offset);
RECEIVER_VLOG
<< "Received Sender Report: Local clock is ahead of Sender's by "
<< to_microseconds(smoothed_clock_offset_.Current()).count()
<< " µs (minus one-way network transit time).";
RtcpReportBlock report;
report.ssrc = rtcp_session_.sender_ssrc();
stats_tracker_.PopulateNextReport(&report);
report.last_status_report_id = last_sender_report_->report_id;
report.SetDelaySinceLastReport(now_() - last_sender_report_arrival_time_);
rtcp_builder_.IncludeReceiverReportInNextPacket(report);
SendRtcp();
}
void Receiver::SendRtcp() {
// Collect ACK/NACK feedback for all active frames in the queue.
std::vector<PacketNack> packet_nacks;
std::vector<FrameId> frame_acks;
for (FrameId f = checkpoint_frame() + 1; f <= latest_frame_expected_; ++f) {
const FrameCollector& collector = GetQueueEntry(f).collector;
if (collector.is_complete()) {
frame_acks.push_back(f);
} else {
collector.GetMissingPackets(&packet_nacks);
}
}
// Build and send a compound RTCP packet.
const bool no_nacks = packet_nacks.empty();
rtcp_builder_.IncludeFeedbackInNextPacket(std::move(packet_nacks),
std::move(frame_acks));
last_rtcp_send_time_ = now_();
packet_router_->SendRtcpPacket(rtcp_builder_.BuildPacket(
last_rtcp_send_time_,
absl::Span<uint8_t>(rtcp_buffer_.get(), rtcp_buffer_capacity_)));
RECEIVER_VLOG << "Sent RTCP packet.";
// Schedule the automatic sending of another RTCP packet, if this method is
// not called within some bounded amount of time. While incomplete frames
// exist in the queue, send RTCP packets (with ACK/NACK feedback) frequently.
// When there are no incomplete frames, use a longer "keepalive" interval.
const Clock::duration interval =
(no_nacks ? kRtcpReportInterval : kNackFeedbackInterval);
rtcp_alarm_.Schedule([this] { SendRtcp(); }, last_rtcp_send_time_ + interval);
}
const Receiver::PendingFrame& Receiver::GetQueueEntry(FrameId frame_id) const {
return const_cast<Receiver*>(this)->GetQueueEntry(frame_id);
}
Receiver::PendingFrame& Receiver::GetQueueEntry(FrameId frame_id) {
return pending_frames_[(frame_id - FrameId::first()) %
pending_frames_.size()];
}
void Receiver::RecordNewTargetPlayoutDelay(FrameId as_of_frame,
milliseconds delay) {
OSP_DCHECK_GT(as_of_frame, checkpoint_frame());
// Prune-out entries from |playout_delay_changes_| that are no longer needed.
// At least one entry must always be kept (i.e., there must always be a
// "current" setting).
const FrameId next_frame = last_frame_consumed_ + 1;
const auto keep_one_before_it = std::find_if(
std::next(playout_delay_changes_.begin()), playout_delay_changes_.end(),
[&](const auto& entry) { return entry.first > next_frame; });
playout_delay_changes_.erase(playout_delay_changes_.begin(),
std::prev(keep_one_before_it));
// Insert the delay change entry, maintaining the ascending ordering of the
// vector.
const auto insert_it = std::find_if(
playout_delay_changes_.begin(), playout_delay_changes_.end(),
[&](const auto& entry) { return entry.first > as_of_frame; });
playout_delay_changes_.emplace(insert_it, as_of_frame, delay);
OSP_DCHECK(AreElementsSortedAndUnique(playout_delay_changes_));
}
milliseconds Receiver::ResolveTargetPlayoutDelay(FrameId frame_id) const {
OSP_DCHECK_GT(frame_id, last_frame_consumed_);
#if OSP_DCHECK_IS_ON()
// Extra precaution: Ensure all possible playout delay changes are known. In
// other words, every unconsumed frame in the queue, up to (and including)
// |frame_id|, must have an assigned estimated_capture_time.
for (FrameId f = last_frame_consumed_ + 1; f <= frame_id; ++f) {
OSP_DCHECK(GetQueueEntry(f).estimated_capture_time)
<< " don't know whether there was a playout delay change for frame "
<< f;
}
#endif
const auto it = std::find_if(
playout_delay_changes_.crbegin(), playout_delay_changes_.crend(),
[&](const auto& entry) { return entry.first <= frame_id; });
OSP_DCHECK(it != playout_delay_changes_.crend());
return it->second;
}
void Receiver::AdvanceCheckpoint(FrameId new_checkpoint) {
OSP_DCHECK_GT(new_checkpoint, checkpoint_frame());
OSP_DCHECK_LE(new_checkpoint, latest_frame_expected_);
while (new_checkpoint < latest_frame_expected_) {
const FrameId next = new_checkpoint + 1;
if (!GetQueueEntry(next).collector.is_complete()) {
break;
}
new_checkpoint = next;
}
RECEIVER_VLOG << "Advancing checkpoint to " << new_checkpoint;
set_checkpoint_frame(new_checkpoint);
rtcp_builder_.SetPlayoutDelay(ResolveTargetPlayoutDelay(new_checkpoint));
SendRtcp();
}
void Receiver::DropAllFramesBefore(FrameId first_kept_frame) {
// The following DCHECKs are verifying that this method is only being called
// because one or more incomplete frames are being skipped-over.
const FrameId first_to_drop = last_frame_consumed_ + 1;
OSP_DCHECK_GT(first_kept_frame, first_to_drop);
OSP_DCHECK_GT(first_kept_frame, checkpoint_frame());
OSP_DCHECK_LE(first_kept_frame, latest_frame_expected_);
// Reset each of the frames being dropped, pretending that they were consumed.
for (FrameId f = first_to_drop; f < first_kept_frame; ++f) {
PendingFrame& entry = GetQueueEntry(f);
// Pedantic sanity-check: Ensure the "target playout delay change" data
// dependency was satisfied. See comments in AdvanceToNextFrame().
OSP_DCHECK(entry.estimated_capture_time);
entry.Reset();
}
last_frame_consumed_ = first_kept_frame - 1;
RECEIVER_LOG(INFO) << "Artificially advancing checkpoint after skipping.";
AdvanceCheckpoint(first_kept_frame);
}
void Receiver::ScheduleFrameReadyCheck(Clock::time_point when) {
consumption_alarm_.Schedule(
[this] {
if (consumer_) {
const int next_frame_buffer_size = AdvanceToNextFrame();
if (next_frame_buffer_size != kNoFramesReady) {
consumer_->OnFramesReady(next_frame_buffer_size);
}
}
},
when);
}
Receiver::Consumer::~Consumer() = default;
Receiver::PendingFrame::PendingFrame() = default;
Receiver::PendingFrame::~PendingFrame() = default;
void Receiver::PendingFrame::Reset() {
collector.Reset();
estimated_capture_time = absl::nullopt;
}
// static
constexpr milliseconds Receiver::kDefaultPlayerProcessingTime;
constexpr int Receiver::kNoFramesReady;
constexpr milliseconds Receiver::kNackFeedbackInterval;
} // namespace cast
} // namespace openscreen