blob: ad5b78729db69882fdc14fa5cc6cd9da95b69127 [file] [log] [blame]
/*
* Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
* Copyright (C) 2008 VMware, Inc. All Rights Reserved.
* Copyright © 2010 Intel Corporation
* Copyright © 2010 Luca Barbieri
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ir_to_llvm.cpp
*
* Translates the IR to LLVM
*/
/* this tends to get set as part of LLVM_CFLAGS, but we definitely want asserts */
#ifdef NDEBUG
#undef NDEBUG
#endif
#include "llvm/ADT/ArrayRef.h"
#include "llvm/DerivedTypes.h"
#include "llvm/IRBuilder.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Analysis/Verifier.h"
//#include "llvm/Intrinsics.h"
#include <vector>
#include <stdio.h>
#include <map>
/*
#ifdef _MSC_VER
#include <unordered_map>
#else
#include <tr1/unordered_map>
#endif
// use C++0x/Microsoft convention
namespace std
{
using namespace tr1;
}
//*/
#include "ir.h"
#include "ir_visitor.h"
#include "glsl_types.h"
#include "src/mesa/main/mtypes.h"
// Helper function to convert array to llvm::ArrayRef
template <typename T, size_t N>
static inline llvm::ArrayRef<T> pack(T const (&array)[N]) {
return llvm::ArrayRef<T>(array);
}
// Helper function to convert pointer + size to llvm::ArrayRef
template <typename T>
static inline llvm::ArrayRef<T> pack(T const *ptr, size_t n) {
return llvm::ArrayRef<T>(ptr, n);
}
struct GGLState;
llvm::Value * tex2D(llvm::IRBuilder<> & builder, llvm::Value * in1, const unsigned sampler,
const GGLState * gglCtx);
llvm::Value * texCube(llvm::IRBuilder<> & builder, llvm::Value * in1, const unsigned sampler,
const GGLState * gglCtx);
class ir_to_llvm_visitor : public ir_visitor {
ir_to_llvm_visitor();
public:
llvm::LLVMContext& ctx;
llvm::Module* mod;
llvm::Function* fun;
// could easily support more loops, but GLSL doesn't support multiloop break/continue
std::pair<llvm::BasicBlock*, llvm::BasicBlock*> loop;
llvm::BasicBlock* bb;
llvm::Value* result;
llvm::IRBuilder<> bld;
const GGLState * gglCtx;
const char * shaderSuffix;
llvm::Value * inputsPtr, * outputsPtr, * constantsPtr; // internal globals to store inputs/outputs/constants pointers
llvm::Value * inputs, * outputs, * constants;
ir_to_llvm_visitor(llvm::Module* p_mod, const GGLState * GGLCtx, const char * suffix)
: ctx(p_mod->getContext()), mod(p_mod), fun(0), loop(std::make_pair((llvm::BasicBlock*)0,
(llvm::BasicBlock*)0)), bb(0), bld(ctx), gglCtx(GGLCtx), shaderSuffix(suffix),
inputsPtr(NULL), outputsPtr(NULL), constantsPtr(NULL),
inputs(NULL), outputs(NULL), constants(NULL)
{
llvm::PointerType * const floatVecPtrType = llvm::PointerType::get(llvm::VectorType::get(bld.getFloatTy(),4), 0);
llvm::Constant * const nullFloatVecPtr = llvm::Constant::getNullValue(floatVecPtrType);
// make input, output and consts global pointers so they can be used in
// different LLVM functions since the shader shares these "registers" across "functions"
inputsPtr = new llvm::GlobalVariable(*mod, floatVecPtrType, false,
llvm::GlobalValue::InternalLinkage, nullFloatVecPtr, "gl_inputPtr");
outputsPtr = new llvm::GlobalVariable(*mod, floatVecPtrType, false,
llvm::GlobalValue::InternalLinkage, nullFloatVecPtr, "gl_outputsPtr");
constantsPtr = new llvm::GlobalVariable(*mod, floatVecPtrType, false,
llvm::GlobalValue::InternalLinkage, nullFloatVecPtr, "gl_constantsPtr");
}
llvm::Type* llvm_base_type(unsigned base_type)
{
switch(base_type)
{
case GLSL_TYPE_VOID:
return llvm::Type::getVoidTy(ctx);
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return llvm::Type::getInt32Ty(ctx);
case GLSL_TYPE_FLOAT:
return llvm::Type::getFloatTy(ctx);
case GLSL_TYPE_BOOL:
return llvm::Type::getInt1Ty(ctx);
case GLSL_TYPE_SAMPLER:
return llvm::PointerType::getUnqual(llvm::Type::getVoidTy(ctx));
default:
assert(0);
return 0;
}
}
llvm::Type* llvm_vec_type(const glsl_type* type)
{
if (type->is_array())
return llvm::ArrayType::get(llvm_type(type->fields.array), type->array_size());
if (type->is_record())
{
std::vector<llvm::Type*> fields;
for (unsigned i = 0; i < type->length; i++)
fields.push_back(llvm_type(type->fields.structure[i].type));
return llvm::StructType::get(ctx, llvm::ArrayRef<llvm::Type*>(
fields));
}
llvm::Type* base_type = llvm_base_type(type->base_type);
if (type->vector_elements <= 1) {
return base_type;
} else {
return llvm::VectorType::get(base_type, type->vector_elements);
}
}
llvm::Type* llvm_type(const glsl_type* type)
{
llvm::Type* vec_type = llvm_vec_type(type);
if (type->matrix_columns <= 1) {
return vec_type;
} else {
return llvm::ArrayType::get(vec_type, type->matrix_columns);
}
}
typedef std::map<ir_variable*, llvm::Value*> llvm_variables_t;
//typedef std::unordered_map<ir_variable*, llvm::Value*> llvm_variables_t;
llvm_variables_t llvm_variables;
llvm::Value* llvm_variable(class ir_variable* var)
{
llvm_variables_t::iterator vari = llvm_variables.find(var);
if (vari != llvm_variables.end()) {
return vari->second;
} else {
llvm::Type* type = llvm_type(var->type);
llvm::Value* v = NULL;
if(fun) {
if (ir_var_in == var->mode)
{
assert(var->location >= 0);
v = bld.CreateConstGEP1_32(inputs, var->location);
v = bld.CreateBitCast(v, llvm::PointerType::get(llvm_type(var->type), 0), var->name);
}
else if (ir_var_out == var->mode)
{
assert(var->location >= 0);
v = bld.CreateConstGEP1_32(outputs, var->location);
v = bld.CreateBitCast(v, llvm::PointerType::get(llvm_type(var->type), 0), var->name);
}
else if (ir_var_uniform == var->mode)
{
assert(var->location >= 0);
v = bld.CreateConstGEP1_32(constants, var->location);
v = bld.CreateBitCast(v, llvm::PointerType::get(llvm_type(var->type), 0), var->name);
}
else
{
if(bb == &fun->getEntryBlock())
v = bld.CreateAlloca(type, 0, var->name);
else
v = new llvm::AllocaInst(type, 0, var->name, fun->getEntryBlock().getTerminator());
}
} else {
// TODO: can anything global be non-constant in GLSL?; fix linkage
//printf("var '%s' mode=%d location=%d \n", var->name, var->mode, var->location);
switch(var->mode)
{
case ir_var_auto: // fall through
case ir_var_temporary:
{
llvm::Constant * init = llvm::UndefValue::get(llvm_type(var->type));
if(var->constant_value)
init = llvm_constant(var->constant_value);
v = new llvm::GlobalVariable(*mod, type, var->read_only, llvm::GlobalValue::InternalLinkage, init, var->name);
break;
}
case ir_var_in: // fall through
case ir_var_out: // fall through
case ir_var_uniform: // fall through
assert(var->location >= 0);
return NULL; // variable outside of function means declaration
default:
assert(0);
}
// llvm::Function::LinkageTypes linkage;
// if(var->mode == ir_var_auto || var->mode == ir_var_temporary)
// linkage = llvm::GlobalValue::InternalLinkage;
// else
// linkage = llvm::GlobalValue::ExternalLinkage;
// llvm::Constant* init = 0;
// if(var->constant_value)
// {
// init = llvm_constant(var->constant_value);
// // this constants need to be external (ie. written to output)
// if (llvm::GlobalValue::ExternalLinkage == linkage)
// linkage = llvm::GlobalValue::AvailableExternallyLinkage;
// }
// else if(linkage == llvm::GlobalValue::InternalLinkage)
// init = llvm::UndefValue::get(llvm_type(var->type));
// v = new llvm::GlobalVariable(*mod, type, var->read_only, linkage, init, var->name);
}
assert(v);
llvm_variables[var] = v;
return v;
}
}
//typedef std::map<ir_function_signature*, llvm::Function*> llvm_functions_t;
//typedef std::unordered_map<ir_function_signature*, llvm::Function*> llvm_functions_t;
//llvm_functions_t llvm_functions;
llvm::Function* llvm_function(class ir_function_signature* sig)
{
const char* name = sig->function_name();
char * functionName = (char *)malloc(strlen(name) + strlen(shaderSuffix) + 1);
strcpy(functionName, name);
strcat(functionName, shaderSuffix);
llvm::Function * function = mod->getFunction(functionName);
if (function)
{
free(functionName);
return function;
}
else
{
llvm::Function::LinkageTypes linkage;
std::vector<llvm::Type*> params;
foreach_iter(exec_list_iterator, iter, sig->parameters) {
ir_variable* arg = (ir_variable*)iter.get();
params.push_back(llvm_type(arg->type));
}
if(!strcmp(name, "main") || !sig->is_defined)
{
linkage = llvm::Function::ExternalLinkage;
llvm::PointerType * vecPtrTy = llvm::PointerType::get(llvm::VectorType::get(bld.getFloatTy(), 4), 0);
assert(0 == params.size());
params.push_back(vecPtrTy); // inputs
params.push_back(vecPtrTy); // outputs
params.push_back(vecPtrTy); // constants
}
else {
linkage = llvm::Function::InternalLinkage;
}
llvm::FunctionType* ft = llvm::FunctionType::get(llvm_type(sig->return_type),
llvm::ArrayRef<llvm::Type*>(params),
false);
function = llvm::Function::Create(ft, linkage, functionName, mod);
free(functionName);
return function;
}
}
llvm::Value* llvm_value(class ir_instruction* ir)
{
result = 0;
ir->accept(this);
return result;
}
llvm::Constant* llvm_constant(class ir_instruction* ir)
{
return (llvm::Constant *)llvm_value(ir);
//return &dynamic_cast<llvm::Constant&>(*llvm_value(ir));
}
llvm::Constant* llvm_int(unsigned v)
{
return llvm::ConstantInt::get(llvm::Type::getInt32Ty(ctx), v);
}
llvm::Value* llvm_pointer(class ir_rvalue* ir)
{
if(ir_dereference_variable* deref = ir->as_dereference_variable())
return llvm_variable(deref->variable_referenced());
else if(ir_dereference_array* deref = ir->as_dereference_array())
{
llvm::Value* gep[2] = {llvm_int(0), llvm_value(deref->array_index)};
return bld.CreateInBoundsGEP(llvm_pointer(deref->array), gep);
}
else if(ir->as_dereference())
{
ir_dereference_record* deref = (ir_dereference_record*)ir;
int idx = deref->record->type->field_index(deref->field);
assert(idx >= 0);
return bld.CreateConstInBoundsGEP2_32(llvm_pointer(deref->record), 0, idx);
}
else
{
assert(0);
return 0;
}
}
// llvm::Value* llvm_intrinsic(llvm::Intrinsic::ID id, llvm::Value* a)
// {
// llvm::Type* types[1] = {a->getType()};
// return bld.CreateCall(llvm::Intrinsic::getDeclaration(mod, id, types, 1), a);
// }
//
// llvm::Value* llvm_intrinsic(llvm::Intrinsic::ID id, llvm::Value* a, llvm::Value* b)
// {
// llvm::Type* types[2] = {a->getType(), b->getType()};
// /* only one type suffix is usually needed, so pass 1 here */
// return bld.CreateCall2(llvm::Intrinsic::getDeclaration(mod, id, types, 1), a, b);
// }
llvm::Value* llvm_intrinsic_unop(ir_expression_operation op, llvm::Value * op0)
{
llvm::Type * floatType = llvm::Type::getFloatTy(ctx);
const char * name = NULL;
switch (op) {
case ir_unop_sin:
name = "sinf";
break;
case ir_unop_cos:
name = "cosf";
break;
default:
assert(0);
}
llvm::Function * function = mod->getFunction(name);
if (!function) {
// predeclare the intrinsic
std::vector<llvm::Type*> args;
args.push_back(floatType);
llvm::FunctionType* type = llvm::FunctionType::get(floatType,
llvm::ArrayRef<llvm::Type*>(args),
false);
function = llvm::Function::Create(type, llvm::Function::ExternalLinkage, name, mod);
function->setCallingConv(llvm::CallingConv::C);
}
return bld.CreateCall(function, op0);
}
llvm::Value* llvm_intrinsic_binop(ir_expression_operation op, llvm::Value * op0, llvm::Value * op1)
{
llvm::Type * floatType = llvm::Type::getFloatTy(ctx);
const char * name = NULL;
switch (op) {
case ir_binop_pow:
name = "powf";
break;
default:
assert(0);
}
llvm::Function * function = mod->getFunction(name);
if (!function) {
// predeclare the intrinsic
std::vector<llvm::Type*> args;
args.push_back(floatType);
args.push_back(floatType);
llvm::FunctionType* type = llvm::FunctionType::get(floatType,
llvm::ArrayRef<llvm::Type*>(args),
false);
function = llvm::Function::Create(type, llvm::Function::ExternalLinkage, name, mod);
function->setCallingConv(llvm::CallingConv::C);
}
return bld.CreateCall2(function, op0, op1);
}
llvm::Constant* llvm_imm(llvm::Type* type, double v)
{
if(type->isVectorTy())
{
std::vector<llvm::Constant*> values;
values.push_back(llvm_imm(((llvm::VectorType*)type)->getElementType(), v));
for(unsigned i = 1; i < ((llvm::VectorType*)type)->getNumElements(); ++i)
values.push_back(values[0]);
return llvm::ConstantVector::get(values);
}
else if(type->isIntegerTy())
return llvm::ConstantInt::get(type, v);
else if(type->isFloatingPointTy())
return llvm::ConstantFP::get(type, v);
else
{
assert(0);
return 0;
}
}
static llvm::Value* create_shuffle3(llvm::IRBuilder<>& bld, llvm::Value* v, unsigned a, unsigned b, unsigned c, const llvm::Twine& name = "")
{
llvm::Type* int_ty = llvm::Type::getInt32Ty(v->getContext());
llvm::Constant* vals[3] = {llvm::ConstantInt::get(int_ty, a), llvm::ConstantInt::get(int_ty, b), llvm::ConstantInt::get(int_ty, c)};
return bld.CreateShuffleVector(v, llvm::UndefValue::get(v->getType()), llvm::ConstantVector::get(pack(vals)), name);
}
llvm::Value* create_select(unsigned width, llvm::Value * cond, llvm::Value * tru, llvm::Value * fal, const char * name = "")
{
if (1 == width)
return bld.CreateSelect(cond, tru, fal, name);
llvm::Type * vectorType = tru->getType();
llvm::Value * vector = llvm::Constant::getNullValue(vectorType);
for (unsigned int i = 0; i < width; i++) {
llvm::Value * c = bld.CreateExtractElement(cond, llvm_int(i));
llvm::Value * t = bld.CreateExtractElement(tru, llvm_int(i));
llvm::Value * f = bld.CreateExtractElement(fal, llvm_int(i));
llvm::Value * v = bld.CreateSelect(c, t, f, name);
vector = bld.CreateInsertElement(vector, v, llvm_int(i), "vslct");
}
return vector;
}
llvm::Value* create_dot_product(llvm::Value* ops0, llvm::Value* ops1, glsl_base_type type, unsigned width)
{
llvm::Value* prod;
switch (type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
prod = bld.CreateMul(ops0, ops1, "dot.mul");
break;
case GLSL_TYPE_FLOAT:
prod = bld.CreateFMul(ops0, ops1, "dot.mul");
break;
default:
assert(0);
}
if (width<= 1)
return prod;
llvm::Value* sum = 0;
for (unsigned i = 0; i < width; ++i) {
llvm::Value* elem = bld.CreateExtractElement(prod, llvm_int(i), "dot.elem");
if (sum) {
if (type == GLSL_TYPE_FLOAT)
sum = bld.CreateFAdd(sum, elem, "dot.add");
else
sum = bld.CreateAdd(sum, elem, "dot.add");
}
else
sum = elem;
}
return sum;
}
llvm::Value* llvm_expression(ir_expression* ir)
{
llvm::Value* ops[2];
for(unsigned i = 0; i < ir->get_num_operands(); ++i)
ops[i] = llvm_value(ir->operands[i]);
if(ir->get_num_operands() == 2)
{
int vecidx = -1;
int scaidx = -1;
if(ir->operands[0]->type->vector_elements <= 1 && ir->operands[1]->type->vector_elements > 1)
{
scaidx = 0;
vecidx = 1;
}
else if(ir->operands[0]->type->vector_elements > 1 && ir->operands[1]->type->vector_elements <= 1)
{
scaidx = 1;
vecidx = 0;
}
else
assert(ir->operands[0]->type->vector_elements == ir->operands[1]->type->vector_elements);
if(scaidx >= 0)
{
llvm::Value* vec;
vec = llvm::UndefValue::get(ops[vecidx]->getType());
for(unsigned i = 0; i < ir->operands[vecidx]->type->vector_elements; ++i)
vec = bld.CreateInsertElement(vec, ops[scaidx], llvm_int(i), "sca2vec");
ops[scaidx] = vec;
}
}
switch (ir->operation) {
case ir_unop_logic_not:
return bld.CreateNot(ops[0]);
case ir_unop_neg:
switch (ir->operands[0]->type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_INT:
return bld.CreateNeg(ops[0]);
case GLSL_TYPE_FLOAT:
return bld.CreateFNeg(ops[0]);
default:
assert(0);
}
case ir_unop_abs:
switch (ir->operands[0]->type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_BOOL:
return ops[0];
case GLSL_TYPE_INT:
return create_select(ir->operands[0]->type->vector_elements,
bld.CreateICmpSGE(ops[0], llvm_imm(ops[0]->getType(), 0), "sabs.ge"),
ops[0], bld.CreateNeg(ops[0], "sabs.neg"), "sabs.select");
case GLSL_TYPE_FLOAT:
return create_select(ir->operands[0]->type->vector_elements,
bld.CreateFCmpUGE(ops[0], llvm_imm(ops[0]->getType(), 0), "fabs.ge"),
ops[0], bld.CreateFNeg(ops[0], "fabs.neg"), "fabs.select");
default:
assert(0);
}
case ir_unop_sign:
switch (ir->operands[0]->type->base_type) {
case GLSL_TYPE_BOOL:
return ops[0];
case GLSL_TYPE_UINT:
return bld.CreateZExt(bld.CreateICmpNE(ops[0], llvm_imm(ops[0]->getType(), 0), "usign.ne"), ops[0]->getType(), "usign.zext");
case GLSL_TYPE_INT:
return bld.CreateSelect(bld.CreateICmpNE(ops[0], llvm_imm(ops[0]->getType(), 0), "ssign.ne"),
bld.CreateSelect(bld.CreateICmpSGE(ops[0], llvm_imm(ops[0]->getType(), 0), "ssign.ge"), llvm_imm(ops[0]->getType(), 1), llvm_imm(ops[0]->getType(), -1), "sabs.selects"),
llvm_imm(ops[0]->getType(), 0), "sabs.select0");
case GLSL_TYPE_FLOAT:
return bld.CreateSelect(bld.CreateFCmpONE(ops[0], llvm_imm(ops[0]->getType(), 0), "fsign.ne"),
bld.CreateSelect(bld.CreateFCmpUGE(ops[0], llvm_imm(ops[0]->getType(), 0), "fsign.ge"), llvm_imm(ops[0]->getType(), 1), llvm_imm(ops[0]->getType(), -1), "fabs.selects"),
llvm_imm(ops[0]->getType(), 0), "fabs.select0");
default:
assert(0);
}
case ir_unop_rcp:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
return bld.CreateFDiv(llvm_imm(ops[0]->getType(), 1), ops[0]);
case ir_unop_exp: // fall through
case ir_unop_exp2: // fall through
case ir_unop_log: // fall through
case ir_unop_log2: // fall through
case ir_unop_sin: // fall through
case ir_unop_cos:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
return llvm_intrinsic_unop(ir->operation, ops[0]);
// TODO: implement these somehow
case ir_unop_dFdx:
assert(0);
//return llvm_intrinsic(llvm::Intrinsic::ddx, ops[0]);
case ir_unop_dFdy:
assert(0);
//return llvm_intrinsic(llvm::Intrinsic::ddy, ops[0]);
case ir_binop_add:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return bld.CreateAdd(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFAdd(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_sub:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return bld.CreateSub(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFSub(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_mul:
if (ir->operands[0]->type->is_matrix() && ir->operands[1]->type->is_vector())
assert(0);
else if (ir->operands[0]->type->is_vector() && ir->operands[1]->type->is_matrix()) {
assert(0); // matrix multiplication should have been lowered to vector ops
llvm::VectorType * vectorType = llvm::VectorType::get(llvm_base_type(ir->operands[1]->type->base_type), ir->operands[1]->type->matrix_columns);
llvm::Value * vector = llvm::Constant::getNullValue(vectorType);
for (unsigned int i = 0; i < ir->operands[1]->type->matrix_columns; i++) {
llvm::Value * value = bld.CreateExtractValue(ops[1], i, "vec*mat_col");
value = create_dot_product(value, ops[0], ir->operands[1]->type->base_type, ir->operands[1]->type->vector_elements);
vector = bld.CreateInsertElement(vector, value, llvm_int(i), "vec*mat_res");
}
return vector;
}
else if (ir->operands[0]->type->is_matrix() && ir->operands[1]->type->is_matrix())
assert(0);
switch (ir->operands[0]->type->base_type) {
case GLSL_TYPE_BOOL:
return bld.CreateAnd(ops[0], ops[1]);
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return bld.CreateMul(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFMul(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_div:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
return bld.CreateUDiv(ops[0], ops[1]);
case GLSL_TYPE_INT:
return bld.CreateSDiv(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFDiv(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_mod:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
return bld.CreateURem(ops[0], ops[1]);
case GLSL_TYPE_INT:
return bld.CreateSRem(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFRem(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_less:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
return bld.CreateICmpULT(ops[0], ops[1]);
case GLSL_TYPE_INT:
return bld.CreateICmpSLT(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFCmpOLT(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_greater:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
return bld.CreateICmpUGT(ops[0], ops[1]);
case GLSL_TYPE_INT:
return bld.CreateICmpSGT(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFCmpOGT(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_lequal:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
return bld.CreateICmpULE(ops[0], ops[1]);
case GLSL_TYPE_INT:
return bld.CreateICmpSLE(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFCmpOLE(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_gequal:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
return bld.CreateICmpUGE(ops[0], ops[1]);
case GLSL_TYPE_INT:
return bld.CreateICmpSGE(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFCmpOGE(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_equal: // fall through
case ir_binop_all_equal: // TODO: check op same as ir_binop_equal
switch (ir->operands[0]->type->base_type) {
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return bld.CreateICmpEQ(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFCmpOEQ(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_nequal:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return bld.CreateICmpNE(ops[0], ops[1]);
case GLSL_TYPE_FLOAT:
return bld.CreateFCmpONE(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_logic_xor:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL);
return bld.CreateICmpNE(ops[0], ops[1]);
case ir_binop_logic_or:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL);
return bld.CreateOr(ops[0], ops[1]);
case ir_binop_logic_and:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL);
return bld.CreateAnd(ops[0], ops[1]);
case ir_binop_dot:
return create_dot_product(ops[0], ops[1], ir->operands[0]->type->base_type, ir->operands[0]->type->vector_elements);
// case ir_binop_cross: this op does not exist in ir.h
// assert(ir->operands[0]->type->vector_elements == 3);
// switch(ir->operands[0]->type->base_type)
// {
// case GLSL_TYPE_UINT:
// case GLSL_TYPE_INT:
// return bld.CreateSub(
// bld.CreateMul(create_shuffle3(bld, ops[0], 1, 2, 0, "cross.a120"), create_shuffle3(bld, ops[1], 2, 0, 1, "cross.a201"), "cross.ab"),
// bld.CreateMul(create_shuffle3(bld, ops[1], 1, 2, 0, "cross.b120"), create_shuffle3(bld, ops[0], 2, 0, 1, "cross.b201"), "cross.ba"),
// "cross.sub");
// case GLSL_TYPE_FLOAT:
// return bld.CreateFSub(
// bld.CreateFMul(create_shuffle3(bld, ops[0], 1, 2, 0, "cross.a120"), create_shuffle3(bld, ops[1], 2, 0, 1, "cross.a201"), "cross.ab"),
// bld.CreateFMul(create_shuffle3(bld, ops[1], 1, 2, 0, "cross.b120"), create_shuffle3(bld, ops[0], 2, 0, 1, "cross.b201"), "cross.ba"),
// "cross.sub");
// default:
// assert(0);
// }
case ir_unop_sqrt:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
return llvm_intrinsic_unop(ir->operation, ops[0]);
case ir_unop_rsq:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
return bld.CreateFDiv(llvm_imm(ops[0]->getType(), 1), llvm_intrinsic_unop(ir_unop_sqrt, ops[0]), "rsqrt.rcp");
case ir_unop_i2f:
return bld.CreateSIToFP(ops[0], llvm_type(ir->type));
case ir_unop_u2f:
case ir_unop_b2f:
return bld.CreateUIToFP(ops[0], llvm_type(ir->type));
case ir_unop_b2i:
return bld.CreateZExt(ops[0], llvm_type(ir->type));
case ir_unop_f2i:
return bld.CreateFPToSI(ops[0], llvm_type(ir->type));
case ir_unop_f2b:
return bld.CreateFCmpONE(ops[0], llvm_imm(ops[0]->getType(), 0));
case ir_unop_i2b:
return bld.CreateICmpNE(ops[0], llvm_imm(ops[0]->getType(), 0));
case ir_unop_trunc:
{
if(ir->operands[0]->type->base_type != GLSL_TYPE_FLOAT)
return ops[0];
glsl_type int_type = *ir->operands[0]->type;
int_type.base_type = GLSL_TYPE_INT;
return bld.CreateSIToFP(bld.CreateFPToSI(ops[0], llvm_type(&int_type), "trunc.fptosi"),ops[0]->getType(), "trunc.sitofp");
}
case ir_unop_floor:
{
if(ir->operands[0]->type->base_type != GLSL_TYPE_FLOAT)
return ops[0];
llvm::Value* one = llvm_imm(ops[0]->getType(), 1);
return bld.CreateFSub(ops[0], bld.CreateFRem(ops[0], one));
}
case ir_unop_ceil:
{
if(ir->operands[0]->type->base_type != GLSL_TYPE_FLOAT)
return ops[0];
llvm::Value* one = llvm_imm(ops[0]->getType(), 1);
return bld.CreateFAdd(bld.CreateFSub(ops[0], bld.CreateFRem(ops[0], one)), one);
}
case ir_unop_fract:
{
if(ir->operands[0]->type->base_type != GLSL_TYPE_FLOAT)
return llvm_imm(ops[0]->getType(), 0);
llvm::Value* one = llvm_imm(ops[0]->getType(), 1);
return bld.CreateFRem(ops[0], one);
}
// TODO: NaNs might be wrong in min/max, not sure how to fix it
case ir_binop_min:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
return bld.CreateAnd(ops[0], ops[1], "bmin");
case GLSL_TYPE_UINT:
return bld.CreateSelect(bld.CreateICmpULE(ops[0], ops[1], "umin.le"), ops[0], ops[1], "umin.select");
case GLSL_TYPE_INT:
return bld.CreateSelect(bld.CreateICmpSLE(ops[0], ops[1], "smin.le"), ops[0], ops[1], "smin.select");
case GLSL_TYPE_FLOAT:
return bld.CreateSelect(bld.CreateFCmpULE(ops[0], ops[1], "fmin.le"), ops[0], ops[1], "fmin.select");
default:
assert(0);
}
case ir_binop_max:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
return bld.CreateOr(ops[0], ops[1], "bmax");
case GLSL_TYPE_UINT:
return bld.CreateSelect(bld.CreateICmpUGE(ops[0], ops[1], "umax.ge"), ops[0], ops[1], "umax.select");
case GLSL_TYPE_INT:
return bld.CreateSelect(bld.CreateICmpSGE(ops[0], ops[1], "smax.ge"), ops[0], ops[1], "smax.select");
case GLSL_TYPE_FLOAT:
return bld.CreateSelect(bld.CreateFCmpUGE(ops[0], ops[1], "fmax.ge"), ops[0], ops[1], "fmax.select");
default:
assert(0);
}
case ir_binop_pow:
assert(GLSL_TYPE_FLOAT == ir->operands[0]->type->base_type);
assert(GLSL_TYPE_FLOAT == ir->operands[1]->type->base_type);
return llvm_intrinsic_binop(ir_binop_pow, ops[0], ops[1]);
case ir_unop_bit_not:
return bld.CreateNot(ops[0]);
case ir_binop_bit_and:
return bld.CreateAnd(ops[0], ops[1]);
case ir_binop_bit_xor:
return bld.CreateXor(ops[0], ops[1]);
case ir_binop_bit_or:
return bld.CreateOr(ops[0], ops[1]);
case ir_binop_lshift:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return bld.CreateLShr(ops[0], ops[1]);
default:
assert(0);
}
case ir_binop_rshift:
switch(ir->operands[0]->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
return bld.CreateLShr(ops[0], ops[1]);
case GLSL_TYPE_INT:
return bld.CreateAShr(ops[0], ops[1]);
default:
assert(0);
return 0;
}
default:
printf("ir->operation=%d \n", ir->operation);
assert(0);
return 0;
}
}
virtual void visit(class ir_expression * ir)
{
result = llvm_expression(ir);
}
virtual void visit(class ir_dereference_array *ir)
{
result = bld.CreateLoad(llvm_pointer(ir));
}
virtual void visit(class ir_dereference_record *ir)
{
result = bld.CreateLoad(llvm_pointer(ir));
}
virtual void visit(class ir_dereference_variable *ir)
{
result = bld.CreateLoad(llvm_pointer(ir), ir->variable_referenced()->name);
}
virtual void visit(class ir_texture * ir)
{
llvm::Value * coordinate = llvm_value(ir->coordinate);
if (ir->projector)
{
llvm::Value * proj = llvm_value(ir->projector);
unsigned width = ((llvm::VectorType*)coordinate->getType())->getNumElements();
llvm::Value * div = llvm::Constant::getNullValue(coordinate->getType());
for (unsigned i = 0; i < width; i++)
div = bld.CreateInsertElement(div, proj, bld.getInt32(i), "texProjDup");
coordinate = bld.CreateFDiv(coordinate, div, "texProj");
}
ir_variable * sampler = NULL;
if(ir_dereference_variable* deref = ir->sampler->as_dereference_variable())
sampler = deref->variable_referenced();
else if(ir_dereference_array* deref = ir->sampler->as_dereference_array())
{
assert(0); // not implemented
return;
deref->array_index;
deref->array;
}
else if(ir->sampler->as_dereference())
{
assert(0); // not implemented
ir_dereference_record* deref = (ir_dereference_record*)ir->sampler;
int idx = deref->record->type->field_index(deref->field);
assert(idx >= 0);
}
else
assert(0);
assert(sampler->location >= 0 && sampler->location < 64); // TODO: proper limit
// ESSL texture LOD is only for 2D texture in vert shader, and it's explicit
// bias used only in frag shader, and added to computed LOD
assert(ir_tex == ir->op);
assert(GLSL_TYPE_FLOAT == sampler->type->sampler_type);
printf("sampler '%s' location=%d dim=%d type=%d proj=%d lod=%d \n", sampler->name, sampler->location,
sampler->type->sampler_dimensionality, sampler->type->sampler_type,
ir->projector ? 1 : 0, ir->lod_info.lod ? 1 : 0);
if (GLSL_SAMPLER_DIM_CUBE == sampler->type->sampler_dimensionality)
result = texCube(bld, coordinate, sampler->location, gglCtx);
else if (GLSL_SAMPLER_DIM_2D == sampler->type->sampler_dimensionality)
result = tex2D(bld, coordinate, sampler->location, gglCtx);
else
assert(0);
}
virtual void visit(class ir_discard * ir)
{
llvm::BasicBlock* discard = llvm::BasicBlock::Create(ctx, "discard", fun);
llvm::BasicBlock* after;
if(ir->condition)
{
after = llvm::BasicBlock::Create(ctx, "discard.survived", fun);
bld.CreateCondBr(llvm_value(ir->condition), discard, after);
}
else
{
after = llvm::BasicBlock::Create(ctx, "dead_code.discard", fun);
bld.CreateBr(discard);
}
bld.SetInsertPoint(discard);
// FIXME: According to the LLVM mailing list, UnwindInst should not
// be used by the frontend since LLVM 3.0, and 'CreateUnwind'
// method has been removed from the IRBuilder. Here's the
// temporary workaround. But it would be better to remove
// this in the future.
//
// A solution after LLVM 3.0: To add a global boolean in the shader to
// store whether it was discarded or not and just continue on normally,
// and handle the discard outside the shader, in the scanline function.
// The discard instruction is not used frequently, so it should be okay
// performance wise.
//new llvm::UnwindInst(ctx, discard); /// Deprecated
bb = after;
bld.SetInsertPoint(bb);
}
virtual void visit(class ir_loop_jump *ir)
{
llvm::BasicBlock* target;
if(ir->mode == ir_loop_jump::jump_continue)
target = loop.first;
else if(ir->mode == ir_loop_jump::jump_break)
target = loop.second;
assert(target);
bld.CreateBr(target);
bb = llvm::BasicBlock::Create(ctx, "dead_code.jump", fun);
bld.SetInsertPoint(bb);
}
virtual void visit(class ir_loop * ir)
{
llvm::BasicBlock* body = llvm::BasicBlock::Create(ctx, "loop", fun);
llvm::BasicBlock* header = body;
llvm::BasicBlock* after = llvm::BasicBlock::Create(ctx, "loop.after", fun);
llvm::Value* ctr;
if(ir->counter)
{
ctr = llvm_variable(ir->counter);
if(ir->from)
bld.CreateStore(llvm_value(ir->from), ctr);
if(ir->to)
header = llvm::BasicBlock::Create(ctx, "loop.header", fun);
}
bld.CreateBr(header);
if(ir->counter && ir->to)
{
bld.SetInsertPoint(header);
llvm::Value* cond;
llvm::Value* load = bld.CreateLoad(ctr);
llvm::Value* to = llvm_value(ir->to);
switch(ir->counter->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
cond = bld.CreateICmpULT(load, to);
break;
case GLSL_TYPE_INT:
cond = bld.CreateICmpSLT(load, to);
break;
case GLSL_TYPE_FLOAT:
cond = bld.CreateFCmpOLT(load, to);
break;
}
bld.CreateCondBr(cond, body, after);
}
bld.SetInsertPoint(body);
std::pair<llvm::BasicBlock*, llvm::BasicBlock*> saved_loop = loop;
loop = std::make_pair(header, after);
visit_exec_list(&ir->body_instructions, this);
loop = saved_loop;
if(ir->counter && ir->increment)
{
switch(ir->counter->type->base_type)
{
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
bld.CreateStore(bld.CreateAdd(bld.CreateLoad(ctr), llvm_value(ir->increment)), ctr);
break;
case GLSL_TYPE_FLOAT:
bld.CreateStore(bld.CreateFAdd(bld.CreateLoad(ctr), llvm_value(ir->increment)), ctr);
break;
}
}
bld.CreateBr(header);
bb = after;
bld.SetInsertPoint(bb);
}
virtual void visit(class ir_if *ir)
{
llvm::BasicBlock* bbt = llvm::BasicBlock::Create(ctx, "if", fun);
llvm::BasicBlock* bbf = llvm::BasicBlock::Create(ctx, "else", fun);
llvm::BasicBlock* bbe = llvm::BasicBlock::Create(ctx, "endif", fun);
bld.CreateCondBr(llvm_value(ir->condition), bbt, bbf);
bld.SetInsertPoint(bbt);
visit_exec_list(&ir->then_instructions, this);
bld.CreateBr(bbe);
bld.SetInsertPoint(bbf);
visit_exec_list(&ir->else_instructions, this);
bld.CreateBr(bbe);
bb = bbe;
bld.SetInsertPoint(bb);
}
virtual void visit(class ir_return * ir)
{
if(!ir->value)
bld.CreateRetVoid();
else
bld.CreateRet(llvm_value(ir->value));
bb = llvm::BasicBlock::Create(ctx, "dead_code.return", fun);
bld.SetInsertPoint(bb);
}
virtual void visit(class ir_call * ir)
{
std::vector<llvm::Value*> args;
foreach_iter(exec_list_iterator, iter, *ir)
{
ir_rvalue *arg = (ir_constant *)iter.get();
args.push_back(llvm_value(arg));
}
result = bld.CreateCall(llvm_function(ir->get_callee()), llvm::ArrayRef<llvm::Value*>(args));
llvm::AttrListPtr attr;
((llvm::CallInst*)result)->setAttributes(attr);
}
virtual void visit(class ir_constant * ir)
{
if (ir->type->base_type == GLSL_TYPE_STRUCT) {
std::vector<llvm::Constant*> fields;
foreach_iter(exec_list_iterator, iter, ir->components) {
ir_constant *field = (ir_constant *)iter.get();
fields.push_back(llvm_constant(field));
}
result = llvm::ConstantStruct::get((llvm::StructType*)llvm_type(ir->type), fields);
}
else if (ir->type->base_type == GLSL_TYPE_ARRAY) {
std::vector<llvm::Constant*> elems;
for (unsigned i = 0; i < ir->type->length; i++)
elems.push_back(llvm_constant(ir->array_elements[i]));
result = llvm::ConstantArray::get((llvm::ArrayType*)llvm_type(ir->type), elems);
}
else
{
llvm::Type* base_type = llvm_base_type(ir->type->base_type);
llvm::Type* vec_type = llvm_vec_type(ir->type);
llvm::Type* type = llvm_type(ir->type);
std::vector<llvm::Constant*> vecs;
unsigned idx = 0;
for (unsigned i = 0; i < ir->type->matrix_columns; ++i) {
std::vector<llvm::Constant*> elems;
for (unsigned j = 0; j < ir->type->vector_elements; ++j) {
llvm::Constant* elem;
switch(ir->type->base_type)
{
case GLSL_TYPE_FLOAT:
elem = llvm::ConstantFP::get(base_type, ir->value.f[idx]);
break;
case GLSL_TYPE_UINT:
elem = llvm::ConstantInt::get(base_type, ir->value.u[idx]);
break;
case GLSL_TYPE_INT:
elem = llvm::ConstantInt::get(base_type, ir->value.i[idx]);
break;
case GLSL_TYPE_BOOL:
elem = llvm::ConstantInt::get(base_type, ir->value.b[idx]);
break;
}
elems.push_back(elem);
++idx;
}
llvm::Constant* vec;
if(ir->type->vector_elements > 1) {
llvm::ArrayRef<llvm::Constant*> ConstantArray(elems);
vec = llvm::ConstantVector::get(ConstantArray);
} else {
vec = elems[0];
}
vecs.push_back(vec);
}
if(ir->type->matrix_columns > 1)
result = llvm::ConstantArray::get((llvm::ArrayType*)type, vecs);
else
result = vecs[0];
}
}
llvm::Value* llvm_shuffle(llvm::Value* val, int* shuffle_mask, unsigned res_width, const llvm::Twine &name = "")
{
llvm::Type* elem_type = val->getType();
llvm::Type* res_type = elem_type;;
unsigned val_width = 1;
if(val->getType()->isVectorTy())
{
val_width = ((llvm::VectorType*)val->getType())->getNumElements();
elem_type = ((llvm::VectorType*)val->getType())->getElementType();
}
if(res_width > 1)
res_type = llvm::VectorType::get(elem_type, res_width);
llvm::Constant* shuffle_mask_values[4];
assert(res_width <= 4);
bool any_def = false;
for(unsigned i = 0; i < res_width; ++i)
{
if(shuffle_mask[i] < 0)
shuffle_mask_values[i] = llvm::UndefValue::get(llvm::Type::getInt32Ty(ctx));
else
{
any_def = true;
shuffle_mask_values[i] = llvm_int(shuffle_mask[i]);
}
}
llvm::Value* undef = llvm::UndefValue::get(res_type);
if(!any_def)
return undef;
if(val_width > 1)
{
if(res_width > 1)
{
if(val_width == res_width)
{
bool nontrivial = false;
for(unsigned i = 0; i < val_width; ++i)
{
if(shuffle_mask[i] != (int)i)
nontrivial = true;
}
if(!nontrivial)
return val;
}
return bld.CreateShuffleVector(val, llvm::UndefValue::get(val->getType()), llvm::ConstantVector::get(pack(shuffle_mask_values, res_width)), name);
}
else
return bld.CreateExtractElement(val, llvm_int(shuffle_mask[0]), name);
}
else
{
if(res_width > 1)
{
llvm::Value* tmp = undef;
for(unsigned i = 0; i < res_width; ++i)
{
if(shuffle_mask[i] >= 0)
tmp = bld.CreateInsertElement(tmp, val, llvm_int(i), name);
}
return tmp;
}
else if(shuffle_mask[0] >= 0)
return val;
else
return undef;
}
}
virtual void visit(class ir_swizzle * swz)
{
llvm::Value* val = llvm_value(swz->val);
int mask[4] = {swz->mask.x, swz->mask.y, swz->mask.z, swz->mask.w};
result = llvm_shuffle(val, mask, swz->mask.num_components, "swizzle");
}
virtual void visit(class ir_assignment * ir)
{
llvm::Value* lhs = llvm_pointer(ir->lhs);
llvm::Value* rhs = llvm_value(ir->rhs);
unsigned width = ir->lhs->type->vector_elements;
unsigned mask = (1 << width) - 1;
assert(rhs);
// TODO: masking for matrix assignment
if (ir->rhs->type->is_matrix()) {
bld.CreateStore(rhs, lhs, "mat_str");
return;
}
if (!(ir->write_mask & mask))
return;
if (ir->rhs->type->vector_elements < width) {
int expand_mask[4] = {-1, -1, -1, -1};
for (unsigned i = 0; i < ir->lhs->type->vector_elements; ++i)
expand_mask[i] = i;
// printf("ve: %u w %u issw: %i\n", ir->rhs->type->vector_elements, width, !!ir->rhs->as_swizzle());
rhs = llvm_shuffle(rhs, expand_mask, width, "assign.expand");
}
if (width > 1 && (ir->write_mask & mask) != mask) {
llvm::Constant* blend_mask[4];
// refer to ir.h: ir_assignment::write_mask
// A partially-set write mask means that each enabled channel gets
// the value from a consecutive channel of the rhs.
unsigned rhsChannel = 0;
for (unsigned i = 0; i < width; ++i) {
if (ir->write_mask & (1 << i))
blend_mask[i] = llvm_int(width + rhsChannel++);
else
blend_mask[i] = llvm_int(i);
}
rhs = bld.CreateShuffleVector(bld.CreateLoad(lhs), rhs, llvm::ConstantVector::get(pack(blend_mask, width)), "assign.writemask");
}
if(ir->condition)
rhs = bld.CreateSelect(llvm_value(ir->condition), rhs, bld.CreateLoad(lhs), "assign.conditional");
bld.CreateStore(rhs, lhs);
}
virtual void visit(class ir_variable * var)
{
llvm_variable(var);
}
virtual void visit(ir_function_signature *sig)
{
if(!sig->is_defined)
return;
assert(!fun);
fun = llvm_function(sig);
bb = llvm::BasicBlock::Create(ctx, "entry", fun);
bld.SetInsertPoint(bb);
llvm::Function::arg_iterator ai = fun->arg_begin();
if (!strcmp("main",sig->function_name()))
{
assert(3 == fun->arg_size());
bld.CreateStore(ai, inputsPtr);
inputs = ai;
ai++;
bld.CreateStore(ai, outputsPtr);
outputs = ai;
ai++;
bld.CreateStore(ai, constantsPtr);
constants = ai;
ai++;
}
else
{
foreach_iter(exec_list_iterator, iter, sig->parameters) {
ir_variable* arg = (ir_variable*)iter.get();
ai->setName(arg->name);
bld.CreateStore(ai, llvm_variable(arg));
++ai;
}
inputs = bld.CreateLoad(inputsPtr);
outputs = bld.CreateLoad(outputsPtr);
constants = bld.CreateLoad(constantsPtr);
}
inputs->setName("gl_inputs");
outputs->setName("gl_outputs");
constants->setName("gl_constants");
foreach_iter(exec_list_iterator, iter, sig->body) {
ir_instruction *ir = (ir_instruction *)iter.get();
ir->accept(this);
}
if(fun->getReturnType()->isVoidTy())
bld.CreateRetVoid();
else
bld.CreateRet(llvm::UndefValue::get(fun->getReturnType()));
bb = NULL;
fun = NULL;
}
virtual void visit(class ir_function * funs)
{
foreach_iter(exec_list_iterator, iter, *funs)
{
ir_function_signature* sig = (ir_function_signature*)iter.get();
sig->accept(this);
}
}
};
struct llvm::Module *
glsl_ir_to_llvm_module(struct exec_list *ir, llvm::Module * mod,
const struct GGLState * gglCtx, const char * shaderSuffix)
{
ir_to_llvm_visitor v(mod, gglCtx, shaderSuffix);
visit_exec_list(ir, &v);
// mod->dump();
if(llvm::verifyModule(*mod, llvm::PrintMessageAction, 0))
{
puts("**\n module verification failed **\n");
mod->dump();
assert(0);
return NULL;
}
return mod;
//v.ir_to_llvm_emit_op1(NULL, OPCODE_END, ir_to_llvm_undef_dst, ir_to_llvm_undef);
}