blob: 484fab74d994917b9c8045a90b9f474bc0a43c44 [file] [log] [blame]
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
/**************************************************************************************\
* line samplers *
\**************************************************************************************/
CV_IMPL int
cvSampleLine( const void* img, CvPoint pt1, CvPoint pt2,
void* _buffer, int connectivity )
{
int count = -1;
CV_FUNCNAME( "cvSampleLine" );
__BEGIN__;
int i, coi = 0, pix_size;
CvMat stub, *mat = (CvMat*)img;
CvLineIterator iterator;
uchar* buffer = (uchar*)_buffer;
CV_CALL( mat = cvGetMat( mat, &stub, &coi ));
if( coi != 0 )
CV_ERROR( CV_BadCOI, "" );
if( !buffer )
CV_ERROR( CV_StsNullPtr, "" );
CV_CALL( count = cvInitLineIterator( mat, pt1, pt2, &iterator, connectivity ));
pix_size = CV_ELEM_SIZE(mat->type);
for( i = 0; i < count; i++ )
{
CV_MEMCPY_AUTO( buffer, iterator.ptr, pix_size );
buffer += pix_size;
CV_NEXT_LINE_POINT( iterator );
}
__END__;
return count;
}
static const void*
icvAdjustRect( const void* srcptr, int src_step, int pix_size,
CvSize src_size, CvSize win_size,
CvPoint ip, CvRect* pRect )
{
CvRect rect;
const char* src = (const char*)srcptr;
if( ip.x >= 0 )
{
src += ip.x*pix_size;
rect.x = 0;
}
else
{
rect.x = -ip.x;
if( rect.x > win_size.width )
rect.x = win_size.width;
}
if( ip.x + win_size.width < src_size.width )
rect.width = win_size.width;
else
{
rect.width = src_size.width - ip.x - 1;
if( rect.width < 0 )
{
src += rect.width*pix_size;
rect.width = 0;
}
assert( rect.width <= win_size.width );
}
if( ip.y >= 0 )
{
src += ip.y * src_step;
rect.y = 0;
}
else
rect.y = -ip.y;
if( ip.y + win_size.height < src_size.height )
rect.height = win_size.height;
else
{
rect.height = src_size.height - ip.y - 1;
if( rect.height < 0 )
{
src += rect.height*src_step;
rect.height = 0;
}
}
*pRect = rect;
return src - rect.x*pix_size;
}
#define ICV_DEF_GET_RECT_SUB_PIX_FUNC( flavor, srctype, dsttype, worktype, \
cast_macro, scale_macro, cast_macro2 )\
CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C1R \
( const srctype* src, int src_step, CvSize src_size, \
dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \
{ \
CvPoint ip; \
worktype a11, a12, a21, a22, b1, b2; \
float a, b; \
int i, j; \
\
center.x -= (win_size.width-1)*0.5f; \
center.y -= (win_size.height-1)*0.5f; \
\
ip.x = cvFloor( center.x ); \
ip.y = cvFloor( center.y ); \
\
a = center.x - ip.x; \
b = center.y - ip.y; \
a11 = scale_macro((1.f-a)*(1.f-b)); \
a12 = scale_macro(a*(1.f-b)); \
a21 = scale_macro((1.f-a)*b); \
a22 = scale_macro(a*b); \
b1 = scale_macro(1.f - b); \
b2 = scale_macro(b); \
\
src_step /= sizeof(src[0]); \
dst_step /= sizeof(dst[0]); \
\
if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \
0 <= ip.y && ip.y + win_size.height < src_size.height ) \
{ \
/* extracted rectangle is totally inside the image */ \
src += ip.y * src_step + ip.x; \
\
if( icvCopySubpix_##flavor##_C1R_p && \
icvCopySubpix_##flavor##_C1R_p( src, src_step*sizeof(src[0]), \
dst, dst_step*sizeof(dst[0]), \
win_size, a, b ) >= 0 ) \
return CV_OK; \
\
for( i = 0; i < win_size.height; i++, src += src_step, \
dst += dst_step ) \
{ \
for( j = 0; j <= win_size.width - 2; j += 2 ) \
{ \
worktype s0 = cast_macro(src[j])*a11 + \
cast_macro(src[j+1])*a12 + \
cast_macro(src[j+src_step])*a21 + \
cast_macro(src[j+src_step+1])*a22; \
worktype s1 = cast_macro(src[j+1])*a11 + \
cast_macro(src[j+2])*a12 + \
cast_macro(src[j+src_step+1])*a21 + \
cast_macro(src[j+src_step+2])*a22; \
\
dst[j] = (dsttype)cast_macro2(s0); \
dst[j+1] = (dsttype)cast_macro2(s1); \
} \
\
for( ; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j])*a11 + \
cast_macro(src[j+1])*a12 + \
cast_macro(src[j+src_step])*a21 + \
cast_macro(src[j+src_step+1])*a22; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
} \
} \
else \
{ \
CvRect r; \
\
src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \
sizeof(*src), src_size, win_size,ip, &r); \
\
for( i = 0; i < win_size.height; i++, dst += dst_step ) \
{ \
const srctype *src2 = src + src_step; \
\
if( i < r.y || i >= r.height ) \
src2 -= src_step; \
\
for( j = 0; j < r.x; j++ ) \
{ \
worktype s0 = cast_macro(src[r.x])*b1 + \
cast_macro(src2[r.x])*b2; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
\
for( ; j < r.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j])*a11 + \
cast_macro(src[j+1])*a12 + \
cast_macro(src2[j])*a21 + \
cast_macro(src2[j+1])*a22; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
\
for( ; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[r.width])*b1 + \
cast_macro(src2[r.width])*b2; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
\
if( i < r.height ) \
src = src2; \
} \
} \
\
return CV_OK; \
}
#define ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, worktype, \
cast_macro, scale_macro, mul_macro )\
static CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C3R \
( const srctype* src, int src_step, CvSize src_size, \
dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \
{ \
CvPoint ip; \
worktype a, b; \
int i, j; \
\
center.x -= (win_size.width-1)*0.5f; \
center.y -= (win_size.height-1)*0.5f; \
\
ip.x = cvFloor( center.x ); \
ip.y = cvFloor( center.y ); \
\
a = scale_macro( center.x - ip.x ); \
b = scale_macro( center.y - ip.y ); \
\
src_step /= sizeof( src[0] ); \
dst_step /= sizeof( dst[0] ); \
\
if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \
0 <= ip.y && ip.y + win_size.height < src_size.height ) \
{ \
/* extracted rectangle is totally inside the image */ \
src += ip.y * src_step + ip.x*3; \
\
for( i = 0; i < win_size.height; i++, src += src_step, \
dst += dst_step ) \
{ \
for( j = 0; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j*3]); \
worktype s1 = cast_macro(src[j*3 + src_step]); \
s0 += mul_macro( a, (cast_macro(src[j*3+3]) - s0)); \
s1 += mul_macro( a, (cast_macro(src[j*3+3+src_step]) - s1));\
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+1]); \
s1 = cast_macro(src[j*3+1 + src_step]); \
s0 += mul_macro( a, (cast_macro(src[j*3+4]) - s0)); \
s1 += mul_macro( a, (cast_macro(src[j*3+4+src_step]) - s1));\
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+2]); \
s1 = cast_macro(src[j*3+2 + src_step]); \
s0 += mul_macro( a, (cast_macro(src[j*3+5]) - s0)); \
s1 += mul_macro( a, (cast_macro(src[j*3+5+src_step]) - s1));\
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
} \
} \
else \
{ \
CvRect r; \
\
src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \
sizeof(*src)*3, src_size, win_size, ip, &r ); \
\
for( i = 0; i < win_size.height; i++, dst += dst_step ) \
{ \
const srctype *src2 = src + src_step; \
\
if( i < r.y || i >= r.height ) \
src2 -= src_step; \
\
for( j = 0; j < r.x; j++ ) \
{ \
worktype s0 = cast_macro(src[r.x*3]); \
worktype s1 = cast_macro(src2[r.x*3]); \
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.x*3+1]); \
s1 = cast_macro(src2[r.x*3+1]); \
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.x*3+2]); \
s1 = cast_macro(src2[r.x*3+2]); \
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
\
for( ; j < r.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j*3]); \
worktype s1 = cast_macro(src2[j*3]); \
s0 += mul_macro( a, (cast_macro(src[j*3 + 3]) - s0)); \
s1 += mul_macro( a, (cast_macro(src2[j*3 + 3]) - s1)); \
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+1]); \
s1 = cast_macro(src2[j*3+1]); \
s0 += mul_macro( a, (cast_macro(src[j*3 + 4]) - s0)); \
s1 += mul_macro( a, (cast_macro(src2[j*3 + 4]) - s1)); \
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+2]); \
s1 = cast_macro(src2[j*3+2]); \
s0 += mul_macro( a, (cast_macro(src[j*3 + 5]) - s0)); \
s1 += mul_macro( a, (cast_macro(src2[j*3 + 5]) - s1)); \
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
\
for( ; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[r.width*3]); \
worktype s1 = cast_macro(src2[r.width*3]); \
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.width*3+1]); \
s1 = cast_macro(src2[r.width*3+1]); \
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.width*3+2]); \
s1 = cast_macro(src2[r.width*3+2]); \
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
\
if( i < r.height ) \
src = src2; \
} \
} \
\
return CV_OK; \
}
CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center )
{
CvPoint ip;
float a12, a22, b1, b2;
float a, b;
double s = 0;
int i, j;
center.x -= (win_size.width-1)*0.5f;
center.y -= (win_size.height-1)*0.5f;
ip.x = cvFloor( center.x );
ip.y = cvFloor( center.y );
if( win_size.width <= 0 || win_size.height <= 0 )
return CV_BADRANGE_ERR;
a = center.x - ip.x;
b = center.y - ip.y;
a = MAX(a,0.0001f);
a12 = a*(1.f-b);
a22 = a*b;
b1 = 1.f - b;
b2 = b;
s = (1. - a)/a;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
if( 0 <= ip.x && ip.x + win_size.width < src_size.width &&
0 <= ip.y && ip.y + win_size.height < src_size.height )
{
// extracted rectangle is totally inside the image
src += ip.y * src_step + ip.x;
#if 0
if( icvCopySubpix_8u32f_C1R_p &&
icvCopySubpix_8u32f_C1R_p( src, src_step, dst,
dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 )
return CV_OK;
#endif
for( ; win_size.height--; src += src_step, dst += dst_step )
{
float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step]));
for( j = 0; j < win_size.width; j++ )
{
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]);
dst[j] = prev + t;
prev = (float)(t*s);
}
}
}
else
{
CvRect r;
src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src),
sizeof(*src), src_size, win_size,ip, &r);
for( i = 0; i < win_size.height; i++, dst += dst_step )
{
const uchar *src2 = src + src_step;
if( i < r.y || i >= r.height )
src2 -= src_step;
for( j = 0; j < r.x; j++ )
{
float s0 = CV_8TO32F(src[r.x])*b1 +
CV_8TO32F(src2[r.x])*b2;
dst[j] = (float)(s0);
}
if( j < r.width )
{
float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j]));
for( ; j < r.width; j++ )
{
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]);
dst[j] = prev + t;
prev = (float)(t*s);
}
}
for( ; j < win_size.width; j++ )
{
float s0 = CV_8TO32F(src[r.width])*b1 +
CV_8TO32F(src2[r.width])*b2;
dst[j] = (float)(s0);
}
if( i < r.height )
src = src2;
}
}
return CV_OK;
}
#define ICV_SHIFT 16
#define ICV_SCALE(x) cvRound((x)*(1 << ICV_SHIFT))
#define ICV_MUL_SCALE(x,y) (((x)*(y) + (1 << (ICV_SHIFT-1))) >> ICV_SHIFT)
#define ICV_DESCALE(x) (((x)+(1 << (ICV_SHIFT-1))) >> ICV_SHIFT)
icvCopySubpix_8u_C1R_t icvCopySubpix_8u_C1R_p = 0;
icvCopySubpix_8u32f_C1R_t icvCopySubpix_8u32f_C1R_p = 0;
icvCopySubpix_32f_C1R_t icvCopySubpix_32f_C1R_p = 0;
ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_DESCALE )
//ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_NOP )
ICV_DEF_GET_RECT_SUB_PIX_FUNC( 32f, float, float, float, CV_NOP, CV_NOP, CV_NOP )
ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_MUL_SCALE )
ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_MUL )
ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 32f, float, float, float, CV_NOP, CV_NOP, CV_MUL )
#define ICV_DEF_INIT_SUBPIX_TAB( FUNCNAME, FLAG ) \
static void icvInit##FUNCNAME##FLAG##Table( CvFuncTable* tab ) \
{ \
tab->fn_2d[CV_8U] = (void*)icv##FUNCNAME##_8u_##FLAG; \
tab->fn_2d[CV_32F] = (void*)icv##FUNCNAME##_32f_##FLAG; \
\
tab->fn_2d[1] = (void*)icv##FUNCNAME##_8u32f_##FLAG; \
}
ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C1R )
ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C3R )
typedef CvStatus (CV_STDCALL *CvGetRectSubPixFunc)( const void* src, int src_step,
CvSize src_size, void* dst,
int dst_step, CvSize win_size,
CvPoint2D32f center );
CV_IMPL void
cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center )
{
static CvFuncTable gr_tab[2];
static int inittab = 0;
CV_FUNCNAME( "cvGetRectSubPix" );
__BEGIN__;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
CvSize src_size, dst_size;
CvGetRectSubPixFunc func;
int cn, src_step, dst_step;
if( !inittab )
{
icvInitGetRectSubPixC1RTable( gr_tab + 0 );
icvInitGetRectSubPixC3RTable( gr_tab + 1 );
inittab = 1;
}
if( !CV_IS_MAT(src))
CV_CALL( src = cvGetMat( src, &srcstub ));
if( !CV_IS_MAT(dst))
CV_CALL( dst = cvGetMat( dst, &dststub ));
cn = CV_MAT_CN( src->type );
if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst ))
CV_ERROR( CV_StsUnsupportedFormat, "" );
src_size = cvGetMatSize( src );
dst_size = cvGetMatSize( dst );
src_step = src->step ? src->step : CV_STUB_STEP;
dst_step = dst->step ? dst->step : CV_STUB_STEP;
if( dst_size.width > src_size.width || dst_size.height > src_size.height )
CV_ERROR( CV_StsBadSize, "destination ROI must be smaller than source ROI" );
if( CV_ARE_DEPTHS_EQ( src, dst ))
{
func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]);
}
else
{
if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F )
CV_ERROR( CV_StsUnsupportedFormat, "" );
func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[1]);
}
if( !func )
CV_ERROR( CV_StsUnsupportedFormat, "" );
IPPI_CALL( func( src->data.ptr, src_step, src_size,
dst->data.ptr, dst_step, dst_size, center ));
__END__;
}
#define ICV_32F8U(x) ((uchar)cvRound(x))
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \
worktype, cast_macro, cvt ) \
CvStatus CV_STDCALL \
icvGetQuadrangleSubPix_##flavor##_C1R \
( const srctype * src, int src_step, CvSize src_size, \
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
{ \
int x, y; \
double dx = (win_size.width - 1)*0.5; \
double dy = (win_size.height - 1)*0.5; \
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
\
src_step /= sizeof(srctype); \
dst_step /= sizeof(dsttype); \
\
for( y = 0; y < win_size.height; y++, dst += dst_step ) \
{ \
double xs = A12*y + A13; \
double ys = A22*y + A23; \
double xe = A11*(win_size.width-1) + A12*y + A13; \
double ye = A21*(win_size.width-1) + A22*y + A23; \
\
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ); \
int iys = cvFloor( ys ); \
const srctype *ptr = src + src_step*iys + ixs; \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \
worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\
xs += A11; \
ys += A21; \
\
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
else \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ), iys = cvFloor( ys ); \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
const srctype *ptr0, *ptr1; \
worktype p0, p1; \
xs += A11; ys += A21; \
\
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
else \
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
\
if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \
{ \
p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \
p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \
} \
else \
{ \
ixs = ixs < 0 ? 0 : src_size.width - 1; \
p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \
} \
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
} \
\
return CV_OK; \
}
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, \
worktype, cast_macro, cvt ) \
static CvStatus CV_STDCALL \
icvGetQuadrangleSubPix_##flavor##_C3R \
( const srctype * src, int src_step, CvSize src_size, \
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
{ \
int x, y; \
double dx = (win_size.width - 1)*0.5; \
double dy = (win_size.height - 1)*0.5; \
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
\
src_step /= sizeof(srctype); \
dst_step /= sizeof(dsttype); \
\
for( y = 0; y < win_size.height; y++, dst += dst_step ) \
{ \
double xs = A12*y + A13; \
double ys = A22*y + A23; \
double xe = A11*(win_size.width-1) + A12*y + A13; \
double ye = A21*(win_size.width-1) + A22*y + A23; \
\
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ); \
int iys = cvFloor( ys ); \
const srctype *ptr = src + src_step*iys + ixs*3; \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
worktype p0, p1; \
xs += A11; \
ys += A21; \
\
p0 = cvt(ptr[0])*a1 + cvt(ptr[3])*a; \
p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+3])*a; \
dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr[1])*a1 + cvt(ptr[4])*a; \
p1 = cvt(ptr[src_step+1])*a1 + cvt(ptr[src_step+4])*a; \
dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr[2])*a1 + cvt(ptr[5])*a; \
p1 = cvt(ptr[src_step+2])*a1 + cvt(ptr[src_step+5])*a; \
dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
else \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor(xs), iys = cvFloor(ys); \
double a = xs - ixs, b = ys - iys; \
const srctype *ptr0, *ptr1; \
xs += A11; ys += A21; \
\
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
else \
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
\
if( (unsigned)ixs < (unsigned)(src_size.width - 1) ) \
{ \
double a1 = 1.f - a; \
worktype p0, p1; \
ptr0 += ixs*3; ptr1 += ixs*3; \
p0 = cvt(ptr0[0])*a1 + cvt(ptr0[3])*a; \
p1 = cvt(ptr1[0])*a1 + cvt(ptr1[3])*a; \
dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr0[1])*a1 + cvt(ptr0[4])*a; \
p1 = cvt(ptr1[1])*a1 + cvt(ptr1[4])*a; \
dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr0[2])*a1 + cvt(ptr0[5])*a; \
p1 = cvt(ptr1[2])*a1 + cvt(ptr1[5])*a; \
dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \
} \
else \
{ \
double b1 = 1.f - b; \
ixs = ixs < 0 ? 0 : src_size.width - 1; \
ptr0 += ixs*3; ptr1 += ixs*3; \
\
dst[x*3] = cast_macro(cvt(ptr0[0])*b1 + cvt(ptr1[0])*b);\
dst[x*3+1]=cast_macro(cvt(ptr0[1])*b1 + cvt(ptr1[1])*b);\
dst[x*3+2]=cast_macro(cvt(ptr0[2])*b1 + cvt(ptr1[2])*b);\
} \
} \
} \
} \
\
return CV_OK; \
}
/*#define srctype uchar
#define dsttype uchar
#define worktype float
#define cvt CV_8TO32F
#define cast_macro ICV_32F8U
#undef srctype
#undef dsttype
#undef worktype
#undef cvt
#undef cast_macro*/
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 32f, float, float, double, CV_CAST_32F, CV_NOP )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 32f, float, float, double, CV_CAST_32F, CV_NOP )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C1R )
ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C3R )
typedef CvStatus (CV_STDCALL *CvGetQuadrangleSubPixFunc)(
const void* src, int src_step,
CvSize src_size, void* dst,
int dst_step, CvSize win_size,
const float* matrix );
CV_IMPL void
cvGetQuadrangleSubPix( const void* srcarr, void* dstarr, const CvMat* mat )
{
static CvFuncTable gq_tab[2];
static int inittab = 0;
CV_FUNCNAME( "cvGetQuadrangleSubPix" );
__BEGIN__;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
CvSize src_size, dst_size;
CvGetQuadrangleSubPixFunc func;
float m[6];
int k, cn;
if( !inittab )
{
icvInitGetQuadrangleSubPixC1RTable( gq_tab + 0 );
icvInitGetQuadrangleSubPixC3RTable( gq_tab + 1 );
inittab = 1;
}
if( !CV_IS_MAT(src))
CV_CALL( src = cvGetMat( src, &srcstub ));
if( !CV_IS_MAT(dst))
CV_CALL( dst = cvGetMat( dst, &dststub ));
if( !CV_IS_MAT(mat))
CV_ERROR( CV_StsBadArg, "map matrix is not valid" );
cn = CV_MAT_CN( src->type );
if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst ))
CV_ERROR( CV_StsUnsupportedFormat, "" );
src_size = cvGetMatSize( src );
dst_size = cvGetMatSize( dst );
/*if( dst_size.width > src_size.width || dst_size.height > src_size.height )
CV_ERROR( CV_StsBadSize, "destination ROI must not be larger than source ROI" );*/
if( mat->rows != 2 || mat->cols != 3 )
CV_ERROR( CV_StsBadArg,
"Transformation matrix must be 2x3" );
if( CV_MAT_TYPE( mat->type ) == CV_32FC1 )
{
for( k = 0; k < 3; k++ )
{
m[k] = mat->data.fl[k];
m[3 + k] = ((float*)(mat->data.ptr + mat->step))[k];
}
}
else if( CV_MAT_TYPE( mat->type ) == CV_64FC1 )
{
for( k = 0; k < 3; k++ )
{
m[k] = (float)mat->data.db[k];
m[3 + k] = (float)((double*)(mat->data.ptr + mat->step))[k];
}
}
else
CV_ERROR( CV_StsUnsupportedFormat,
"The transformation matrix should have 32fC1 or 64fC1 type" );
if( CV_ARE_DEPTHS_EQ( src, dst ))
{
func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]);
}
else
{
if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F )
CV_ERROR( CV_StsUnsupportedFormat, "" );
func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[1]);
}
if( !func )
CV_ERROR( CV_StsUnsupportedFormat, "" );
IPPI_CALL( func( src->data.ptr, src->step, src_size,
dst->data.ptr, dst->step, dst_size, m ));
__END__;
}
/* End of file. */