blob: cf6f261e2d519063f598e7d1d01f6c36b00fd293 [file] [log] [blame]
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#define _BSD_SOURCE
#define _DEFAULT_SOURCE
#define _GNU_SOURCE
#include <asm/unistd.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <grp.h>
#include <linux/capability.h>
#include <sched.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mount.h>
#include <sys/param.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include "libminijail.h"
#include "libminijail-private.h"
#include "signal_handler.h"
#include "syscall_filter.h"
#include "syscall_wrapper.h"
#include "system.h"
#include "util.h"
/* Until these are reliably available in linux/prctl.h. */
#ifndef PR_ALT_SYSCALL
# define PR_ALT_SYSCALL 0x43724f53
#endif
/* Seccomp filter related flags. */
#ifndef PR_SET_NO_NEW_PRIVS
# define PR_SET_NO_NEW_PRIVS 38
#endif
#ifndef SECCOMP_MODE_FILTER
#define SECCOMP_MODE_FILTER 2 /* Uses user-supplied filter. */
#endif
#ifndef SECCOMP_SET_MODE_STRICT
# define SECCOMP_SET_MODE_STRICT 0
#endif
#ifndef SECCOMP_SET_MODE_FILTER
# define SECCOMP_SET_MODE_FILTER 1
#endif
#ifndef SECCOMP_FILTER_FLAG_TSYNC
# define SECCOMP_FILTER_FLAG_TSYNC 1
#endif
/* End seccomp filter related flags. */
/* New cgroup namespace might not be in linux-headers yet. */
#ifndef CLONE_NEWCGROUP
# define CLONE_NEWCGROUP 0x02000000
#endif
#define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */
#define MAX_RLIMITS 32 /* Currently there are 15 supported by Linux. */
#define MAX_PRESERVED_FDS 32U
/* Keyctl commands. */
#define KEYCTL_JOIN_SESSION_KEYRING 1
struct minijail_rlimit {
int type;
rlim_t cur;
rlim_t max;
};
struct mountpoint {
char *src;
char *dest;
char *type;
char *data;
int has_data;
unsigned long flags;
struct mountpoint *next;
};
struct hook {
minijail_hook_t hook;
void *payload;
minijail_hook_event_t event;
struct hook *next;
};
struct preserved_fd {
int parent_fd;
int child_fd;
};
struct minijail {
/*
* WARNING: if you add a flag here you need to make sure it's
* accounted for in minijail_pre{enter|exec}() below.
*/
struct {
int uid : 1;
int gid : 1;
int inherit_suppl_gids : 1;
int set_suppl_gids : 1;
int keep_suppl_gids : 1;
int use_caps : 1;
int capbset_drop : 1;
int set_ambient_caps : 1;
int vfs : 1;
int enter_vfs : 1;
int pids : 1;
int ipc : 1;
int uts : 1;
int net : 1;
int enter_net : 1;
int ns_cgroups : 1;
int userns : 1;
int disable_setgroups : 1;
int seccomp : 1;
int remount_proc_ro : 1;
int no_new_privs : 1;
int seccomp_filter : 1;
int seccomp_filter_tsync : 1;
int seccomp_filter_logging : 1;
int chroot : 1;
int pivot_root : 1;
int mount_dev : 1;
int mount_tmp : 1;
int do_init : 1;
int run_as_init : 1;
int pid_file : 1;
int cgroups : 1;
int alt_syscall : 1;
int reset_signal_mask : 1;
int reset_signal_handlers : 1;
int close_open_fds : 1;
int new_session_keyring : 1;
int forward_signals : 1;
} flags;
uid_t uid;
gid_t gid;
gid_t usergid;
char *user;
size_t suppl_gid_count;
gid_t *suppl_gid_list;
uint64_t caps;
uint64_t cap_bset;
pid_t initpid;
int mountns_fd;
int netns_fd;
char *chrootdir;
char *pid_file_path;
char *uidmap;
char *gidmap;
char *hostname;
size_t filter_len;
struct sock_fprog *filter_prog;
char *alt_syscall_table;
struct mountpoint *mounts_head;
struct mountpoint *mounts_tail;
size_t mounts_count;
unsigned long remount_mode;
size_t tmpfs_size;
char *cgroups[MAX_CGROUPS];
size_t cgroup_count;
struct minijail_rlimit rlimits[MAX_RLIMITS];
size_t rlimit_count;
uint64_t securebits_skip_mask;
struct hook *hooks_head;
struct hook *hooks_tail;
struct preserved_fd preserved_fds[MAX_PRESERVED_FDS];
size_t preserved_fd_count;
};
static void run_hooks_or_die(const struct minijail *j,
minijail_hook_event_t event);
static void free_mounts_list(struct minijail *j)
{
while (j->mounts_head) {
struct mountpoint *m = j->mounts_head;
j->mounts_head = j->mounts_head->next;
free(m->data);
free(m->type);
free(m->dest);
free(m->src);
free(m);
}
// No need to clear mounts_head as we know it's NULL after the loop.
j->mounts_tail = NULL;
}
/*
* Strip out flags meant for the parent.
* We keep things that are not inherited across execve(2) (e.g. capabilities),
* or are easier to set after execve(2) (e.g. seccomp filters).
*/
void minijail_preenter(struct minijail *j)
{
j->flags.vfs = 0;
j->flags.enter_vfs = 0;
j->flags.remount_proc_ro = 0;
j->flags.pids = 0;
j->flags.do_init = 0;
j->flags.run_as_init = 0;
j->flags.pid_file = 0;
j->flags.cgroups = 0;
j->flags.forward_signals = 0;
j->remount_mode = 0;
}
/*
* Strip out flags meant for the child.
* We keep things that are inherited across execve(2).
*/
void minijail_preexec(struct minijail *j)
{
int vfs = j->flags.vfs;
int enter_vfs = j->flags.enter_vfs;
int remount_proc_ro = j->flags.remount_proc_ro;
int userns = j->flags.userns;
if (j->user)
free(j->user);
j->user = NULL;
if (j->suppl_gid_list)
free(j->suppl_gid_list);
j->suppl_gid_list = NULL;
free_mounts_list(j);
memset(&j->flags, 0, sizeof(j->flags));
/* Now restore anything we meant to keep. */
j->flags.vfs = vfs;
j->flags.enter_vfs = enter_vfs;
j->flags.remount_proc_ro = remount_proc_ro;
j->flags.userns = userns;
/* Note, |pids| will already have been used before this call. */
}
/* Minijail API. */
struct minijail API *minijail_new(void)
{
struct minijail *j = calloc(1, sizeof(struct minijail));
j->remount_mode = MS_PRIVATE;
return j;
}
void API minijail_change_uid(struct minijail *j, uid_t uid)
{
if (uid == 0)
die("useless change to uid 0");
j->uid = uid;
j->flags.uid = 1;
}
void API minijail_change_gid(struct minijail *j, gid_t gid)
{
if (gid == 0)
die("useless change to gid 0");
j->gid = gid;
j->flags.gid = 1;
}
void API minijail_set_supplementary_gids(struct minijail *j, size_t size,
const gid_t *list)
{
size_t i;
if (j->flags.inherit_suppl_gids)
die("cannot inherit *and* set supplementary groups");
if (j->flags.keep_suppl_gids)
die("cannot keep *and* set supplementary groups");
if (size == 0) {
/* Clear supplementary groups. */
j->suppl_gid_list = NULL;
j->suppl_gid_count = 0;
j->flags.set_suppl_gids = 1;
return;
}
/* Copy the gid_t array. */
j->suppl_gid_list = calloc(size, sizeof(gid_t));
if (!j->suppl_gid_list) {
die("failed to allocate internal supplementary group array");
}
for (i = 0; i < size; i++) {
j->suppl_gid_list[i] = list[i];
}
j->suppl_gid_count = size;
j->flags.set_suppl_gids = 1;
}
void API minijail_keep_supplementary_gids(struct minijail *j) {
j->flags.keep_suppl_gids = 1;
}
int API minijail_change_user(struct minijail *j, const char *user)
{
uid_t uid;
gid_t gid;
int rc = lookup_user(user, &uid, &gid);
if (rc)
return rc;
minijail_change_uid(j, uid);
j->user = strdup(user);
if (!j->user)
return -ENOMEM;
j->usergid = gid;
return 0;
}
int API minijail_change_group(struct minijail *j, const char *group)
{
gid_t gid;
int rc = lookup_group(group, &gid);
if (rc)
return rc;
minijail_change_gid(j, gid);
return 0;
}
void API minijail_use_seccomp(struct minijail *j)
{
j->flags.seccomp = 1;
}
void API minijail_no_new_privs(struct minijail *j)
{
j->flags.no_new_privs = 1;
}
void API minijail_use_seccomp_filter(struct minijail *j)
{
j->flags.seccomp_filter = 1;
}
void API minijail_set_seccomp_filter_tsync(struct minijail *j)
{
if (j->filter_len > 0 && j->filter_prog != NULL) {
die("minijail_set_seccomp_filter_tsync() must be called "
"before minijail_parse_seccomp_filters()");
}
j->flags.seccomp_filter_tsync = 1;
}
void API minijail_log_seccomp_filter_failures(struct minijail *j)
{
if (j->filter_len > 0 && j->filter_prog != NULL) {
die("minijail_log_seccomp_filter_failures() must be called "
"before minijail_parse_seccomp_filters()");
}
j->flags.seccomp_filter_logging = 1;
}
void API minijail_use_caps(struct minijail *j, uint64_t capmask)
{
/*
* 'minijail_use_caps' configures a runtime-capabilities-only
* environment, including a bounding set matching the thread's runtime
* (permitted|inheritable|effective) sets.
* Therefore, it will override any existing bounding set configurations
* since the latter would allow gaining extra runtime capabilities from
* file capabilities.
*/
if (j->flags.capbset_drop) {
warn("overriding bounding set configuration");
j->cap_bset = 0;
j->flags.capbset_drop = 0;
}
j->caps = capmask;
j->flags.use_caps = 1;
}
void API minijail_capbset_drop(struct minijail *j, uint64_t capmask)
{
if (j->flags.use_caps) {
/*
* 'minijail_use_caps' will have already configured a capability
* bounding set matching the (permitted|inheritable|effective)
* sets. Abort if the user tries to configure a separate
* bounding set. 'minijail_capbset_drop' and 'minijail_use_caps'
* are mutually exclusive.
*/
die("runtime capabilities already configured, can't drop "
"bounding set separately");
}
j->cap_bset = capmask;
j->flags.capbset_drop = 1;
}
void API minijail_set_ambient_caps(struct minijail *j)
{
j->flags.set_ambient_caps = 1;
}
void API minijail_reset_signal_mask(struct minijail *j)
{
j->flags.reset_signal_mask = 1;
}
void API minijail_reset_signal_handlers(struct minijail *j)
{
j->flags.reset_signal_handlers = 1;
}
void API minijail_namespace_vfs(struct minijail *j)
{
j->flags.vfs = 1;
}
void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path)
{
int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
if (ns_fd < 0) {
pdie("failed to open namespace '%s'", ns_path);
}
j->mountns_fd = ns_fd;
j->flags.enter_vfs = 1;
}
void API minijail_new_session_keyring(struct minijail *j)
{
j->flags.new_session_keyring = 1;
}
void API minijail_skip_setting_securebits(struct minijail *j,
uint64_t securebits_skip_mask)
{
j->securebits_skip_mask = securebits_skip_mask;
}
void API minijail_remount_mode(struct minijail *j, unsigned long mode)
{
j->remount_mode = mode;
}
void API minijail_skip_remount_private(struct minijail *j)
{
j->remount_mode = 0;
}
void API minijail_namespace_pids(struct minijail *j)
{
j->flags.vfs = 1;
j->flags.remount_proc_ro = 1;
j->flags.pids = 1;
j->flags.do_init = 1;
}
void API minijail_namespace_ipc(struct minijail *j)
{
j->flags.ipc = 1;
}
void API minijail_namespace_uts(struct minijail *j)
{
j->flags.uts = 1;
}
int API minijail_namespace_set_hostname(struct minijail *j, const char *name)
{
if (j->hostname)
return -EINVAL;
minijail_namespace_uts(j);
j->hostname = strdup(name);
if (!j->hostname)
return -ENOMEM;
return 0;
}
void API minijail_namespace_net(struct minijail *j)
{
j->flags.net = 1;
}
void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path)
{
int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
if (ns_fd < 0) {
pdie("failed to open namespace '%s'", ns_path);
}
j->netns_fd = ns_fd;
j->flags.enter_net = 1;
}
void API minijail_namespace_cgroups(struct minijail *j)
{
j->flags.ns_cgroups = 1;
}
void API minijail_close_open_fds(struct minijail *j)
{
j->flags.close_open_fds = 1;
}
void API minijail_remount_proc_readonly(struct minijail *j)
{
j->flags.vfs = 1;
j->flags.remount_proc_ro = 1;
}
void API minijail_namespace_user(struct minijail *j)
{
j->flags.userns = 1;
}
void API minijail_namespace_user_disable_setgroups(struct minijail *j)
{
j->flags.disable_setgroups = 1;
}
int API minijail_uidmap(struct minijail *j, const char *uidmap)
{
j->uidmap = strdup(uidmap);
if (!j->uidmap)
return -ENOMEM;
char *ch;
for (ch = j->uidmap; *ch; ch++) {
if (*ch == ',')
*ch = '\n';
}
return 0;
}
int API minijail_gidmap(struct minijail *j, const char *gidmap)
{
j->gidmap = strdup(gidmap);
if (!j->gidmap)
return -ENOMEM;
char *ch;
for (ch = j->gidmap; *ch; ch++) {
if (*ch == ',')
*ch = '\n';
}
return 0;
}
void API minijail_inherit_usergroups(struct minijail *j)
{
j->flags.inherit_suppl_gids = 1;
}
void API minijail_run_as_init(struct minijail *j)
{
/*
* Since the jailed program will become 'init' in the new PID namespace,
* Minijail does not need to fork an 'init' process.
*/
j->flags.run_as_init = 1;
}
int API minijail_enter_chroot(struct minijail *j, const char *dir)
{
if (j->chrootdir)
return -EINVAL;
j->chrootdir = strdup(dir);
if (!j->chrootdir)
return -ENOMEM;
j->flags.chroot = 1;
return 0;
}
int API minijail_enter_pivot_root(struct minijail *j, const char *dir)
{
if (j->chrootdir)
return -EINVAL;
j->chrootdir = strdup(dir);
if (!j->chrootdir)
return -ENOMEM;
j->flags.pivot_root = 1;
return 0;
}
char API *minijail_get_original_path(struct minijail *j,
const char *path_inside_chroot)
{
struct mountpoint *b;
b = j->mounts_head;
while (b) {
/*
* If |path_inside_chroot| is the exact destination of a
* mount, then the original path is exactly the source of
* the mount.
* for example: "-b /some/path/exe,/chroot/path/exe"
* mount source = /some/path/exe, mount dest =
* /chroot/path/exe Then when getting the original path of
* "/chroot/path/exe", the source of that mount,
* "/some/path/exe" is what should be returned.
*/
if (!strcmp(b->dest, path_inside_chroot))
return strdup(b->src);
/*
* If |path_inside_chroot| is within the destination path of a
* mount, take the suffix of the chroot path relative to the
* mount destination path, and append it to the mount source
* path.
*/
if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) {
const char *relative_path =
path_inside_chroot + strlen(b->dest);
return path_join(b->src, relative_path);
}
b = b->next;
}
/* If there is a chroot path, append |path_inside_chroot| to that. */
if (j->chrootdir)
return path_join(j->chrootdir, path_inside_chroot);
/* No chroot, so the path outside is the same as it is inside. */
return strdup(path_inside_chroot);
}
size_t minijail_get_tmpfs_size(const struct minijail *j)
{
return j->tmpfs_size;
}
void API minijail_mount_dev(struct minijail *j)
{
j->flags.mount_dev = 1;
}
void API minijail_mount_tmp(struct minijail *j)
{
minijail_mount_tmp_size(j, 64 * 1024 * 1024);
}
void API minijail_mount_tmp_size(struct minijail *j, size_t size)
{
j->tmpfs_size = size;
j->flags.mount_tmp = 1;
}
int API minijail_write_pid_file(struct minijail *j, const char *path)
{
j->pid_file_path = strdup(path);
if (!j->pid_file_path)
return -ENOMEM;
j->flags.pid_file = 1;
return 0;
}
int API minijail_add_to_cgroup(struct minijail *j, const char *path)
{
if (j->cgroup_count >= MAX_CGROUPS)
return -ENOMEM;
j->cgroups[j->cgroup_count] = strdup(path);
if (!j->cgroups[j->cgroup_count])
return -ENOMEM;
j->cgroup_count++;
j->flags.cgroups = 1;
return 0;
}
int API minijail_rlimit(struct minijail *j, int type, rlim_t cur, rlim_t max)
{
size_t i;
if (j->rlimit_count >= MAX_RLIMITS)
return -ENOMEM;
/* It's an error if the caller sets the same rlimit multiple times. */
for (i = 0; i < j->rlimit_count; i++) {
if (j->rlimits[i].type == type)
return -EEXIST;
}
j->rlimits[j->rlimit_count].type = type;
j->rlimits[j->rlimit_count].cur = cur;
j->rlimits[j->rlimit_count].max = max;
j->rlimit_count++;
return 0;
}
int API minijail_forward_signals(struct minijail *j)
{
j->flags.forward_signals = 1;
return 0;
}
int API minijail_mount_with_data(struct minijail *j, const char *src,
const char *dest, const char *type,
unsigned long flags, const char *data)
{
struct mountpoint *m;
if (*dest != '/')
return -EINVAL;
m = calloc(1, sizeof(*m));
if (!m)
return -ENOMEM;
m->dest = strdup(dest);
if (!m->dest)
goto error;
m->src = strdup(src);
if (!m->src)
goto error;
m->type = strdup(type);
if (!m->type)
goto error;
if (data) {
m->data = strdup(data);
if (!m->data)
goto error;
m->has_data = 1;
}
m->flags = flags;
info("mount %s -> %s type '%s'", src, dest, type);
/*
* Force vfs namespacing so the mounts don't leak out into the
* containing vfs namespace.
*/
minijail_namespace_vfs(j);
if (j->mounts_tail)
j->mounts_tail->next = m;
else
j->mounts_head = m;
j->mounts_tail = m;
j->mounts_count++;
return 0;
error:
free(m->type);
free(m->src);
free(m->dest);
free(m);
return -ENOMEM;
}
int API minijail_mount(struct minijail *j, const char *src, const char *dest,
const char *type, unsigned long flags)
{
return minijail_mount_with_data(j, src, dest, type, flags, NULL);
}
int API minijail_bind(struct minijail *j, const char *src, const char *dest,
int writeable)
{
unsigned long flags = MS_BIND;
if (!writeable)
flags |= MS_RDONLY;
return minijail_mount(j, src, dest, "", flags);
}
int API minijail_add_hook(struct minijail *j, minijail_hook_t hook,
void *payload, minijail_hook_event_t event)
{
struct hook *c;
if (hook == NULL)
return -EINVAL;
if (event >= MINIJAIL_HOOK_EVENT_MAX)
return -EINVAL;
c = calloc(1, sizeof(*c));
if (!c)
return -ENOMEM;
c->hook = hook;
c->payload = payload;
c->event = event;
if (j->hooks_tail)
j->hooks_tail->next = c;
else
j->hooks_head = c;
j->hooks_tail = c;
return 0;
}
int API minijail_preserve_fd(struct minijail *j, int parent_fd, int child_fd)
{
if (parent_fd < 0 || child_fd < 0)
return -EINVAL;
if (j->preserved_fd_count >= MAX_PRESERVED_FDS)
return -ENOMEM;
j->preserved_fds[j->preserved_fd_count].parent_fd = parent_fd;
j->preserved_fds[j->preserved_fd_count].child_fd = child_fd;
j->preserved_fd_count++;
return 0;
}
static void clear_seccomp_options(struct minijail *j)
{
j->flags.seccomp_filter = 0;
j->flags.seccomp_filter_tsync = 0;
j->flags.seccomp_filter_logging = 0;
j->filter_len = 0;
j->filter_prog = NULL;
j->flags.no_new_privs = 0;
}
static int seccomp_should_parse_filters(struct minijail *j)
{
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL) == -1) {
/*
* |errno| will be set to EINVAL when seccomp has not been
* compiled into the kernel. On certain platforms and kernel
* versions this is not a fatal failure. In that case, and only
* in that case, disable seccomp and skip loading the filters.
*/
if ((errno == EINVAL) && seccomp_can_softfail()) {
warn("not loading seccomp filters, seccomp filter not "
"supported");
clear_seccomp_options(j);
return 0;
}
/*
* If |errno| != EINVAL or seccomp_can_softfail() is false,
* we can proceed. Worst case scenario minijail_enter() will
* abort() if seccomp fails.
*/
}
if (j->flags.seccomp_filter_tsync) {
/* Are the seccomp(2) syscall and the TSYNC option supported? */
if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
SECCOMP_FILTER_FLAG_TSYNC, NULL) == -1) {
int saved_errno = errno;
if (saved_errno == ENOSYS && seccomp_can_softfail()) {
warn("seccomp(2) syscall not supported");
clear_seccomp_options(j);
return 0;
} else if (saved_errno == EINVAL &&
seccomp_can_softfail()) {
warn(
"seccomp filter thread sync not supported");
clear_seccomp_options(j);
return 0;
}
/*
* Similar logic here. If seccomp_can_softfail() is
* false, or |errno| != ENOSYS, or |errno| != EINVAL,
* we can proceed. Worst case scenario minijail_enter()
* will abort() if seccomp or TSYNC fail.
*/
}
}
return 1;
}
static int parse_seccomp_filters(struct minijail *j, const char *filename,
FILE *policy_file)
{
struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog));
int use_ret_trap =
j->flags.seccomp_filter_tsync || j->flags.seccomp_filter_logging;
int allow_logging = j->flags.seccomp_filter_logging;
if (compile_filter(filename, policy_file, fprog, use_ret_trap,
allow_logging)) {
free(fprog);
return -1;
}
j->filter_len = fprog->len;
j->filter_prog = fprog;
return 0;
}
void API minijail_parse_seccomp_filters(struct minijail *j, const char *path)
{
if (!seccomp_should_parse_filters(j))
return;
FILE *file = fopen(path, "r");
if (!file) {
pdie("failed to open seccomp filter file '%s'", path);
}
if (parse_seccomp_filters(j, path, file) != 0) {
die("failed to compile seccomp filter BPF program in '%s'",
path);
}
fclose(file);
}
void API minijail_parse_seccomp_filters_from_fd(struct minijail *j, int fd)
{
char *fd_path, *path;
FILE *file;
if (!seccomp_should_parse_filters(j))
return;
file = fdopen(fd, "r");
if (!file) {
pdie("failed to associate stream with fd %d", fd);
}
if (asprintf(&fd_path, "/proc/self/fd/%d", fd) == -1)
pdie("failed to create path for fd %d", fd);
path = realpath(fd_path, NULL);
if (path == NULL)
pwarn("failed to get path of fd %d", fd);
free(fd_path);
if (parse_seccomp_filters(j, path ? path : "<fd>", file) != 0) {
die("failed to compile seccomp filter BPF program from fd %d",
fd);
}
free(path);
fclose(file);
}
int API minijail_use_alt_syscall(struct minijail *j, const char *table)
{
j->alt_syscall_table = strdup(table);
if (!j->alt_syscall_table)
return -ENOMEM;
j->flags.alt_syscall = 1;
return 0;
}
struct marshal_state {
size_t available;
size_t total;
char *buf;
};
void marshal_state_init(struct marshal_state *state, char *buf,
size_t available)
{
state->available = available;
state->buf = buf;
state->total = 0;
}
void marshal_append(struct marshal_state *state, void *src, size_t length)
{
size_t copy_len = MIN(state->available, length);
/* Up to |available| will be written. */
if (copy_len) {
memcpy(state->buf, src, copy_len);
state->buf += copy_len;
state->available -= copy_len;
}
/* |total| will contain the expected length. */
state->total += length;
}
void marshal_mount(struct marshal_state *state, const struct mountpoint *m)
{
marshal_append(state, m->src, strlen(m->src) + 1);
marshal_append(state, m->dest, strlen(m->dest) + 1);
marshal_append(state, m->type, strlen(m->type) + 1);
marshal_append(state, (char *)&m->has_data, sizeof(m->has_data));
if (m->has_data)
marshal_append(state, m->data, strlen(m->data) + 1);
marshal_append(state, (char *)&m->flags, sizeof(m->flags));
}
void minijail_marshal_helper(struct marshal_state *state,
const struct minijail *j)
{
struct mountpoint *m = NULL;
size_t i;
marshal_append(state, (char *)j, sizeof(*j));
if (j->user)
marshal_append(state, j->user, strlen(j->user) + 1);
if (j->suppl_gid_list) {
marshal_append(state, j->suppl_gid_list,
j->suppl_gid_count * sizeof(gid_t));
}
if (j->chrootdir)
marshal_append(state, j->chrootdir, strlen(j->chrootdir) + 1);
if (j->hostname)
marshal_append(state, j->hostname, strlen(j->hostname) + 1);
if (j->alt_syscall_table) {
marshal_append(state, j->alt_syscall_table,
strlen(j->alt_syscall_table) + 1);
}
if (j->flags.seccomp_filter && j->filter_prog) {
struct sock_fprog *fp = j->filter_prog;
marshal_append(state, (char *)fp->filter,
fp->len * sizeof(struct sock_filter));
}
for (m = j->mounts_head; m; m = m->next) {
marshal_mount(state, m);
}
for (i = 0; i < j->cgroup_count; ++i)
marshal_append(state, j->cgroups[i], strlen(j->cgroups[i]) + 1);
}
size_t API minijail_size(const struct minijail *j)
{
struct marshal_state state;
marshal_state_init(&state, NULL, 0);
minijail_marshal_helper(&state, j);
return state.total;
}
int minijail_marshal(const struct minijail *j, char *buf, size_t available)
{
struct marshal_state state;
marshal_state_init(&state, buf, available);
minijail_marshal_helper(&state, j);
return (state.total > available);
}
int minijail_unmarshal(struct minijail *j, char *serialized, size_t length)
{
size_t i;
size_t count;
int ret = -EINVAL;
if (length < sizeof(*j))
goto out;
memcpy((void *)j, serialized, sizeof(*j));
serialized += sizeof(*j);
length -= sizeof(*j);
/* Potentially stale pointers not used as signals. */
j->pid_file_path = NULL;
j->uidmap = NULL;
j->gidmap = NULL;
j->mounts_head = NULL;
j->mounts_tail = NULL;
j->filter_prog = NULL;
j->hooks_head = NULL;
j->hooks_tail = NULL;
if (j->user) { /* stale pointer */
char *user = consumestr(&serialized, &length);
if (!user)
goto clear_pointers;
j->user = strdup(user);
if (!j->user)
goto clear_pointers;
}
if (j->suppl_gid_list) { /* stale pointer */
if (j->suppl_gid_count > NGROUPS_MAX) {
goto bad_gid_list;
}
size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t);
void *gid_list_bytes =
consumebytes(gid_list_size, &serialized, &length);
if (!gid_list_bytes)
goto bad_gid_list;
j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t));
if (!j->suppl_gid_list)
goto bad_gid_list;
memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size);
}
if (j->chrootdir) { /* stale pointer */
char *chrootdir = consumestr(&serialized, &length);
if (!chrootdir)
goto bad_chrootdir;
j->chrootdir = strdup(chrootdir);
if (!j->chrootdir)
goto bad_chrootdir;
}
if (j->hostname) { /* stale pointer */
char *hostname = consumestr(&serialized, &length);
if (!hostname)
goto bad_hostname;
j->hostname = strdup(hostname);
if (!j->hostname)
goto bad_hostname;
}
if (j->alt_syscall_table) { /* stale pointer */
char *alt_syscall_table = consumestr(&serialized, &length);
if (!alt_syscall_table)
goto bad_syscall_table;
j->alt_syscall_table = strdup(alt_syscall_table);
if (!j->alt_syscall_table)
goto bad_syscall_table;
}
if (j->flags.seccomp_filter && j->filter_len > 0) {
size_t ninstrs = j->filter_len;
if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) ||
ninstrs > USHRT_MAX)
goto bad_filters;
size_t program_len = ninstrs * sizeof(struct sock_filter);
void *program = consumebytes(program_len, &serialized, &length);
if (!program)
goto bad_filters;
j->filter_prog = malloc(sizeof(struct sock_fprog));
if (!j->filter_prog)
goto bad_filters;
j->filter_prog->len = ninstrs;
j->filter_prog->filter = malloc(program_len);
if (!j->filter_prog->filter)
goto bad_filter_prog_instrs;
memcpy(j->filter_prog->filter, program, program_len);
}
count = j->mounts_count;
j->mounts_count = 0;
for (i = 0; i < count; ++i) {
unsigned long *flags;
int *has_data;
const char *dest;
const char *type;
const char *data = NULL;
const char *src = consumestr(&serialized, &length);
if (!src)
goto bad_mounts;
dest = consumestr(&serialized, &length);
if (!dest)
goto bad_mounts;
type = consumestr(&serialized, &length);
if (!type)
goto bad_mounts;
has_data = consumebytes(sizeof(*has_data), &serialized,
&length);
if (!has_data)
goto bad_mounts;
if (*has_data) {
data = consumestr(&serialized, &length);
if (!data)
goto bad_mounts;
}
flags = consumebytes(sizeof(*flags), &serialized, &length);
if (!flags)
goto bad_mounts;
if (minijail_mount_with_data(j, src, dest, type, *flags, data))
goto bad_mounts;
}
count = j->cgroup_count;
j->cgroup_count = 0;
for (i = 0; i < count; ++i) {
char *cgroup = consumestr(&serialized, &length);
if (!cgroup)
goto bad_cgroups;
j->cgroups[i] = strdup(cgroup);
if (!j->cgroups[i])
goto bad_cgroups;
++j->cgroup_count;
}
return 0;
bad_cgroups:
free_mounts_list(j);
for (i = 0; i < j->cgroup_count; ++i)
free(j->cgroups[i]);
bad_mounts:
if (j->flags.seccomp_filter && j->filter_len > 0) {
free(j->filter_prog->filter);
free(j->filter_prog);
}
bad_filter_prog_instrs:
if (j->filter_prog)
free(j->filter_prog);
bad_filters:
if (j->alt_syscall_table)
free(j->alt_syscall_table);
bad_syscall_table:
if (j->chrootdir)
free(j->chrootdir);
bad_chrootdir:
if (j->hostname)
free(j->hostname);
bad_hostname:
if (j->suppl_gid_list)
free(j->suppl_gid_list);
bad_gid_list:
if (j->user)
free(j->user);
clear_pointers:
j->user = NULL;
j->suppl_gid_list = NULL;
j->chrootdir = NULL;
j->hostname = NULL;
j->alt_syscall_table = NULL;
j->cgroup_count = 0;
out:
return ret;
}
struct dev_spec {
const char *name;
mode_t mode;
dev_t major, minor;
};
static const struct dev_spec device_nodes[] = {
{
"null",
S_IFCHR | 0666, 1, 3,
},
{
"zero",
S_IFCHR | 0666, 1, 5,
},
{
"full",
S_IFCHR | 0666, 1, 7,
},
{
"urandom",
S_IFCHR | 0444, 1, 9,
},
{
"tty",
S_IFCHR | 0666, 5, 0,
},
};
struct dev_sym_spec {
const char *source, *dest;
};
static const struct dev_sym_spec device_symlinks[] = {
{ "ptmx", "pts/ptmx", },
{ "fd", "/proc/self/fd", },
{ "stdin", "fd/0", },
{ "stdout", "fd/1", },
{ "stderr", "fd/2", },
};
/*
* Clean up the temporary dev path we had setup previously. In case of errors,
* we don't want to go leaking empty tempdirs.
*/
static void mount_dev_cleanup(char *dev_path)
{
umount2(dev_path, MNT_DETACH);
rmdir(dev_path);
free(dev_path);
}
/*
* Set up the pseudo /dev path at the temporary location.
* See mount_dev_finalize for more details.
*/
static int mount_dev(char **dev_path_ret)
{
int ret;
int dev_fd;
size_t i;
mode_t mask;
char *dev_path;
/*
* Create a temp path for the /dev init. We'll relocate this to the
* final location later on in the startup process.
*/
dev_path = *dev_path_ret = strdup("/tmp/minijail.dev.XXXXXX");
if (dev_path == NULL || mkdtemp(dev_path) == NULL)
pdie("could not create temp path for /dev");
/* Set up the empty /dev mount point first. */
ret = mount("minijail-devfs", dev_path, "tmpfs",
MS_NOEXEC | MS_NOSUID, "size=5M,mode=755");
if (ret) {
rmdir(dev_path);
return ret;
}
/* We want to set the mode directly from the spec. */
mask = umask(0);
/* Get a handle to the temp dev path for *at funcs below. */
dev_fd = open(dev_path, O_DIRECTORY|O_PATH|O_CLOEXEC);
if (dev_fd < 0) {
ret = 1;
goto done;
}
/* Create all the nodes in /dev. */
for (i = 0; i < ARRAY_SIZE(device_nodes); ++i) {
const struct dev_spec *ds = &device_nodes[i];
ret = mknodat(dev_fd, ds->name, ds->mode,
makedev(ds->major, ds->minor));
if (ret)
goto done;
}
/* Create all the symlinks in /dev. */
for (i = 0; i < ARRAY_SIZE(device_symlinks); ++i) {
const struct dev_sym_spec *ds = &device_symlinks[i];
ret = symlinkat(ds->dest, dev_fd, ds->source);
if (ret)
goto done;
}
/* Restore old mask. */
done:
close(dev_fd);
umask(mask);
if (ret)
mount_dev_cleanup(dev_path);
return ret;
}
/*
* Relocate the temporary /dev mount to its final /dev place.
* We have to do this two step process so people can bind mount extra
* /dev paths like /dev/log.
*/
static int mount_dev_finalize(const struct minijail *j, char *dev_path)
{
int ret = -1;
char *dest = NULL;
/* Unmount the /dev mount if possible. */
if (umount2("/dev", MNT_DETACH))
goto done;
if (asprintf(&dest, "%s/dev", j->chrootdir ? : "") < 0)
goto done;
if (mount(dev_path, dest, NULL, MS_MOVE, NULL))
goto done;
ret = 0;
done:
free(dest);
mount_dev_cleanup(dev_path);
return ret;
}
/*
* mount_one: Applies mounts from @m for @j, recursing as needed.
* @j Minijail these mounts are for
* @m Head of list of mounts
*
* Returns 0 for success.
*/
static int mount_one(const struct minijail *j, struct mountpoint *m,
const char *dev_path)
{
int ret;
char *dest;
int remount_ro = 0;
/* We assume |dest| has a leading "/". */
if (dev_path && strncmp("/dev/", m->dest, 5) == 0) {
/* Since the temp path is rooted at /dev, skip that dest part. */
if (asprintf(&dest, "%s%s", dev_path, m->dest + 4) < 0)
return -ENOMEM;
} else {
if (asprintf(&dest, "%s%s", j->chrootdir ?: "", m->dest) < 0)
return -ENOMEM;
}
ret = setup_mount_destination(m->src, dest, j->uid, j->gid,
(m->flags & MS_BIND));
if (ret) {
warn("creating mount target '%s' failed", dest);
goto error;
}
/*
* R/O bind mounts have to be remounted since 'bind' and 'ro'
* can't both be specified in the original bind mount.
* Remount R/O after the initial mount.
*/
if ((m->flags & MS_BIND) && (m->flags & MS_RDONLY)) {
remount_ro = 1;
m->flags &= ~MS_RDONLY;
}
ret = mount(m->src, dest, m->type, m->flags, m->data);
if (ret) {
pwarn("mount: %s -> %s", m->src, dest);
goto error;
}
if (remount_ro) {
m->flags |= MS_RDONLY;
ret = mount(m->src, dest, NULL,
m->flags | MS_REMOUNT, m->data);
if (ret) {
pwarn("bind ro: %s -> %s", m->src, dest);
goto error;
}
}
free(dest);
if (m->next)
return mount_one(j, m->next, dev_path);
return 0;
error:
free(dest);
return ret;
}
static void process_mounts_or_die(const struct minijail *j)
{
/*
* We have to mount /dev first in case there are bind mounts from
* the original /dev into the new unique tmpfs one.
*/
char *dev_path = NULL;
if (j->flags.mount_dev && mount_dev(&dev_path))
pdie("mount_dev failed");
if (j->mounts_head && mount_one(j, j->mounts_head, dev_path)) {
if (dev_path) {
int saved_errno = errno;
mount_dev_cleanup(dev_path);
errno = saved_errno;
}
pdie("mount_one failed");
}
/*
* Once all bind mounts have been processed, move the temp dev to
* its final /dev home.
*/
if (j->flags.mount_dev && mount_dev_finalize(j, dev_path))
pdie("mount_dev_finalize failed");
}
static int enter_chroot(const struct minijail *j)
{
run_hooks_or_die(j, MINIJAIL_HOOK_EVENT_PRE_CHROOT);
if (chroot(j->chrootdir))
return -errno;
if (chdir("/"))
return -errno;
return 0;
}
static int enter_pivot_root(const struct minijail *j)
{
int oldroot, newroot;
run_hooks_or_die(j, MINIJAIL_HOOK_EVENT_PRE_CHROOT);
/*
* Keep the fd for both old and new root.
* It will be used in fchdir(2) later.
*/
oldroot = open("/", O_DIRECTORY | O_RDONLY | O_CLOEXEC);
if (oldroot < 0)
pdie("failed to open / for fchdir");
newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY | O_CLOEXEC);
if (newroot < 0)
pdie("failed to open %s for fchdir", j->chrootdir);
/*
* To ensure j->chrootdir is the root of a filesystem,
* do a self bind mount.
*/
if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, ""))
pdie("failed to bind mount '%s'", j->chrootdir);
if (chdir(j->chrootdir))
return -errno;
if (syscall(SYS_pivot_root, ".", "."))
pdie("pivot_root");
/*
* Now the old root is mounted on top of the new root. Use fchdir(2) to
* change to the old root and unmount it.
*/
if (fchdir(oldroot))
pdie("failed to fchdir to old /");
/*
* If skip_remount_private was enabled for minijail_enter(),
* there could be a shared mount point under |oldroot|. In that case,
* mounts under this shared mount point will be unmounted below, and
* this unmounting will propagate to the original mount namespace
* (because the mount point is shared). To prevent this unexpected
* unmounting, remove these mounts from their peer groups by recursively
* remounting them as MS_PRIVATE.
*/
if (mount(NULL, ".", NULL, MS_REC | MS_PRIVATE, NULL))
pdie("failed to mount(/, private) before umount(/)");
/* The old root might be busy, so use lazy unmount. */
if (umount2(".", MNT_DETACH))
pdie("umount(/)");
/* Change back to the new root. */
if (fchdir(newroot))
return -errno;
if (close(oldroot))
return -errno;
if (close(newroot))
return -errno;
if (chroot("/"))
return -errno;
/* Set correct CWD for getcwd(3). */
if (chdir("/"))
return -errno;
return 0;
}
static int mount_tmp(const struct minijail *j)
{
const char fmt[] = "size=%zu,mode=1777";
/* Count for the user storing ULLONG_MAX literally + extra space. */
char data[sizeof(fmt) + sizeof("18446744073709551615ULL")];
int ret;
ret = snprintf(data, sizeof(data), fmt, j->tmpfs_size);
if (ret <= 0)
pdie("tmpfs size spec error");
else if ((size_t)ret >= sizeof(data))
pdie("tmpfs size spec too large");
return mount("none", "/tmp", "tmpfs", MS_NODEV | MS_NOEXEC | MS_NOSUID,
data);
}
static int remount_proc_readonly(const struct minijail *j)
{
const char *kProcPath = "/proc";
const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID;
/*
* Right now, we're holding a reference to our parent's old mount of
* /proc in our namespace, which means using MS_REMOUNT here would
* mutate our parent's mount as well, even though we're in a VFS
* namespace (!). Instead, remove their mount from our namespace lazily
* (MNT_DETACH) and make our own.
*/
if (umount2(kProcPath, MNT_DETACH)) {
/*
* If we are in a new user namespace, umount(2) will fail.
* See http://man7.org/linux/man-pages/man7/user_namespaces.7.html
*/
if (j->flags.userns) {
info("umount(/proc, MNT_DETACH) failed, "
"this is expected when using user namespaces");
} else {
return -errno;
}
}
if (mount("proc", kProcPath, "proc", kSafeFlags | MS_RDONLY, ""))
return -errno;
return 0;
}
static void kill_child_and_die(const struct minijail *j, const char *msg)
{
kill(j->initpid, SIGKILL);
die("%s", msg);
}
static void write_pid_file_or_die(const struct minijail *j)
{
if (write_pid_to_path(j->initpid, j->pid_file_path))
kill_child_and_die(j, "failed to write pid file");
}
static void add_to_cgroups_or_die(const struct minijail *j)
{
size_t i;
for (i = 0; i < j->cgroup_count; ++i) {
if (write_pid_to_path(j->initpid, j->cgroups[i]))
kill_child_and_die(j, "failed to add to cgroups");
}
}
static void set_rlimits_or_die(const struct minijail *j)
{
size_t i;
for (i = 0; i < j->rlimit_count; ++i) {
struct rlimit limit;
limit.rlim_cur = j->rlimits[i].cur;
limit.rlim_max = j->rlimits[i].max;
if (prlimit(j->initpid, j->rlimits[i].type, &limit, NULL))
kill_child_and_die(j, "failed to set rlimit");
}
}
static void write_ugid_maps_or_die(const struct minijail *j)
{
if (j->uidmap && write_proc_file(j->initpid, j->uidmap, "uid_map") != 0)
kill_child_and_die(j, "failed to write uid_map");
if (j->gidmap && j->flags.disable_setgroups) {
/* Older kernels might not have the /proc/<pid>/setgroups files. */
int ret = write_proc_file(j->initpid, "deny", "setgroups");
if (ret != 0) {
if (ret == -ENOENT) {
/* See http://man7.org/linux/man-pages/man7/user_namespaces.7.html. */
warn("could not disable setgroups(2)");
} else
kill_child_and_die(j, "failed to disable setgroups(2)");
}
}
if (j->gidmap && write_proc_file(j->initpid, j->gidmap, "gid_map") != 0)
kill_child_and_die(j, "failed to write gid_map");
}
static void enter_user_namespace(const struct minijail *j)
{
int uid = j->flags.uid ? j->uid : 0;
int gid = j->flags.gid ? j->gid : 0;
if (j->gidmap && setresgid(gid, gid, gid)) {
pdie("user_namespaces: setresgid(%d, %d, %d) failed", gid, gid,
gid);
}
if (j->uidmap && setresuid(uid, uid, uid)) {
pdie("user_namespaces: setresuid(%d, %d, %d) failed", uid, uid,
uid);
}
}
static void parent_setup_complete(int *pipe_fds)
{
close(pipe_fds[0]);
close(pipe_fds[1]);
}
/*
* wait_for_parent_setup: Called by the child process to wait for any
* further parent-side setup to complete before continuing.
*/
static void wait_for_parent_setup(int *pipe_fds)
{
char buf;
close(pipe_fds[1]);
/* Wait for parent to complete setup and close the pipe. */
if (read(pipe_fds[0], &buf, 1) != 0)
die("failed to sync with parent");
close(pipe_fds[0]);
}
static void drop_ugid(const struct minijail *j)
{
if (j->flags.inherit_suppl_gids + j->flags.keep_suppl_gids +
j->flags.set_suppl_gids > 1) {
die("can only do one of inherit, keep, or set supplementary "
"groups");
}
if (j->flags.inherit_suppl_gids) {
if (initgroups(j->user, j->usergid))
pdie("initgroups(%s, %d) failed", j->user, j->usergid);
} else if (j->flags.set_suppl_gids) {
if (setgroups(j->suppl_gid_count, j->suppl_gid_list))
pdie("setgroups(suppl_gids) failed");
} else if (!j->flags.keep_suppl_gids && !j->flags.disable_setgroups) {
/*
* Only attempt to clear supplementary groups if we are changing
* users or groups, and if the caller did not request to disable
* setgroups (used when entering a user namespace as a
* non-privileged user).
*/
if ((j->flags.uid || j->flags.gid) && setgroups(0, NULL))
pdie("setgroups(0, NULL) failed");
}
if (j->flags.gid && setresgid(j->gid, j->gid, j->gid))
pdie("setresgid(%d, %d, %d) failed", j->gid, j->gid, j->gid);
if (j->flags.uid && setresuid(j->uid, j->uid, j->uid))
pdie("setresuid(%d, %d, %d) failed", j->uid, j->uid, j->uid);
}
static void drop_capbset(uint64_t keep_mask, unsigned int last_valid_cap)
{
const uint64_t one = 1;
unsigned int i;
for (i = 0; i < sizeof(keep_mask) * 8 && i <= last_valid_cap; ++i) {
if (keep_mask & (one << i))
continue;
if (prctl(PR_CAPBSET_DROP, i))
pdie("could not drop capability from bounding set");
}
}
static void drop_caps(const struct minijail *j, unsigned int last_valid_cap)
{
if (!j->flags.use_caps)
return;
cap_t caps = cap_get_proc();
cap_value_t flag[1];
const size_t ncaps = sizeof(j->caps) * 8;
const uint64_t one = 1;
unsigned int i;
if (!caps)
die("can't get process caps");
if (cap_clear(caps))
die("can't clear caps");
for (i = 0; i < ncaps && i <= last_valid_cap; ++i) {
/* Keep CAP_SETPCAP for dropping bounding set bits. */
if (i != CAP_SETPCAP && !(j->caps & (one << i)))
continue;
flag[0] = i;
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET))
die("can't add effective cap");
if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET))
die("can't add permitted cap");
if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET))
die("can't add inheritable cap");
}
if (cap_set_proc(caps))
die("can't apply initial cleaned capset");
/*
* Instead of dropping bounding set first, do it here in case
* the caller had a more permissive bounding set which could
* have been used above to raise a capability that wasn't already
* present. This requires CAP_SETPCAP, so we raised/kept it above.
*/
drop_capbset(j->caps, last_valid_cap);
/* If CAP_SETPCAP wasn't specifically requested, now we remove it. */
if ((j->caps & (one << CAP_SETPCAP)) == 0) {
flag[0] = CAP_SETPCAP;
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR))
die("can't clear effective cap");
if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR))
die("can't clear permitted cap");
if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR))
die("can't clear inheritable cap");
}
if (cap_set_proc(caps))
die("can't apply final cleaned capset");
/*
* If ambient capabilities are supported, clear all capabilities first,
* then raise the requested ones.
*/
if (j->flags.set_ambient_caps) {
if (!cap_ambient_supported()) {
pdie("ambient capabilities not supported");
}
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0, 0, 0) !=
0) {
pdie("can't clear ambient capabilities");
}
for (i = 0; i < ncaps && i <= last_valid_cap; ++i) {
if (!(j->caps & (one << i)))
continue;
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, i, 0,
0) != 0) {
pdie("prctl(PR_CAP_AMBIENT, "
"PR_CAP_AMBIENT_RAISE, %u) failed",
i);
}
}
}
cap_free(caps);
}
static void set_seccomp_filter(const struct minijail *j)
{
/*
* Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c>
* in the kernel source tree for an explanation of the parameters.
*/
if (j->flags.no_new_privs) {
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
pdie("prctl(PR_SET_NO_NEW_PRIVS)");
}
/*
* Code running with ASan
* (https://github.com/google/sanitizers/wiki/AddressSanitizer)
* will make system calls not included in the syscall filter policy,
* which will likely crash the program. Skip setting seccomp filter in
* that case.
* 'running_with_asan()' has no inputs and is completely defined at
* build time, so this cannot be used by an attacker to skip setting
* seccomp filter.
*/
if (j->flags.seccomp_filter && running_with_asan()) {
warn("running with ASan, not setting seccomp filter");
return;
}
if (j->flags.seccomp_filter) {
if (j->flags.seccomp_filter_logging) {
/*
* If logging seccomp filter failures,
* install the SIGSYS handler first.
*/
if (install_sigsys_handler())
pdie("failed to install SIGSYS handler");
warn("logging seccomp filter failures");
} else if (j->flags.seccomp_filter_tsync) {
/*
* If setting thread sync,
* reset the SIGSYS signal handler so that
* the entire thread group is killed.
*/
if (signal(SIGSYS, SIG_DFL) == SIG_ERR)
pdie("failed to reset SIGSYS disposition");
info("reset SIGSYS disposition");
}
}
/*
* Install the syscall filter.
*/
if (j->flags.seccomp_filter) {
if (j->flags.seccomp_filter_tsync) {
if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
SECCOMP_FILTER_FLAG_TSYNC,
j->filter_prog)) {
pdie("seccomp(tsync) failed");
}
} else {
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
j->filter_prog)) {
pdie("prctl(seccomp_filter) failed");
}
}
}
}
static pid_t forward_pid = -1;
static void forward_signal(__attribute__((unused)) int nr,
__attribute__((unused)) siginfo_t *siginfo,
__attribute__((unused)) void *void_context)
{
if (forward_pid != -1) {
kill(forward_pid, nr);
}
}
static void install_signal_handlers(void)
{
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_sigaction = &forward_signal;
act.sa_flags = SA_SIGINFO | SA_RESTART;
/* Handle all signals, except SIGCHLD. */
for (int nr = 1; nr < NSIG; nr++) {
/*
* We don't care if we get EINVAL: that just means that we
* can't handle this signal, so let's skip it and continue.
*/
sigaction(nr, &act, NULL);
}
/* Reset SIGCHLD's handler. */
signal(SIGCHLD, SIG_DFL);
/* Handle real-time signals. */
for (int nr = SIGRTMIN; nr <= SIGRTMAX; nr++) {
sigaction(nr, &act, NULL);
}
}
static const char *lookup_hook_name(minijail_hook_event_t event)
{
switch (event) {
case MINIJAIL_HOOK_EVENT_PRE_DROP_CAPS:
return "pre-drop-caps";
case MINIJAIL_HOOK_EVENT_PRE_EXECVE:
return "pre-execve";
case MINIJAIL_HOOK_EVENT_PRE_CHROOT:
return "pre-chroot";
case MINIJAIL_HOOK_EVENT_MAX:
/*
* Adding this in favor of a default case to force the
* compiler to error out if a new enum value is added.
*/
break;
}
return "unknown";
}
static void run_hooks_or_die(const struct minijail *j,
minijail_hook_event_t event)
{
int rc;
int hook_index = 0;
for (struct hook *c = j->hooks_head; c; c = c->next) {
if (c->event != event)
continue;
rc = c->hook(c->payload);
if (rc != 0) {
errno = -rc;
pdie("%s hook (index %d) failed",
lookup_hook_name(event), hook_index);
}
/* Only increase the index within the same hook event type. */
++hook_index;
}
}
void API minijail_enter(const struct minijail *j)
{
/*
* If we're dropping caps, get the last valid cap from /proc now,
* since /proc can be unmounted before drop_caps() is called.
*/
unsigned int last_valid_cap = 0;
if (j->flags.capbset_drop || j->flags.use_caps)
last_valid_cap = get_last_valid_cap();
if (j->flags.pids)
die("tried to enter a pid-namespaced jail;"
" try minijail_run()?");
if (j->flags.inherit_suppl_gids && !j->user)
die("cannot inherit supplementary groups without setting a "
"username");
/*
* We can't recover from failures if we've dropped privileges partially,
* so we don't even try. If any of our operations fail, we abort() the
* entire process.
*/
if (j->flags.enter_vfs && setns(j->mountns_fd, CLONE_NEWNS))
pdie("setns(CLONE_NEWNS) failed");
if (j->flags.vfs) {
if (unshare(CLONE_NEWNS))
pdie("unshare(CLONE_NEWNS) failed");
/*
* By default, remount all filesystems as private, unless
* - Passed a specific remount mode, in which case remount with that,
* - Asked not to remount at all, in which case skip the mount(2) call.
* https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
*/
if (j->remount_mode) {
if (mount(NULL, "/", NULL, MS_REC | j->remount_mode, NULL))
pdie("mount(NULL, /, NULL, MS_REC | MS_PRIVATE,"
" NULL) failed");
}
}
if (j->flags.ipc && unshare(CLONE_NEWIPC)) {
pdie("unshare(CLONE_NEWIPC) failed");
}
if (j->flags.uts) {
if (unshare(CLONE_NEWUTS))
pdie("unshare(CLONE_NEWUTS) failed");
if (j->hostname && sethostname(j->hostname, strlen(j->hostname)))
pdie("sethostname(%s) failed", j->hostname);
}
if (j->flags.enter_net) {
if (setns(j->netns_fd, CLONE_NEWNET))
pdie("setns(CLONE_NEWNET) failed");
} else if (j->flags.net) {
if (unshare(CLONE_NEWNET))
pdie("unshare(CLONE_NEWNET) failed");
config_net_loopback();
}
if (j->flags.ns_cgroups && unshare(CLONE_NEWCGROUP))
pdie("unshare(CLONE_NEWCGROUP) failed");
if (j->flags.new_session_keyring) {
if (syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING, NULL) < 0)
pdie("keyctl(KEYCTL_JOIN_SESSION_KEYRING) failed");
}
/* We have to process all the mounts before we chroot/pivot_root. */
process_mounts_or_die(j);
if (j->flags.chroot && enter_chroot(j))
pdie("chroot");
if (j->flags.pivot_root && enter_pivot_root(j))
pdie("pivot_root");
if (j->flags.mount_tmp && mount_tmp(j))
pdie("mount_tmp");
if (j->flags.remount_proc_ro && remount_proc_readonly(j))
pdie("remount");
run_hooks_or_die(j, MINIJAIL_HOOK_EVENT_PRE_DROP_CAPS);
/*
* If we're only dropping capabilities from the bounding set, but not
* from the thread's (permitted|inheritable|effective) sets, do it now.
*/
if (j->flags.capbset_drop) {
drop_capbset(j->cap_bset, last_valid_cap);
}
if (j->flags.use_caps) {
/*
* POSIX capabilities are a bit tricky. If we drop our
* capability to change uids, our attempt to use setuid()
* below will fail. Hang on to root caps across setuid(), then
* lock securebits.
*/
if (prctl(PR_SET_KEEPCAPS, 1))
pdie("prctl(PR_SET_KEEPCAPS) failed");
if (lock_securebits(j->securebits_skip_mask) < 0) {
pdie("locking securebits failed");
}
}
if (j->flags.no_new_privs) {
/*
* If we're setting no_new_privs, we can drop privileges
* before setting seccomp filter. This way filter policies
* don't need to allow privilege-dropping syscalls.
*/
drop_ugid(j);
drop_caps(j, last_valid_cap);
set_seccomp_filter(j);
} else {
/*
* If we're not setting no_new_privs,
* we need to set seccomp filter *before* dropping privileges.
* WARNING: this means that filter policies *must* allow
* setgroups()/setresgid()/setresuid() for dropping root and
* capget()/capset()/prctl() for dropping caps.
*/
set_seccomp_filter(j);
drop_ugid(j);
drop_caps(j, last_valid_cap);
}
/*
* Select the specified alternate syscall table. The table must not
* block prctl(2) if we're using seccomp as well.
*/
if (j->flags.alt_syscall) {
if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table))
pdie("prctl(PR_ALT_SYSCALL) failed");
}
/*
* seccomp has to come last since it cuts off all the other
* privilege-dropping syscalls :)
*/
if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) {
if ((errno == EINVAL) && seccomp_can_softfail()) {
warn("seccomp not supported");
return;
}
pdie("prctl(PR_SET_SECCOMP) failed");
}
}
/* TODO(wad): will visibility affect this variable? */
static int init_exitstatus = 0;
void init_term(int __attribute__ ((unused)) sig)
{
_exit(init_exitstatus);
}
void init(pid_t rootpid)
{
pid_t pid;
int status;
/* So that we exit with the right status. */
signal(SIGTERM, init_term);
/* TODO(wad): self jail with seccomp filters here. */
while ((pid = wait(&status)) > 0) {
/*
* This loop will only end when either there are no processes
* left inside our pid namespace or we get a signal.
*/
if (pid == rootpid)
init_exitstatus = status;
}
if (!WIFEXITED(init_exitstatus))
_exit(MINIJAIL_ERR_INIT);
_exit(WEXITSTATUS(init_exitstatus));
}
int API minijail_from_fd(int fd, struct minijail *j)
{
size_t sz = 0;
size_t bytes = read(fd, &sz, sizeof(sz));
char *buf;
int r;
if (sizeof(sz) != bytes)
return -EINVAL;
if (sz > USHRT_MAX) /* arbitrary sanity check */
return -E2BIG;
buf = malloc(sz);
if (!buf)
return -ENOMEM;
bytes = read(fd, buf, sz);
if (bytes != sz) {
free(buf);
return -EINVAL;
}
r = minijail_unmarshal(j, buf, sz);
free(buf);
return r;
}
int API minijail_to_fd(struct minijail *j, int fd)
{
char *buf;
size_t sz = minijail_size(j);
ssize_t written;
int r;
if (!sz)
return -EINVAL;
buf = malloc(sz);
r = minijail_marshal(j, buf, sz);
if (r) {
free(buf);
return r;
}
/* Sends [size][minijail]. */
written = write(fd, &sz, sizeof(sz));
if (written != sizeof(sz)) {
free(buf);
return -EFAULT;
}
written = write(fd, buf, sz);
if (written < 0 || (size_t) written != sz) {
free(buf);
return -EFAULT;
}
free(buf);
return 0;
}
int setup_preload(void)
{
#if defined(__ANDROID__)
/* Don't use LDPRELOAD on Android. */
return 0;
#else
char *oldenv = getenv(kLdPreloadEnvVar) ? : "";
char *newenv = malloc(strlen(oldenv) + 2 + strlen(PRELOADPATH));
if (!newenv)
return -ENOMEM;
/* Only insert a separating space if we have something to separate... */
sprintf(newenv, "%s%s%s", oldenv, strlen(oldenv) ? " " : "",
PRELOADPATH);
/* setenv() makes a copy of the string we give it. */
setenv(kLdPreloadEnvVar, newenv, 1);
free(newenv);
return 0;
#endif
}
static int setup_pipe(int fds[2])
{
int r = pipe(fds);
char fd_buf[11];
if (r)
return r;
r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]);
if (r <= 0)
return -EINVAL;
setenv(kFdEnvVar, fd_buf, 1);
return 0;
}
static int close_open_fds(int *inheritable_fds, size_t size)
{
const char *kFdPath = "/proc/self/fd";
DIR *d = opendir(kFdPath);
struct dirent *dir_entry;
if (d == NULL)
return -1;
int dir_fd = dirfd(d);
while ((dir_entry = readdir(d)) != NULL) {
size_t i;
char *end;
bool should_close = true;
const int fd = strtol(dir_entry->d_name, &end, 10);
if ((*end) != '\0') {
continue;
}
/*
* We might have set up some pipes that we want to share with
* the parent process, and should not be closed.
*/
for (i = 0; i < size; ++i) {
if (fd == inheritable_fds[i]) {
should_close = false;
break;
}
}
/* Also avoid closing the directory fd. */
if (should_close && fd != dir_fd)
close(fd);
}
closedir(d);
return 0;
}
static int redirect_fds(struct minijail *j)
{
size_t i, i2;
int closeable;
for (i = 0; i < j->preserved_fd_count; i++) {
if (dup2(j->preserved_fds[i].parent_fd,
j->preserved_fds[i].child_fd) == -1) {
return -1;
}
}
/*
* After all fds have been duped, we are now free to close all parent
* fds that are *not* child fds.
*/
for (i = 0; i < j->preserved_fd_count; i++) {
closeable = true;
for (i2 = 0; i2 < j->preserved_fd_count; i2++) {
closeable &= j->preserved_fds[i].parent_fd !=
j->preserved_fds[i2].child_fd;
}
if (closeable)
close(j->preserved_fds[i].parent_fd);
}
return 0;
}
/*
* Structure that specifies how to start a minijail.
*
* filename - The program to exec in the child. Required if `exec_in_child` = 1.
* argv - Arguments for the child program. Required if `exec_in_child` = 1.
* use_preload - If true use LD_PRELOAD.
* exec_in_child - If true, run `filename`. Otherwise, the child will return to
* the caller.
*/
struct minijail_run_config {
const char *filename;
char *const *argv;
int use_preload;
int exec_in_child;
};
/*
* Set of pointers to fill with values from minijail_run.
* All arguments are allowed to be NULL if unused.
*
* pstdin_fd - Filled with stdin pipe if non-NULL.
* pstdout_fd - Filled with stdout pipe if non-NULL.
* pstderr_fd - Filled with stderr pipe if non-NULL.
* pchild_pid - Filled with the pid of the child process if non-NULL.
*/
struct minijail_run_status {
int *pstdin_fd;
int *pstdout_fd;
int *pstderr_fd;
pid_t *pchild_pid;
};
static int minijail_run_internal(struct minijail *j,
const struct minijail_run_config *config,
struct minijail_run_status *status_out);
int API minijail_run(struct minijail *j, const char *filename,
char *const argv[])
{
struct minijail_run_config config = {
.filename = filename,
.argv = argv,
.use_preload = true,
.exec_in_child = true,
};
struct minijail_run_status status = {};
return minijail_run_internal(j, &config, &status);
}
int API minijail_run_pid(struct minijail *j, const char *filename,
char *const argv[], pid_t *pchild_pid)
{
struct minijail_run_config config = {
.filename = filename,
.argv = argv,
.use_preload = true,
.exec_in_child = true,
};
struct minijail_run_status status = {
.pchild_pid = pchild_pid,
};
return minijail_run_internal(j, &config, &status);
}
int API minijail_run_pipe(struct minijail *j, const char *filename,
char *const argv[], int *pstdin_fd)
{
struct minijail_run_config config = {
.filename = filename,
.argv = argv,
.use_preload = true,
.exec_in_child = true,
};
struct minijail_run_status status = {
.pstdin_fd = pstdin_fd,
};
return minijail_run_internal(j, &config, &status);
}
int API minijail_run_pid_pipes(struct minijail *j, const char *filename,
char *const argv[], pid_t *pchild_pid,
int *pstdin_fd, int *pstdout_fd, int *pstderr_fd)
{
struct minijail_run_config config = {
.filename = filename,
.argv = argv,
.use_preload = true,
.exec_in_child = true,
};
struct minijail_run_status status = {
.pstdin_fd = pstdin_fd,
.pstdout_fd = pstdout_fd,
.pstderr_fd = pstderr_fd,
.pchild_pid = pchild_pid,
};
return minijail_run_internal(j, &config, &status);
}
int API minijail_run_no_preload(struct minijail *j, const char *filename,
char *const argv[])
{
struct minijail_run_config config = {
.filename = filename,
.argv = argv,
.use_preload = false,
.exec_in_child = true,
};
struct minijail_run_status status = {};
return minijail_run_internal(j, &config, &status);
}
int API minijail_run_pid_pipes_no_preload(struct minijail *j,
const char *filename,
char *const argv[],
pid_t *pchild_pid,
int *pstdin_fd,
int *pstdout_fd,
int *pstderr_fd)
{
struct minijail_run_config config = {
.filename = filename,
.argv = argv,
.use_preload = false,
.exec_in_child = true,
};
struct minijail_run_status status = {
.pstdin_fd = pstdin_fd,
.pstdout_fd = pstdout_fd,
.pstderr_fd = pstderr_fd,
.pchild_pid = pchild_pid,
};
return minijail_run_internal(j, &config, &status);
}
pid_t API minijail_fork(struct minijail *j)
{
struct minijail_run_config config = {};
struct minijail_run_status status = {};
return minijail_run_internal(j, &config, &status);
}
static int minijail_run_internal(struct minijail *j,
const struct minijail_run_config *config,
struct minijail_run_status *status_out)
{
char *oldenv, *oldenv_copy = NULL;
pid_t child_pid;
int pipe_fds[2];
int stdin_fds[2];
int stdout_fds[2];
int stderr_fds[2];
int child_sync_pipe_fds[2];
int sync_child = 0;
int ret;
/* We need to remember this across the minijail_preexec() call. */
int pid_namespace = j->flags.pids;
/*
* Create an init process if we are entering a pid namespace, unless the
* user has explicitly opted out by calling minijail_run_as_init().
*/
int do_init = j->flags.do_init && !j->flags.run_as_init;
int use_preload = config->use_preload;
if (use_preload) {
if (j->hooks_head != NULL)
die("Minijail hooks are not supported with LD_PRELOAD");
if (!config->exec_in_child)
die("minijail_fork is not supported with LD_PRELOAD");
oldenv = getenv(kLdPreloadEnvVar);
if (oldenv) {
oldenv_copy = strdup(oldenv);
if (!oldenv_copy)
return -ENOMEM;
}
if (setup_preload())
return -EFAULT;
}
if (!use_preload) {
if (j->flags.use_caps && j->caps != 0 &&
!j->flags.set_ambient_caps) {
die("non-empty, non-ambient capabilities are not "
"supported without LD_PRELOAD");
}
}
if (use_preload) {
/*
* Before we fork(2) and execve(2) the child process, we need
* to open a pipe(2) to send the minijail configuration over.
*/
if (setup_pipe(pipe_fds))
return -EFAULT;
}
/*
* If we want to write to the child process' standard input,
* create the pipe(2) now.
*/
if (status_out->pstdin_fd) {
if (pipe(stdin_fds))
return -EFAULT;
}
/*
* If we want to read from the child process' standard output,
* create the pipe(2) now.
*/
if (status_out->pstdout_fd) {
if (pipe(stdout_fds))
return -EFAULT;
}
/*
* If we want to read from the child process' standard error,
* create the pipe(2) now.
*/
if (status_out->pstderr_fd) {
if (pipe(stderr_fds))
return -EFAULT;
}
/*
* If we want to set up a new uid/gid map in the user namespace,
* or if we need to add the child process to cgroups, create the pipe(2)
* to sync between parent and child.
*/
if (j->flags.userns || j->flags.cgroups) {
sync_child = 1;
if (pipe(child_sync_pipe_fds))
return -EFAULT;
}
/*
* Use sys_clone() if and only if we're creating a pid namespace.
*
* tl;dr: WARNING: do not mix pid namespaces and multithreading.
*
* In multithreaded programs, there are a bunch of locks inside libc,
* some of which may be held by other threads at the time that we call
* minijail_run_pid(). If we call fork(), glibc does its level best to
* ensure that we hold all of these locks before it calls clone()
* internally and drop them after clone() returns, but when we call
* sys_clone(2) directly, all that gets bypassed and we end up with a
* child address space where some of libc's important locks are held by
* other threads (which did not get cloned, and hence will never release
* those locks). This is okay so long as we call exec() immediately
* after, but a bunch of seemingly-innocent libc functions like setenv()
* take locks.
*
* Hence, only call sys_clone() if we need to, in order to get at pid
* namespacing. If we follow this path, the child's address space might
* have broken locks; you may only call functions that do not acquire
* any locks.
*
* Unfortunately, fork() acquires every lock it can get its hands on, as
* previously detailed, so this function is highly likely to deadlock
* later on (see "deadlock here") if we're multithreaded.
*
* We might hack around this by having the clone()d child (init of the
* pid namespace) return directly, rather than leaving the clone()d
* process hanging around to be init for the new namespace (and having
* its fork()ed child return in turn), but that process would be
* crippled with its libc locks potentially broken. We might try
* fork()ing in the parent before we clone() to ensure that we own all
* the locks, but then we have to have the forked child hanging around
* consuming resources (and possibly having file descriptors / shared
* memory regions / etc attached). We'd need to keep the child around to
* avoid having its children get reparented to init.
*
* TODO(ellyjones): figure out if the "forked child hanging around"
* problem is fixable or not. It would be nice if we worked in this
* case.
*/
if (pid_namespace) {
int clone_flags = CLONE_NEWPID | SIGCHLD;
if (j->flags.userns)
clone_flags |= CLONE_NEWUSER;
child_pid = syscall(SYS_clone, clone_flags, NULL);
} else {
child_pid = fork();
}
if (child_pid < 0) {
if (use_preload) {
free(oldenv_copy);
}
die("failed to fork child");
}
if (child_pid) {
if (use_preload) {
/* Restore parent's LD_PRELOAD. */
if (oldenv_copy) {
setenv(kLdPreloadEnvVar, oldenv_copy, 1);
free(oldenv_copy);
} else {
unsetenv(kLdPreloadEnvVar);
}
unsetenv(kFdEnvVar);
}
j->initpid = child_pid;
if (j->flags.forward_signals) {
forward_pid = child_pid;
install_signal_handlers();
}
if (j->flags.pid_file)
write_pid_file_or_die(j);
if (j->flags.cgroups)
add_to_cgroups_or_die(j);
if (j->rlimit_count)
set_rlimits_or_die(j);
if (j->flags.userns)
write_ugid_maps_or_die(j);
if (sync_child)
parent_setup_complete(child_sync_pipe_fds);
if (use_preload) {
/* Send marshalled minijail. */
close(pipe_fds[0]); /* read endpoint */
ret = minijail_to_fd(j, pipe_fds[1]);
close(pipe_fds[1]); /* write endpoint */
if (ret) {
kill(j->initpid, SIGKILL);
die("failed to send marshalled minijail");
}
}
if (status_out->pchild_pid)
*status_out->pchild_pid = child_pid;
/*
* If we want to write to the child process' standard input,
* set up the write end of the pipe.
*/
if (status_out->pstdin_fd)
*status_out->pstdin_fd =
setup_pipe_end(stdin_fds, 1 /* write end */);
/*
* If we want to read from the child process' standard output,
* set up the read end of the pipe.
*/
if (status_out->pstdout_fd)
*status_out->pstdout_fd =
setup_pipe_end(stdout_fds, 0 /* read end */);
/*
* If we want to read from the child process' standard error,
* set up the read end of the pipe.
*/
if (status_out->pstderr_fd)
*status_out->pstderr_fd =
setup_pipe_end(stderr_fds, 0 /* read end */);
/*
* If forking return the child pid, in the normal exec case
* return 0 for success.
*/
if (!config->exec_in_child)
return child_pid;
return 0;
}
/* Child process. */
free(oldenv_copy);
if (j->flags.reset_signal_mask) {
sigset_t signal_mask;
if (sigemptyset(&signal_mask) != 0)
pdie("sigemptyset failed");
if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0)
pdie("sigprocmask failed");
}
if (j->flags.reset_signal_handlers) {
int signum;
for (signum = 0; signum <= SIGRTMAX; signum++) {
/*
* Ignore EINVAL since some signal numbers in the range
* might not be valid.
*/
if (signal(signum, SIG_DFL) == SIG_ERR &&
errno != EINVAL) {
pdie("failed to reset signal %d disposition",
signum);
}
}
}
if (j->flags.close_open_fds) {
const size_t kMaxInheritableFdsSize = 10 + MAX_PRESERVED_FDS;
int inheritable_fds[kMaxInheritableFdsSize];
size_t size = 0;
size_t i;
if (use_preload) {
inheritable_fds[size++] = pipe_fds[0];
inheritable_fds[size++] = pipe_fds[1];
}
if (sync_child) {
inheritable_fds[size++] = child_sync_pipe_fds[0];
inheritable_fds[size++] = child_sync_pipe_fds[1];
}
if (status_out->pstdin_fd) {
inheritable_fds[size++] = stdin_fds[0];
inheritable_fds[size++] = stdin_fds[1];
}
if (status_out->pstdout_fd) {
inheritable_fds[size++] = stdout_fds[0];
inheritable_fds[size++] = stdout_fds[1];
}
if (status_out->pstderr_fd) {
inheritable_fds[size++] = stderr_fds[0];
inheritable_fds[size++] = stderr_fds[1];
}
for (i = 0; i < j->preserved_fd_count; i++) {
/*
* Preserve all parent_fds. They will be dup2(2)-ed in
* the child later.
*/
inheritable_fds[size++] = j->preserved_fds[i].parent_fd;
}
if (close_open_fds(inheritable_fds, size) < 0)
die("failed to close open file descriptors");
}
if (redirect_fds(j))
die("failed to set up fd redirections");
if (sync_child)
wait_for_parent_setup(child_sync_pipe_fds);
if (j->flags.userns)
enter_user_namespace(j);
/*
* If we want to write to the jailed process' standard input,
* set up the read end of the pipe.
*/
if (status_out->pstdin_fd) {
if (setup_and_dupe_pipe_end(stdin_fds, 0 /* read end */,
STDIN_FILENO) < 0)
die("failed to set up stdin pipe");
}
/*
* If we want to read from the jailed process' standard output,
* set up the write end of the pipe.
*/
if (status_out->pstdout_fd) {
if (setup_and_dupe_pipe_end(stdout_fds, 1 /* write end */,
STDOUT_FILENO) < 0)
die("failed to set up stdout pipe");
}
/*
* If we want to read from the jailed process' standard error,
* set up the write end of the pipe.
*/
if (status_out->pstderr_fd) {
if (setup_and_dupe_pipe_end(stderr_fds, 1 /* write end */,
STDERR_FILENO) < 0)
die("failed to set up stderr pipe");
}
/*
* If any of stdin, stdout, or stderr are TTYs, create a new session.
* This prevents the jailed process from using the TIOCSTI ioctl
* to push characters into the parent process terminal's input buffer,
* therefore escaping the jail.
*
* Since it has just forked, the child will not be a process group
* leader, and this call to setsid() should always succeed.
*/