blob: 90e2d5465806424b1bb809ea25b157c91a38a527 [file] [log] [blame]
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cast/streaming/compound_rtcp_parser.h"
#include <algorithm>
#include "cast/streaming/packet_util.h"
#include "cast/streaming/rtcp_session.h"
#include "util/osp_logging.h"
#include "util/std_util.h"
namespace openscreen {
namespace cast {
namespace {
// Use the Clock's minimum time value (an impossible value, waaaaay before epoch
// time) to represent unset time_point values.
constexpr auto kNullTimePoint = Clock::time_point::min();
// Canonicalizes the just-parsed list of packet-specific NACKs so that the
// CompoundRtcpParser::Client can make several simplifying assumptions when
// processing the results.
void CanonicalizePacketNackVector(std::vector<PacketNack>* packets) {
// First, sort all elements. The sort order is the normal lexicographical
// ordering, with one exception: The special kAllPacketsLost packet_id value
// should be treated as coming before all others. This special sort order
// allows the filtering algorithm below to be simpler, and only require one
// pass; and the final result will be the normal lexicographically-sorted
// output the CompoundRtcpParser::Client expects.
std::sort(packets->begin(), packets->end(),
[](const PacketNack& a, const PacketNack& b) {
// Since the comparator is a hot code path, use a simple modular
// arithmetic trick in lieu of extra branching: When comparing the
// tuples, map all packet_id values to packet_id + 1, mod 0x10000.
// This results in the desired sorting behavior since
// kAllPacketsLost (0xffff) wraps-around to 0x0000, and all other
// values become N + 1.
static_assert(static_cast<FramePacketId>(kAllPacketsLost + 1) <
FramePacketId{0x0000 + 1},
"comparison requires integer wrap-around");
return PacketNack{a.frame_id,
static_cast<FramePacketId>(a.packet_id + 1)} <
PacketNack{b.frame_id,
static_cast<FramePacketId>(b.packet_id + 1)};
});
// De-duplicate elements. Two possible cases:
//
// 1. Identical elements (same FrameId+FramePacketId).
// 2. If there are any elements with kAllPacketsLost as the packet ID,
// prune-out all other elements having the same frame ID, as they are
// redundant.
//
// This is done by walking forwards over the sorted vector and deciding which
// elements to keep. Those that are kept are stacked-up at the front of the
// vector. After the "to-keep" pass, the vector is truncated to remove the
// left-over garbage at the end.
auto have_it = packets->begin();
if (have_it != packets->end()) {
auto kept_it = have_it; // Always keep the first element.
for (++have_it; have_it != packets->end(); ++have_it) {
if (have_it->frame_id != kept_it->frame_id ||
(kept_it->packet_id != kAllPacketsLost &&
have_it->packet_id != kept_it->packet_id)) { // Keep it.
++kept_it;
*kept_it = *have_it;
}
}
packets->erase(++kept_it, packets->end());
}
}
} // namespace
CompoundRtcpParser::CompoundRtcpParser(RtcpSession* session,
CompoundRtcpParser::Client* client)
: session_(session),
client_(client),
latest_receiver_timestamp_(kNullTimePoint) {
OSP_DCHECK(session_);
OSP_DCHECK(client_);
}
CompoundRtcpParser::~CompoundRtcpParser() = default;
bool CompoundRtcpParser::Parse(absl::Span<const uint8_t> buffer,
FrameId max_feedback_frame_id) {
// These will contain the results from the various ParseXYZ() methods. None of
// the results will be dispatched to the Client until the entire parse
// succeeds.
Clock::time_point receiver_reference_time = kNullTimePoint;
absl::optional<RtcpReportBlock> receiver_report;
FrameId checkpoint_frame_id;
std::chrono::milliseconds target_playout_delay{};
std::vector<FrameId> received_frames;
std::vector<PacketNack> packet_nacks;
bool picture_loss_indicator = false;
// The data contained in |buffer| can be a "compound packet," which means that
// it can be the concatenation of multiple RTCP packets. The loop here
// processes each one-by-one.
while (!buffer.empty()) {
const auto header = RtcpCommonHeader::Parse(buffer);
if (!header) {
return false;
}
buffer.remove_prefix(kRtcpCommonHeaderSize);
if (static_cast<int>(buffer.size()) < header->payload_size) {
return false;
}
const absl::Span<const uint8_t> payload =
buffer.subspan(0, header->payload_size);
buffer.remove_prefix(header->payload_size);
switch (header->packet_type) {
case RtcpPacketType::kReceiverReport:
if (!ParseReceiverReport(payload, header->with.report_count,
&receiver_report)) {
return false;
}
break;
case RtcpPacketType::kPayloadSpecific:
switch (header->with.subtype) {
case RtcpSubtype::kPictureLossIndicator:
if (!ParsePictureLossIndicator(payload, &picture_loss_indicator)) {
return false;
}
break;
case RtcpSubtype::kFeedback:
if (!ParseFeedback(payload, max_feedback_frame_id,
&checkpoint_frame_id, &target_playout_delay,
&received_frames, &packet_nacks)) {
return false;
}
break;
default:
// Ignore: Unimplemented or not part of the Cast Streaming spec.
break;
}
break;
case RtcpPacketType::kExtendedReports:
if (!ParseExtendedReports(payload, &receiver_reference_time)) {
return false;
}
break;
default:
// Ignored, unimplemented or not part of the Cast Streaming spec.
break;
}
}
// A well-behaved Cast Streaming Receiver will always include a reference time
// report. This essentially "timestamps" the RTCP packets just parsed.
// However, the spec does not explicitly require this be included. When it is
// present, improve the stability of the system by ignoring stale/out-of-order
// RTCP packets.
if (receiver_reference_time != kNullTimePoint) {
// If the packet is out-of-order (e.g., it got delayed/shuffled when going
// through the network), just ignore it. Since RTCP packets always include
// all the necessary current state from the peer, dropping them does not
// mean important signals will be lost. In fact, it can actually be harmful
// to process compound RTCP packets out-of-order.
if (latest_receiver_timestamp_ != kNullTimePoint &&
receiver_reference_time < latest_receiver_timestamp_) {
return true;
}
latest_receiver_timestamp_ = receiver_reference_time;
client_->OnReceiverReferenceTimeAdvanced(latest_receiver_timestamp_);
}
// At this point, the packet is known to be well-formed. Dispatch events of
// interest to the Client.
if (receiver_report) {
client_->OnReceiverReport(*receiver_report);
}
if (!checkpoint_frame_id.is_null()) {
client_->OnReceiverCheckpoint(checkpoint_frame_id, target_playout_delay);
}
if (!received_frames.empty()) {
OSP_DCHECK(AreElementsSortedAndUnique(received_frames));
client_->OnReceiverHasFrames(std::move(received_frames));
}
CanonicalizePacketNackVector(&packet_nacks);
if (!packet_nacks.empty()) {
client_->OnReceiverIsMissingPackets(std::move(packet_nacks));
}
if (picture_loss_indicator) {
client_->OnReceiverIndicatesPictureLoss();
}
return true;
}
bool CompoundRtcpParser::ParseReceiverReport(
absl::Span<const uint8_t> in,
int num_report_blocks,
absl::optional<RtcpReportBlock>* receiver_report) {
if (in.size() < kRtcpReceiverReportSize) {
return false;
}
if (ConsumeField<uint32_t>(&in) == session_->receiver_ssrc()) {
*receiver_report = RtcpReportBlock::ParseOne(in, num_report_blocks,
session_->sender_ssrc());
}
return true;
}
bool CompoundRtcpParser::ParseFeedback(
absl::Span<const uint8_t> in,
FrameId max_feedback_frame_id,
FrameId* checkpoint_frame_id,
std::chrono::milliseconds* target_playout_delay,
std::vector<FrameId>* received_frames,
std::vector<PacketNack>* packet_nacks) {
OSP_DCHECK(!max_feedback_frame_id.is_null());
if (static_cast<int>(in.size()) < kRtcpFeedbackHeaderSize) {
return false;
}
if (ConsumeField<uint32_t>(&in) != session_->receiver_ssrc() ||
ConsumeField<uint32_t>(&in) != session_->sender_ssrc()) {
return true; // Ignore report from mismatched SSRC(s).
}
if (ConsumeField<uint32_t>(&in) != kRtcpCastIdentifierWord) {
return false;
}
const FrameId feedback_frame_id =
max_feedback_frame_id.ExpandLessThanOrEqual(ConsumeField<uint8_t>(&in));
const int loss_field_count = ConsumeField<uint8_t>(&in);
const auto playout_delay =
std::chrono::milliseconds(ConsumeField<uint16_t>(&in));
// Don't process feedback that would move the checkpoint backwards. The Client
// makes assumptions about what frame data and other tracking state can be
// discarded based on a monotonically non-decreasing checkpoint FrameId.
if (!checkpoint_frame_id->is_null() &&
*checkpoint_frame_id > feedback_frame_id) {
return true;
}
*checkpoint_frame_id = feedback_frame_id;
*target_playout_delay = playout_delay;
received_frames->clear();
packet_nacks->clear();
if (static_cast<int>(in.size()) <
(kRtcpFeedbackLossFieldSize * loss_field_count)) {
return false;
}
// Parse the NACKs.
for (int i = 0; i < loss_field_count; ++i) {
const FrameId frame_id =
feedback_frame_id.ExpandGreaterThan(ConsumeField<uint8_t>(&in));
FramePacketId packet_id = ConsumeField<uint16_t>(&in);
uint8_t bits = ConsumeField<uint8_t>(&in);
packet_nacks->push_back(PacketNack{frame_id, packet_id});
if (packet_id != kAllPacketsLost) {
// Translate each set bit in the bit vector into another missing
// FramePacketId.
while (bits) {
++packet_id;
if (bits & 1) {
packet_nacks->push_back(PacketNack{frame_id, packet_id});
}
bits >>= 1;
}
}
}
// Parse the optional CST2 feedback (frame-level ACKs).
if (static_cast<int>(in.size()) < kRtcpFeedbackAckHeaderSize ||
ConsumeField<uint32_t>(&in) != kRtcpCst2IdentifierWord) {
// Optional CST2 extended feedback is not present. For backwards-
// compatibility reasons, do not consider any extra "garbage" in the packet
// that doesn't match 'CST2' as corrupted input.
return true;
}
// Skip over the "Feedback Count" field. It's currently unused, though it
// might be useful for event tracing later...
in.remove_prefix(sizeof(uint8_t));
const int ack_bitvector_octet_count = ConsumeField<uint8_t>(&in);
if (static_cast<int>(in.size()) < ack_bitvector_octet_count) {
return false;
}
// Translate each set bit in the bit vector into a FrameId. See the
// explanation of this wire format in rtp_defines.h for where the "plus two"
// comes from.
FrameId starting_frame_id = feedback_frame_id + 2;
for (int i = 0; i < ack_bitvector_octet_count; ++i) {
uint8_t bits = ConsumeField<uint8_t>(&in);
FrameId frame_id = starting_frame_id;
while (bits) {
if (bits & 1) {
received_frames->push_back(frame_id);
}
++frame_id;
bits >>= 1;
}
constexpr int kBitsPerOctet = 8;
starting_frame_id += kBitsPerOctet;
}
return true;
}
bool CompoundRtcpParser::ParseExtendedReports(
absl::Span<const uint8_t> in,
Clock::time_point* receiver_reference_time) {
if (static_cast<int>(in.size()) < kRtcpExtendedReportHeaderSize) {
return false;
}
if (ConsumeField<uint32_t>(&in) != session_->receiver_ssrc()) {
return true; // Ignore report from unknown receiver.
}
while (!in.empty()) {
// All extended report types have the same 4-byte subheader.
if (static_cast<int>(in.size()) < kRtcpExtendedReportBlockHeaderSize) {
return false;
}
const uint8_t block_type = ConsumeField<uint8_t>(&in);
in.remove_prefix(sizeof(uint8_t)); // Skip the "reserved" byte.
const int block_data_size =
static_cast<int>(ConsumeField<uint16_t>(&in)) * 4;
if (static_cast<int>(in.size()) < block_data_size) {
return false;
}
if (block_type == kRtcpReceiverReferenceTimeReportBlockType) {
if (block_data_size != sizeof(uint64_t)) {
return false; // Length field must always be 2 words.
}
*receiver_reference_time = session_->ntp_converter().ToLocalTime(
ReadBigEndian<uint64_t>(in.data()));
} else {
// Ignore any other type of extended report.
}
in.remove_prefix(block_data_size);
}
return true;
}
bool CompoundRtcpParser::ParsePictureLossIndicator(
absl::Span<const uint8_t> in,
bool* picture_loss_indicator) {
if (static_cast<int>(in.size()) < kRtcpPictureLossIndicatorHeaderSize) {
return false;
}
// Only set the flag if the PLI is from the Receiver and to this Sender.
if (ConsumeField<uint32_t>(&in) == session_->receiver_ssrc() &&
ConsumeField<uint32_t>(&in) == session_->sender_ssrc()) {
*picture_loss_indicator = true;
}
return true;
}
CompoundRtcpParser::Client::Client() = default;
CompoundRtcpParser::Client::~Client() = default;
void CompoundRtcpParser::Client::OnReceiverReferenceTimeAdvanced(
Clock::time_point reference_time) {}
void CompoundRtcpParser::Client::OnReceiverReport(
const RtcpReportBlock& receiver_report) {}
void CompoundRtcpParser::Client::OnReceiverIndicatesPictureLoss() {}
void CompoundRtcpParser::Client::OnReceiverCheckpoint(
FrameId frame_id,
std::chrono::milliseconds playout_delay) {}
void CompoundRtcpParser::Client::OnReceiverHasFrames(
std::vector<FrameId> acks) {}
void CompoundRtcpParser::Client::OnReceiverIsMissingPackets(
std::vector<PacketNack> nacks) {}
} // namespace cast
} // namespace openscreen