blob: a483ad9fd39d0bd15039d0b6f8832ef812ad92c4 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based on si_state.c
* Copyright © 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/* command buffer handling for SI */
#include "radv_private.h"
#include "radv_cs.h"
#include "sid.h"
#include "radv_util.h"
#include "main/macros.h"
#define SI_GS_PER_ES 128
static void
si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
struct radeon_winsys_cs *cs,
unsigned raster_config,
unsigned raster_config_1)
{
unsigned sh_per_se = MAX2(physical_device->rad_info.max_sh_per_se, 1);
unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
unsigned rb_per_pkr = MIN2(num_rb / num_se / sh_per_se, 2);
unsigned rb_per_se = num_rb / num_se;
unsigned se_mask[4];
unsigned se;
se_mask[0] = ((1 << rb_per_se) - 1) & rb_mask;
se_mask[1] = (se_mask[0] << rb_per_se) & rb_mask;
se_mask[2] = (se_mask[1] << rb_per_se) & rb_mask;
se_mask[3] = (se_mask[2] << rb_per_se) & rb_mask;
assert(num_se == 1 || num_se == 2 || num_se == 4);
assert(sh_per_se == 1 || sh_per_se == 2);
assert(rb_per_pkr == 1 || rb_per_pkr == 2);
/* XXX: I can't figure out what the *_XSEL and *_YSEL
* fields are for, so I'm leaving them as their default
* values. */
if ((num_se > 2) && ((!se_mask[0] && !se_mask[1]) ||
(!se_mask[2] && !se_mask[3]))) {
raster_config_1 &= C_028354_SE_PAIR_MAP;
if (!se_mask[0] && !se_mask[1]) {
raster_config_1 |=
S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_3);
} else {
raster_config_1 |=
S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_0);
}
}
for (se = 0; se < num_se; se++) {
unsigned raster_config_se = raster_config;
unsigned pkr0_mask = ((1 << rb_per_pkr) - 1) << (se * rb_per_se);
unsigned pkr1_mask = pkr0_mask << rb_per_pkr;
int idx = (se / 2) * 2;
if ((num_se > 1) && (!se_mask[idx] || !se_mask[idx + 1])) {
raster_config_se &= C_028350_SE_MAP;
if (!se_mask[idx]) {
raster_config_se |=
S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_3);
} else {
raster_config_se |=
S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_0);
}
}
pkr0_mask &= rb_mask;
pkr1_mask &= rb_mask;
if (rb_per_se > 2 && (!pkr0_mask || !pkr1_mask)) {
raster_config_se &= C_028350_PKR_MAP;
if (!pkr0_mask) {
raster_config_se |=
S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_3);
} else {
raster_config_se |=
S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_0);
}
}
if (rb_per_se >= 2) {
unsigned rb0_mask = 1 << (se * rb_per_se);
unsigned rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se &= C_028350_RB_MAP_PKR0;
if (!rb0_mask) {
raster_config_se |=
S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se |=
S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
if (rb_per_se > 2) {
rb0_mask = 1 << (se * rb_per_se + rb_per_pkr);
rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se &= C_028350_RB_MAP_PKR1;
if (!rb0_mask) {
raster_config_se |=
S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se |=
S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
}
}
/* GRBM_GFX_INDEX has a different offset on SI and CI+ */
if (physical_device->rad_info.chip_class < CIK)
radeon_set_config_reg(cs, GRBM_GFX_INDEX,
SE_INDEX(se) | SH_BROADCAST_WRITES |
INSTANCE_BROADCAST_WRITES);
else
radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
S_030800_INSTANCE_BROADCAST_WRITES(1));
radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se);
if (physical_device->rad_info.chip_class >= CIK)
radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
}
/* GRBM_GFX_INDEX has a different offset on SI and CI+ */
if (physical_device->rad_info.chip_class < CIK)
radeon_set_config_reg(cs, GRBM_GFX_INDEX,
SE_BROADCAST_WRITES | SH_BROADCAST_WRITES |
INSTANCE_BROADCAST_WRITES);
else
radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
S_030800_INSTANCE_BROADCAST_WRITES(1));
}
void
si_init_compute(struct radv_physical_device *physical_device,
struct radv_cmd_buffer *cmd_buffer)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_set_sh_reg_seq(cs, R_00B854_COMPUTE_RESOURCE_LIMITS, 3);
radeon_emit(cs, 0);
/* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
if (physical_device->rad_info.chip_class >= CIK) {
/* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
radeon_set_sh_reg_seq(cs,
R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
S_00B864_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
S_00B868_SH1_CU_EN(0xffff));
}
/* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
* and is now per pipe, so it should be handled in the
* kernel if we want to use something other than the default value,
* which is now 0x22f.
*/
if (physical_device->rad_info.chip_class <= SI) {
/* XXX: This should be:
* (number of compute units) * 4 * (waves per simd) - 1 */
radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
0x190 /* Default value */);
}
}
void si_init_config(struct radv_physical_device *physical_device,
struct radv_cmd_buffer *cmd_buffer)
{
unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
unsigned raster_config, raster_config_1;
int i;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
/* FIXME calculate these values somehow ??? */
radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
if (physical_device->rad_info.chip_class < CIK)
radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
S_008A14_CLIP_VTX_REORDER_ENA(1));
radeon_set_context_reg(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 0x76543210);
radeon_set_context_reg(cs, R_028BD8_PA_SC_CENTROID_PRIORITY_1, 0xfedcba98);
radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
for (i = 0; i < 16; i++) {
radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
}
switch (physical_device->rad_info.family) {
case CHIP_TAHITI:
case CHIP_PITCAIRN:
raster_config = 0x2a00126a;
raster_config_1 = 0x00000000;
break;
case CHIP_VERDE:
raster_config = 0x0000124a;
raster_config_1 = 0x00000000;
break;
case CHIP_OLAND:
raster_config = 0x00000082;
raster_config_1 = 0x00000000;
break;
case CHIP_HAINAN:
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
case CHIP_BONAIRE:
raster_config = 0x16000012;
raster_config_1 = 0x00000000;
break;
case CHIP_HAWAII:
raster_config = 0x3a00161a;
raster_config_1 = 0x0000002e;
break;
case CHIP_FIJI:
if (physical_device->rad_info.cik_macrotile_mode_array[0] == 0x000000e8) {
/* old kernels with old tiling config */
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
} else {
raster_config = 0x3a00161a;
raster_config_1 = 0x0000002e;
}
break;
case CHIP_POLARIS10:
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
break;
case CHIP_POLARIS11:
raster_config = 0x16000012;
raster_config_1 = 0x00000000;
break;
case CHIP_TONGA:
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
break;
case CHIP_ICELAND:
if (num_rb == 1)
raster_config = 0x00000000;
else
raster_config = 0x00000002;
raster_config_1 = 0x00000000;
break;
case CHIP_CARRIZO:
raster_config = 0x00000002;
raster_config_1 = 0x00000000;
break;
case CHIP_KAVERI:
/* KV should be 0x00000002, but that causes problems with radeon */
raster_config = 0x00000000; /* 0x00000002 */
raster_config_1 = 0x00000000;
break;
case CHIP_KABINI:
case CHIP_MULLINS:
case CHIP_STONEY:
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
default:
fprintf(stderr,
"radeonsi: Unknown GPU, using 0 for raster_config\n");
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
}
/* Always use the default config when all backends are enabled
* (or when we failed to determine the enabled backends).
*/
if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
raster_config);
if (physical_device->rad_info.chip_class >= CIK)
radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
raster_config_1);
} else {
si_write_harvested_raster_configs(physical_device, cs, raster_config, raster_config_1);
}
radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL, S_028204_WINDOW_OFFSET_DISABLE(1));
radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL, S_028240_WINDOW_OFFSET_DISABLE(1));
radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
S_028244_BR_X(16384) | S_028244_BR_Y(16384));
radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
S_028034_BR_X(16384) | S_028034_BR_Y(16384));
radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
/* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on SI */
radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
radeon_set_context_reg(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, fui(1.0));
radeon_set_context_reg(cs, R_028BEC_PA_CL_GB_VERT_DISC_ADJ, fui(1.0));
radeon_set_context_reg(cs, R_028BF0_PA_CL_GB_HORZ_CLIP_ADJ, fui(1.0));
radeon_set_context_reg(cs, R_028BF4_PA_CL_GB_HORZ_DISC_ADJ, fui(1.0));
radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
if (physical_device->rad_info.chip_class >= CIK) {
radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS, 0);
radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES, S_00B31C_CU_EN(0xffff));
radeon_set_sh_reg(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, S_00B21C_CU_EN(0xffff));
if (physical_device->rad_info.num_good_compute_units /
(physical_device->rad_info.max_se * physical_device->rad_info.max_sh_per_se) <= 4) {
/* Too few available compute units per SH. Disallowing
* VS to run on CU0 could hurt us more than late VS
* allocation would help.
*
* LATE_ALLOC_VS = 2 is the highest safe number.
*/
radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS, S_00B51C_CU_EN(0xffff));
radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, S_00B118_CU_EN(0xffff));
radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(2));
} else {
/* Set LATE_ALLOC_VS == 31. It should be less than
* the number of scratch waves. Limitations:
* - VS can't execute on CU0.
* - If HS writes outputs to LDS, LS can't execute on CU0.
*/
radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS, S_00B51C_CU_EN(0xfffe));
radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, S_00B118_CU_EN(0xfffe));
radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(31));
}
radeon_set_sh_reg(cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS, S_00B01C_CU_EN(0xffff));
}
if (physical_device->rad_info.chip_class >= VI) {
radeon_set_context_reg(cs, R_028424_CB_DCC_CONTROL,
S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(1) |
S_028424_OVERWRITE_COMBINER_WATERMARK(4));
radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 30);
radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 32);
radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
S_028B50_ACCUM_ISOLINE(32) |
S_028B50_ACCUM_TRI(11) |
S_028B50_ACCUM_QUAD(11) |
S_028B50_DONUT_SPLIT(16));
} else {
radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
}
if (physical_device->rad_info.family == CHIP_STONEY)
radeon_set_context_reg(cs, R_028C40_PA_SC_SHADER_CONTROL, 0);
si_init_compute(physical_device, cmd_buffer);
}
static void
get_viewport_xform(const VkViewport *viewport,
float scale[3], float translate[3])
{
float x = viewport->x;
float y = viewport->y;
float half_width = 0.5f * viewport->width;
float half_height = 0.5f * viewport->height;
double n = viewport->minDepth;
double f = viewport->maxDepth;
scale[0] = half_width;
translate[0] = half_width + x;
scale[1] = half_height;
translate[1] = half_height + y;
scale[2] = (f - n);
translate[2] = n;
}
void
si_write_viewport(struct radeon_winsys_cs *cs, int first_vp,
int count, const VkViewport *viewports)
{
int i;
if (count == 0) {
radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE, 6);
radeon_emit(cs, fui(1.0));
radeon_emit(cs, fui(0.0));
radeon_emit(cs, fui(1.0));
radeon_emit(cs, fui(0.0));
radeon_emit(cs, fui(1.0));
radeon_emit(cs, fui(0.0));
radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0, 2);
radeon_emit(cs, fui(0.0));
radeon_emit(cs, fui(1.0));
return;
}
radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
first_vp * 4 * 6, count * 6);
for (i = 0; i < count; i++) {
float scale[3], translate[3];
get_viewport_xform(&viewports[i], scale, translate);
radeon_emit(cs, fui(scale[0]));
radeon_emit(cs, fui(translate[0]));
radeon_emit(cs, fui(scale[1]));
radeon_emit(cs, fui(translate[1]));
radeon_emit(cs, fui(scale[2]));
radeon_emit(cs, fui(translate[2]));
}
for (i = 0; i < count; i++) {
float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
first_vp * 4 * 2, count * 2);
radeon_emit(cs, fui(zmin));
radeon_emit(cs, fui(zmax));
}
}
void
si_write_scissors(struct radeon_winsys_cs *cs, int first,
int count, const VkRect2D *scissors)
{
int i;
if (count == 0)
return;
radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
for (i = 0; i < count; i++) {
radeon_emit(cs, S_028250_TL_X(scissors[i].offset.x) |
S_028250_TL_Y(scissors[i].offset.y) |
S_028250_WINDOW_OFFSET_DISABLE(1));
radeon_emit(cs, S_028254_BR_X(scissors[i].offset.x + scissors[i].extent.width) |
S_028254_BR_Y(scissors[i].offset.y + scissors[i].extent.height));
}
}
uint32_t
si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer)
{
enum chip_class chip_class = cmd_buffer->device->instance->physicalDevice.rad_info.chip_class;
struct radeon_info *info = &cmd_buffer->device->instance->physicalDevice.rad_info;
unsigned prim = cmd_buffer->state.pipeline->graphics.prim;
unsigned primgroup_size = 128; /* recommended without a GS */
unsigned max_primgroup_in_wave = 2;
/* SWITCH_ON_EOP(0) is always preferable. */
bool wd_switch_on_eop = false;
bool ia_switch_on_eop = false;
bool ia_switch_on_eoi = false;
bool partial_vs_wave = false;
bool partial_es_wave = false;
/* TODO GS */
/* TODO TES */
/* TODO linestipple */
if (chip_class >= CIK) {
/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
* 4 shader engines. Set 1 to pass the assertion below.
* The other cases are hardware requirements. */
if (info->max_se < 4 ||
prim == V_008958_DI_PT_POLYGON ||
prim == V_008958_DI_PT_LINELOOP ||
prim == V_008958_DI_PT_TRIFAN ||
prim == V_008958_DI_PT_TRISTRIP_ADJ)
// info->primitive_restart ||
// info->count_from_stream_output)
wd_switch_on_eop = true;
/* TODO HAWAII */
/* Required on CIK and later. */
if (info->max_se > 2 && !wd_switch_on_eop)
ia_switch_on_eoi = true;
/* Required by Hawaii and, for some special cases, by VI. */
#if 0
if (ia_switch_on_eoi &&
(sctx->b.family == CHIP_HAWAII ||
(sctx->b.chip_class == VI &&
(sctx->gs_shader.cso || max_primgroup_in_wave != 2))))
partial_vs_wave = true;
#endif
#if 0
/* Instancing bug on Bonaire. */
if (sctx->b.family == CHIP_BONAIRE && ia_switch_on_eoi &&
(info->indirect || info->instance_count > 1))
partial_vs_wave = true;
#endif
/* If the WD switch is false, the IA switch must be false too. */
assert(wd_switch_on_eop || !ia_switch_on_eop);
}
/* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
if (ia_switch_on_eoi)
partial_es_wave = true;
/* GS requirement. */
#if 0
if (SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
partial_es_wave = true;
#endif
/* Hw bug with single-primitive instances and SWITCH_ON_EOI
* on multi-SE chips. */
#if 0
if (sctx->b.screen->info.max_se >= 2 && ia_switch_on_eoi &&
(info->indirect ||
(info->instance_count > 1 &&
si_num_prims_for_vertices(info) <= 1)))
sctx->b.flags |= SI_CONTEXT_VGT_FLUSH;
#endif
return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1) |
S_028AA8_WD_SWITCH_ON_EOP(chip_class >= CIK ? wd_switch_on_eop : 0) |
S_028AA8_MAX_PRIMGRP_IN_WAVE(chip_class >= VI ?
max_primgroup_in_wave : 0);
}
void
si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
{
enum chip_class chip_class = cmd_buffer->device->instance->physicalDevice.rad_info.chip_class;
unsigned cp_coher_cntl = 0;
bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
if (is_compute)
cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
RADV_CMD_FLAG_VGT_FLUSH);
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_ICACHE)
cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_SMEM_L1)
cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_VMEM_L1)
cp_coher_cntl |= S_0085F0_TCL1_ACTION_ENA(1);
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) {
cp_coher_cntl |= S_0085F0_TC_ACTION_ENA(1);
if (chip_class >= VI)
cp_coher_cntl |= S_0301F0_TC_WB_ACTION_ENA(1);
}
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
S_0085F0_CB0_DEST_BASE_ENA(1) |
S_0085F0_CB1_DEST_BASE_ENA(1) |
S_0085F0_CB2_DEST_BASE_ENA(1) |
S_0085F0_CB3_DEST_BASE_ENA(1) |
S_0085F0_CB4_DEST_BASE_ENA(1) |
S_0085F0_CB5_DEST_BASE_ENA(1) |
S_0085F0_CB6_DEST_BASE_ENA(1) |
S_0085F0_CB7_DEST_BASE_ENA(1);
/* Necessary for DCC */
if (cmd_buffer->device->instance->physicalDevice.rad_info.chip_class >= VI) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_DATA_TS) |
EVENT_INDEX(5));
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 0);
}
}
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
S_0085F0_DB_DEST_BASE_ENA(1);
}
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
}
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
}
if (!(cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB))) {
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
} else if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
}
}
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
}
/* VGT state sync */
if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
/* Make sure ME is idle (it executes most packets) before continuing.
* This prevents read-after-write hazards between PFP and ME.
*/
if ((cp_coher_cntl || (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) &&
!radv_cmd_buffer_uses_mec(cmd_buffer)) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cmd_buffer->cs, 0);
}
/* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
* Therefore, it should be last. Done in PFP.
*/
if (cp_coher_cntl) {
if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cmd_buffer->cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cmd_buffer->cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cmd_buffer->cs, 0xff); /* CP_COHER_SIZE_HI */
radeon_emit(cmd_buffer->cs, 0); /* CP_COHER_BASE */
radeon_emit(cmd_buffer->cs, 0); /* CP_COHER_BASE_HI */
radeon_emit(cmd_buffer->cs, 0x0000000A); /* POLL_INTERVAL */
} else {
/* ACQUIRE_MEM is only required on a compute ring. */
radeon_emit(cmd_buffer->cs, PKT3(PKT3_SURFACE_SYNC, 3, 0));
radeon_emit(cmd_buffer->cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cmd_buffer->cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cmd_buffer->cs, 0); /* CP_COHER_BASE */
radeon_emit(cmd_buffer->cs, 0x0000000A); /* POLL_INTERVAL */
}
}
if (cmd_buffer->state.flush_bits)
radv_cmd_buffer_trace_emit(cmd_buffer);
cmd_buffer->state.flush_bits = 0;
}
/* Set this if you want the 3D engine to wait until CP DMA is done.
* It should be set on the last CP DMA packet. */
#define R600_CP_DMA_SYNC (1 << 0) /* R600+ */
/* Set this if the source data was used as a destination in a previous CP DMA
* packet. It's for preventing a read-after-write (RAW) hazard between two
* CP DMA packets. */
#define SI_CP_DMA_RAW_WAIT (1 << 1) /* SI+ */
#define CIK_CP_DMA_USE_L2 (1 << 2)
/* Alignment for optimal performance. */
#define CP_DMA_ALIGNMENT 32
/* The max number of bytes to copy per packet. */
#define CP_DMA_MAX_BYTE_COUNT ((1 << 21) - CP_DMA_ALIGNMENT)
static void si_emit_cp_dma_copy_buffer(struct radv_cmd_buffer *cmd_buffer,
uint64_t dst_va, uint64_t src_va,
unsigned size, unsigned flags)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? S_411_CP_SYNC(1) : 0;
uint32_t wr_confirm = !(flags & R600_CP_DMA_SYNC) ? S_414_DISABLE_WR_CONFIRM(1) : 0;
uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? S_414_RAW_WAIT(1) : 0;
uint32_t sel = flags & CIK_CP_DMA_USE_L2 ?
S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) |
S_411_DSL_SEL(V_411_DST_ADDR_TC_L2) : 0;
assert(size);
assert((size & ((1<<21)-1)) == size);
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
if (cmd_buffer->device->instance->physicalDevice.rad_info.chip_class >= CIK) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, sync_flag | sel); /* CP_SYNC [31] */
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
} else {
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, sync_flag | ((src_va >> 32) & 0xffff)); /* CP_SYNC [31] | SRC_ADDR_HI [15:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
}
/* CP DMA is executed in ME, but index buffers are read by PFP.
* This ensures that ME (CP DMA) is idle before PFP starts fetching
* indices. If we wanted to execute CP DMA in PFP, this packet
* should precede it.
*/
if (sync_flag && cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
radv_cmd_buffer_trace_emit(cmd_buffer);
}
/* Emit a CP DMA packet to clear a buffer. The size must fit in bits [20:0]. */
static void si_emit_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer,
uint64_t dst_va, unsigned size,
uint32_t clear_value, unsigned flags)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? S_411_CP_SYNC(1) : 0;
uint32_t wr_confirm = !(flags & R600_CP_DMA_SYNC) ? S_414_DISABLE_WR_CONFIRM(1) : 0;
uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? S_414_RAW_WAIT(1) : 0;
uint32_t dst_sel = flags & CIK_CP_DMA_USE_L2 ? S_411_DSL_SEL(V_411_DST_ADDR_TC_L2) : 0;
assert(size);
assert((size & ((1<<21)-1)) == size);
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
if (cmd_buffer->device->instance->physicalDevice.rad_info.chip_class >= CIK) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, sync_flag | dst_sel | S_411_SRC_SEL(V_411_DATA)); /* CP_SYNC [31] | SRC_SEL[30:29] */
radeon_emit(cs, clear_value); /* DATA [31:0] */
radeon_emit(cs, 0);
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
} else {
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
radeon_emit(cs, clear_value); /* DATA [31:0] */
radeon_emit(cs, sync_flag | S_411_SRC_SEL(V_411_DATA)); /* CP_SYNC [31] | SRC_SEL[30:29] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
}
/* See "copy_buffer" for explanation. */
if (sync_flag && cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
radv_cmd_buffer_trace_emit(cmd_buffer);
}
static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
uint64_t remaining_size, unsigned *flags)
{
/* Flush the caches for the first copy only.
* Also wait for the previous CP DMA operations.
*/
if (cmd_buffer->state.flush_bits) {
si_emit_cache_flush(cmd_buffer);
*flags |= SI_CP_DMA_RAW_WAIT;
}
/* Do the synchronization after the last dma, so that all data
* is written to memory.
*/
if (byte_count == remaining_size)
*flags |= R600_CP_DMA_SYNC;
}
static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
{
uint64_t va;
uint32_t offset;
unsigned dma_flags = 0;
unsigned buf_size = CP_DMA_ALIGNMENT * 2;
void *ptr;
assert(size < CP_DMA_ALIGNMENT);
radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, CP_DMA_ALIGNMENT, &offset, &ptr);
va = cmd_buffer->device->ws->buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
si_emit_cp_dma_copy_buffer(cmd_buffer, va, va + CP_DMA_ALIGNMENT, size,
dma_flags);
}
void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
uint64_t src_va, uint64_t dest_va,
uint64_t size)
{
uint64_t main_src_va, main_dest_va;
uint64_t skipped_size = 0, realign_size = 0;
if (cmd_buffer->device->instance->physicalDevice.rad_info.family <= CHIP_CARRIZO ||
cmd_buffer->device->instance->physicalDevice.rad_info.family == CHIP_STONEY) {
/* If the size is not aligned, we must add a dummy copy at the end
* just to align the internal counter. Otherwise, the DMA engine
* would slow down by an order of magnitude for following copies.
*/
if (size % CP_DMA_ALIGNMENT)
realign_size = CP_DMA_ALIGNMENT - (size % CP_DMA_ALIGNMENT);
/* If the copy begins unaligned, we must start copying from the next
* aligned block and the skipped part should be copied after everything
* else has been copied. Only the src alignment matters, not dst.
*/
if (src_va % CP_DMA_ALIGNMENT) {
skipped_size = CP_DMA_ALIGNMENT - (src_va % CP_DMA_ALIGNMENT);
/* The main part will be skipped if the size is too small. */
skipped_size = MIN2(skipped_size, size);
size -= skipped_size;
}
}
main_src_va = src_va + skipped_size;
main_dest_va = dest_va + skipped_size;
while (size) {
unsigned dma_flags = 0;
unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT);
si_cp_dma_prepare(cmd_buffer, byte_count,
size + skipped_size + realign_size,
&dma_flags);
si_emit_cp_dma_copy_buffer(cmd_buffer, main_dest_va, main_src_va,
byte_count, dma_flags);
size -= byte_count;
main_src_va += byte_count;
main_dest_va += byte_count;
}
if (skipped_size) {
unsigned dma_flags = 0;
si_cp_dma_prepare(cmd_buffer, skipped_size,
size + skipped_size + realign_size,
&dma_flags);
si_emit_cp_dma_copy_buffer(cmd_buffer, dest_va, src_va,
skipped_size, dma_flags);
}
if (realign_size)
si_cp_dma_realign_engine(cmd_buffer, realign_size);
}
void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
uint64_t size, unsigned value)
{
if (!size)
return;
assert(va % 4 == 0 && size % 4 == 0);
while (size) {
unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT);
unsigned dma_flags = 0;
si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
/* Emit the clear packet. */
si_emit_cp_dma_clear_buffer(cmd_buffer, va, byte_count, value,
dma_flags);
size -= byte_count;
va += byte_count;
}
}
/* For MSAA sample positions. */
#define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
(((s0x) & 0xf) | (((unsigned)(s0y) & 0xf) << 4) | \
(((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
(((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
(((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
/* 2xMSAA
* There are two locations (4, 4), (-4, -4). */
const uint32_t eg_sample_locs_2x[4] = {
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
};
const unsigned eg_max_dist_2x = 4;
/* 4xMSAA
* There are 4 locations: (-2, 6), (6, -2), (-6, 2), (2, 6). */
const uint32_t eg_sample_locs_4x[4] = {
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
};
const unsigned eg_max_dist_4x = 6;
/* Cayman 8xMSAA */
static const uint32_t cm_sample_locs_8x[] = {
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
};
static const unsigned cm_max_dist_8x = 8;
/* Cayman 16xMSAA */
static const uint32_t cm_sample_locs_16x[] = {
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
};
static const unsigned cm_max_dist_16x = 8;
unsigned radv_cayman_get_maxdist(int log_samples)
{
unsigned max_dist[] = {
0,
eg_max_dist_2x,
eg_max_dist_4x,
cm_max_dist_8x,
cm_max_dist_16x
};
return max_dist[log_samples];
}
void radv_cayman_emit_msaa_sample_locs(struct radeon_winsys_cs *cs, int nr_samples)
{
switch (nr_samples) {
default:
case 1:
radeon_set_context_reg(cs, CM_R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 0);
radeon_set_context_reg(cs, CM_R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, 0);
radeon_set_context_reg(cs, CM_R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, 0);
radeon_set_context_reg(cs, CM_R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, 0);
break;
case 2:
radeon_set_context_reg(cs, CM_R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_2x[0]);
radeon_set_context_reg(cs, CM_R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_2x[1]);
radeon_set_context_reg(cs, CM_R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_2x[2]);
radeon_set_context_reg(cs, CM_R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_2x[3]);
break;
case 4:
radeon_set_context_reg(cs, CM_R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_4x[0]);
radeon_set_context_reg(cs, CM_R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_4x[1]);
radeon_set_context_reg(cs, CM_R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_4x[2]);
radeon_set_context_reg(cs, CM_R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_4x[3]);
break;
case 8:
radeon_set_context_reg_seq(cs, CM_R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
radeon_emit(cs, cm_sample_locs_8x[0]);
radeon_emit(cs, cm_sample_locs_8x[4]);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, cm_sample_locs_8x[1]);
radeon_emit(cs, cm_sample_locs_8x[5]);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, cm_sample_locs_8x[2]);
radeon_emit(cs, cm_sample_locs_8x[6]);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, cm_sample_locs_8x[3]);
radeon_emit(cs, cm_sample_locs_8x[7]);
break;
case 16:
radeon_set_context_reg_seq(cs, CM_R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 16);
radeon_emit(cs, cm_sample_locs_16x[0]);
radeon_emit(cs, cm_sample_locs_16x[4]);
radeon_emit(cs, cm_sample_locs_16x[8]);
radeon_emit(cs, cm_sample_locs_16x[12]);
radeon_emit(cs, cm_sample_locs_16x[1]);
radeon_emit(cs, cm_sample_locs_16x[5]);
radeon_emit(cs, cm_sample_locs_16x[9]);
radeon_emit(cs, cm_sample_locs_16x[13]);
radeon_emit(cs, cm_sample_locs_16x[2]);
radeon_emit(cs, cm_sample_locs_16x[6]);
radeon_emit(cs, cm_sample_locs_16x[10]);
radeon_emit(cs, cm_sample_locs_16x[14]);
radeon_emit(cs, cm_sample_locs_16x[3]);
radeon_emit(cs, cm_sample_locs_16x[7]);
radeon_emit(cs, cm_sample_locs_16x[11]);
radeon_emit(cs, cm_sample_locs_16x[15]);
break;
}
}
static void radv_cayman_get_sample_position(struct radv_device *device,
unsigned sample_count,
unsigned sample_index, float *out_value)
{
int offset, index;
struct {
int idx:4;
} val;
switch (sample_count) {
case 1:
default:
out_value[0] = out_value[1] = 0.5;
break;
case 2:
offset = 4 * (sample_index * 2);
val.idx = (eg_sample_locs_2x[0] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (eg_sample_locs_2x[0] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
case 4:
offset = 4 * (sample_index * 2);
val.idx = (eg_sample_locs_4x[0] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (eg_sample_locs_4x[0] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
case 8:
offset = 4 * (sample_index % 4 * 2);
index = (sample_index / 4) * 4;
val.idx = (cm_sample_locs_8x[index] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (cm_sample_locs_8x[index] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
case 16:
offset = 4 * (sample_index % 4 * 2);
index = (sample_index / 4) * 4;
val.idx = (cm_sample_locs_16x[index] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (cm_sample_locs_16x[index] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
}
}
void radv_device_init_msaa(struct radv_device *device)
{
int i;
radv_cayman_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
for (i = 0; i < 2; i++)
radv_cayman_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
for (i = 0; i < 4; i++)
radv_cayman_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
for (i = 0; i < 8; i++)
radv_cayman_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
for (i = 0; i < 16; i++)
radv_cayman_get_sample_position(device, 16, i, device->sample_locations_16x[i]);
}