blob: a371afc14c2385ea387bf6764db1e2a1177594d9 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file lower_mat_op_to_vec.cpp
*
* Breaks matrix operation expressions down to a series of vector operations.
*
* Generally this is how we have to codegen matrix operations for a
* GPU, so this gives us the chance to constant fold operations on a
* column or row.
*/
#include "ir.h"
#include "ir_expression_flattening.h"
#include "glsl_types.h"
class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor {
public:
ir_mat_op_to_vec_visitor()
{
this->made_progress = false;
this->mem_ctx = NULL;
}
ir_visitor_status visit_leave(ir_assignment *);
ir_dereference *get_column(ir_dereference *val, int col);
ir_rvalue *get_element(ir_dereference *val, int col, int row);
void do_mul_mat_mat(ir_dereference *result,
ir_dereference *a, ir_dereference *b);
void do_mul_mat_vec(ir_dereference *result,
ir_dereference *a, ir_dereference *b);
void do_mul_vec_mat(ir_dereference *result,
ir_dereference *a, ir_dereference *b);
void do_mul_mat_scalar(ir_dereference *result,
ir_dereference *a, ir_dereference *b);
void do_equal_mat_mat(ir_dereference *result, ir_dereference *a,
ir_dereference *b, bool test_equal);
void *mem_ctx;
bool made_progress;
};
static bool
mat_op_to_vec_predicate(ir_instruction *ir)
{
ir_expression *expr = ir->as_expression();
unsigned int i;
if (!expr)
return false;
for (i = 0; i < expr->get_num_operands(); i++) {
if (expr->operands[i]->type->is_matrix())
return true;
}
return false;
}
bool
do_mat_op_to_vec(exec_list *instructions)
{
ir_mat_op_to_vec_visitor v;
/* Pull out any matrix expression to a separate assignment to a
* temp. This will make our handling of the breakdown to
* operations on the matrix's vector components much easier.
*/
do_expression_flattening(instructions, mat_op_to_vec_predicate);
visit_list_elements(&v, instructions);
return v.made_progress;
}
ir_rvalue *
ir_mat_op_to_vec_visitor::get_element(ir_dereference *val, int col, int row)
{
val = get_column(val, col);
return new(mem_ctx) ir_swizzle(val, row, 0, 0, 0, 1);
}
ir_dereference *
ir_mat_op_to_vec_visitor::get_column(ir_dereference *val, int row)
{
val = val->clone(mem_ctx, NULL);
if (val->type->is_matrix()) {
val = new(mem_ctx) ir_dereference_array(val,
new(mem_ctx) ir_constant(row));
}
return val;
}
void
ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_dereference *result,
ir_dereference *a,
ir_dereference *b)
{
int b_col, i;
ir_assignment *assign;
ir_expression *expr;
for (b_col = 0; b_col < b->type->matrix_columns; b_col++) {
/* first column */
expr = new(mem_ctx) ir_expression(ir_binop_mul,
get_column(a, 0),
get_element(b, b_col, 0));
/* following columns */
for (i = 1; i < a->type->matrix_columns; i++) {
ir_expression *mul_expr;
mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
get_column(a, i),
get_element(b, b_col, i));
expr = new(mem_ctx) ir_expression(ir_binop_add,
expr,
mul_expr);
}
assign = new(mem_ctx) ir_assignment(get_column(result, b_col), expr);
base_ir->insert_before(assign);
}
}
void
ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_dereference *result,
ir_dereference *a,
ir_dereference *b)
{
int i;
ir_assignment *assign;
ir_expression *expr;
/* first column */
expr = new(mem_ctx) ir_expression(ir_binop_mul,
get_column(a, 0),
get_element(b, 0, 0));
/* following columns */
for (i = 1; i < a->type->matrix_columns; i++) {
ir_expression *mul_expr;
mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
get_column(a, i),
get_element(b, 0, i));
expr = new(mem_ctx) ir_expression(ir_binop_add, expr, mul_expr);
}
result = result->clone(mem_ctx, NULL);
assign = new(mem_ctx) ir_assignment(result, expr);
base_ir->insert_before(assign);
}
void
ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_dereference *result,
ir_dereference *a,
ir_dereference *b)
{
int i;
for (i = 0; i < b->type->matrix_columns; i++) {
ir_rvalue *column_result;
ir_expression *column_expr;
ir_assignment *column_assign;
column_result = result->clone(mem_ctx, NULL);
column_result = new(mem_ctx) ir_swizzle(column_result, i, 0, 0, 0, 1);
column_expr = new(mem_ctx) ir_expression(ir_binop_dot,
a->clone(mem_ctx, NULL),
get_column(b, i));
column_assign = new(mem_ctx) ir_assignment(column_result,
column_expr);
base_ir->insert_before(column_assign);
}
}
void
ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_dereference *result,
ir_dereference *a,
ir_dereference *b)
{
int i;
for (i = 0; i < a->type->matrix_columns; i++) {
ir_expression *column_expr;
ir_assignment *column_assign;
column_expr = new(mem_ctx) ir_expression(ir_binop_mul,
get_column(a, i),
b->clone(mem_ctx, NULL));
column_assign = new(mem_ctx) ir_assignment(get_column(result, i),
column_expr);
base_ir->insert_before(column_assign);
}
}
void
ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_dereference *result,
ir_dereference *a,
ir_dereference *b,
bool test_equal)
{
/* This essentially implements the following GLSL:
*
* bool equal(mat4 a, mat4 b)
* {
* return !any(bvec4(a[0] != b[0],
* a[1] != b[1],
* a[2] != b[2],
* a[3] != b[3]);
* }
*
* bool nequal(mat4 a, mat4 b)
* {
* return any(bvec4(a[0] != b[0],
* a[1] != b[1],
* a[2] != b[2],
* a[3] != b[3]);
* }
*/
const unsigned columns = a->type->matrix_columns;
const glsl_type *const bvec_type =
glsl_type::get_instance(GLSL_TYPE_BOOL, columns, 1);
ir_variable *const tmp_bvec =
new(this->mem_ctx) ir_variable(bvec_type, "mat_cmp_bvec",
ir_var_temporary);
this->base_ir->insert_before(tmp_bvec);
for (unsigned i = 0; i < columns; i++) {
ir_expression *const cmp =
new(this->mem_ctx) ir_expression(ir_binop_any_nequal,
get_column(a, i),
get_column(b, i));
ir_dereference *const lhs =
new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
ir_assignment *const assign =
new(this->mem_ctx) ir_assignment(lhs, cmp, NULL, (1U << i));
this->base_ir->insert_before(assign);
}
ir_rvalue *const val = new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
ir_expression *any = new(this->mem_ctx) ir_expression(ir_unop_any, val);
if (test_equal)
any = new(this->mem_ctx) ir_expression(ir_unop_logic_not, any);
ir_assignment *const assign =
new(mem_ctx) ir_assignment(result->clone(mem_ctx, NULL), any);
base_ir->insert_before(assign);
}
static bool
has_matrix_operand(const ir_expression *expr, unsigned &columns)
{
for (unsigned i = 0; i < expr->get_num_operands(); i++) {
if (expr->operands[i]->type->is_matrix()) {
columns = expr->operands[i]->type->matrix_columns;
return true;
}
}
return false;
}
ir_visitor_status
ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *orig_assign)
{
ir_expression *orig_expr = orig_assign->rhs->as_expression();
unsigned int i, matrix_columns = 1;
ir_dereference *op[2];
if (!orig_expr)
return visit_continue;
if (!has_matrix_operand(orig_expr, matrix_columns))
return visit_continue;
assert(orig_expr->get_num_operands() <= 2);
mem_ctx = ralloc_parent(orig_assign);
ir_dereference_variable *result =
orig_assign->lhs->as_dereference_variable();
assert(result);
/* Store the expression operands in temps so we can use them
* multiple times.
*/
for (i = 0; i < orig_expr->get_num_operands(); i++) {
ir_assignment *assign;
ir_dereference *deref = orig_expr->operands[i]->as_dereference();
/* Avoid making a temporary if we don't need to to avoid aliasing. */
if (deref &&
deref->variable_referenced() != result->variable_referenced()) {
op[i] = deref;
continue;
}
/* Otherwise, store the operand in a temporary generally if it's
* not a dereference.
*/
ir_variable *var = new(mem_ctx) ir_variable(orig_expr->operands[i]->type,
"mat_op_to_vec",
ir_var_temporary);
base_ir->insert_before(var);
/* Note that we use this dereference for the assignment. That means
* that others that want to use op[i] have to clone the deref.
*/
op[i] = new(mem_ctx) ir_dereference_variable(var);
assign = new(mem_ctx) ir_assignment(op[i], orig_expr->operands[i]);
base_ir->insert_before(assign);
}
/* OK, time to break down this matrix operation. */
switch (orig_expr->operation) {
case ir_unop_neg: {
/* Apply the operation to each column.*/
for (i = 0; i < matrix_columns; i++) {
ir_expression *column_expr;
ir_assignment *column_assign;
column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
get_column(op[0], i));
column_assign = new(mem_ctx) ir_assignment(get_column(result, i),
column_expr);
assert(column_assign->write_mask != 0);
base_ir->insert_before(column_assign);
}
break;
}
case ir_binop_add:
case ir_binop_sub:
case ir_binop_div:
case ir_binop_mod: {
/* For most operations, the matrix version is just going
* column-wise through and applying the operation to each column
* if available.
*/
for (i = 0; i < matrix_columns; i++) {
ir_expression *column_expr;
ir_assignment *column_assign;
column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
get_column(op[0], i),
get_column(op[1], i));
column_assign = new(mem_ctx) ir_assignment(get_column(result, i),
column_expr);
assert(column_assign->write_mask != 0);
base_ir->insert_before(column_assign);
}
break;
}
case ir_binop_mul:
if (op[0]->type->is_matrix()) {
if (op[1]->type->is_matrix()) {
do_mul_mat_mat(result, op[0], op[1]);
} else if (op[1]->type->is_vector()) {
do_mul_mat_vec(result, op[0], op[1]);
} else {
assert(op[1]->type->is_scalar());
do_mul_mat_scalar(result, op[0], op[1]);
}
} else {
assert(op[1]->type->is_matrix());
if (op[0]->type->is_vector()) {
do_mul_vec_mat(result, op[0], op[1]);
} else {
assert(op[0]->type->is_scalar());
do_mul_mat_scalar(result, op[1], op[0]);
}
}
break;
case ir_binop_all_equal:
case ir_binop_any_nequal:
do_equal_mat_mat(result, op[1], op[0],
(orig_expr->operation == ir_binop_all_equal));
break;
default:
printf("FINISHME: Handle matrix operation for %s\n",
orig_expr->operator_string());
abort();
}
orig_assign->remove();
this->made_progress = true;
return visit_continue;
}