blob: 9967b4a94ece45f56d24681670c67807764d9fef [file] [log] [blame]
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Code generate the whole fragment pipeline.
*
* The fragment pipeline consists of the following stages:
* - early depth test
* - fragment shader
* - alpha test
* - depth/stencil test
* - blending
*
* This file has only the glue to assemble the fragment pipeline. The actual
* plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
* lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
* muster the LLVM JIT execution engine to create a function that follows an
* established binary interface and that can be called from C directly.
*
* A big source of complexity here is that we often want to run different
* stages with different precisions and data types and precisions. For example,
* the fragment shader needs typically to be done in floats, but the
* depth/stencil test and blending is better done in the type that most closely
* matches the depth/stencil and color buffer respectively.
*
* Since the width of a SIMD vector register stays the same regardless of the
* element type, different types imply different number of elements, so we must
* code generate more instances of the stages with larger types to be able to
* feed/consume the stages with smaller types.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include <limits.h>
#include "pipe/p_defines.h"
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_pointer.h"
#include "util/format/u_format.h"
#include "util/u_dump.h"
#include "util/u_string.h"
#include "util/simple_list.h"
#include "util/u_dual_blend.h"
#include "util/os_time.h"
#include "pipe/p_shader_tokens.h"
#include "draw/draw_context.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_scan.h"
#include "tgsi/tgsi_parse.h"
#include "gallivm/lp_bld_type.h"
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_conv.h"
#include "gallivm/lp_bld_init.h"
#include "gallivm/lp_bld_intr.h"
#include "gallivm/lp_bld_logic.h"
#include "gallivm/lp_bld_tgsi.h"
#include "gallivm/lp_bld_nir.h"
#include "gallivm/lp_bld_swizzle.h"
#include "gallivm/lp_bld_flow.h"
#include "gallivm/lp_bld_debug.h"
#include "gallivm/lp_bld_arit.h"
#include "gallivm/lp_bld_bitarit.h"
#include "gallivm/lp_bld_pack.h"
#include "gallivm/lp_bld_format.h"
#include "gallivm/lp_bld_quad.h"
#include "lp_bld_alpha.h"
#include "lp_bld_blend.h"
#include "lp_bld_depth.h"
#include "lp_bld_interp.h"
#include "lp_context.h"
#include "lp_debug.h"
#include "lp_perf.h"
#include "lp_setup.h"
#include "lp_state.h"
#include "lp_tex_sample.h"
#include "lp_flush.h"
#include "lp_state_fs.h"
#include "lp_rast.h"
#include "nir/nir_to_tgsi_info.h"
#include "lp_screen.h"
#include "compiler/nir/nir_serialize.h"
#include "util/mesa-sha1.h"
/** Fragment shader number (for debugging) */
static unsigned fs_no = 0;
/**
* Expand the relevant bits of mask_input to a n*4-dword mask for the
* n*four pixels in n 2x2 quads. This will set the n*four elements of the
* quad mask vector to 0 or ~0.
* Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
* quad arguments with fs length 8.
*
* \param first_quad which quad(s) of the quad group to test, in [0,3]
* \param mask_input bitwise mask for the whole 4x4 stamp
*/
static LLVMValueRef
generate_quad_mask(struct gallivm_state *gallivm,
struct lp_type fs_type,
unsigned first_quad,
unsigned sample,
LLVMValueRef mask_input) /* int64 */
{
LLVMBuilderRef builder = gallivm->builder;
struct lp_type mask_type;
LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
LLVMValueRef bits[16];
LLVMValueRef mask, bits_vec;
int shift, i;
/*
* XXX: We'll need a different path for 16 x u8
*/
assert(fs_type.width == 32);
assert(fs_type.length <= ARRAY_SIZE(bits));
mask_type = lp_int_type(fs_type);
/*
* mask_input >>= (quad * 4)
*/
switch (first_quad) {
case 0:
shift = 0;
break;
case 1:
assert(fs_type.length == 4);
shift = 2;
break;
case 2:
shift = 8;
break;
case 3:
assert(fs_type.length == 4);
shift = 10;
break;
default:
assert(0);
shift = 0;
}
mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
mask_input = LLVMBuildTrunc(builder, mask_input,
i32t, "");
mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
mask_input = LLVMBuildLShr(builder,
mask_input,
LLVMConstInt(i32t, shift, 0),
"");
/*
* mask = { mask_input & (1 << i), for i in [0,3] }
*/
mask = lp_build_broadcast(gallivm,
lp_build_vec_type(gallivm, mask_type),
mask_input);
for (i = 0; i < fs_type.length / 4; i++) {
unsigned j = 2 * (i % 2) + (i / 2) * 8;
bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
}
bits_vec = LLVMConstVector(bits, fs_type.length);
mask = LLVMBuildAnd(builder, mask, bits_vec, "");
/*
* mask = mask == bits ? ~0 : 0
*/
mask = lp_build_compare(gallivm,
mask_type, PIPE_FUNC_EQUAL,
mask, bits_vec);
return mask;
}
#define EARLY_DEPTH_TEST 0x1
#define LATE_DEPTH_TEST 0x2
#define EARLY_DEPTH_WRITE 0x4
#define LATE_DEPTH_WRITE 0x8
static int
find_output_by_semantic( const struct tgsi_shader_info *info,
unsigned semantic,
unsigned index )
{
int i;
for (i = 0; i < info->num_outputs; i++)
if (info->output_semantic_name[i] == semantic &&
info->output_semantic_index[i] == index)
return i;
return -1;
}
/**
* Fetch the specified lp_jit_viewport structure for a given viewport_index.
*/
static LLVMValueRef
lp_llvm_viewport(LLVMValueRef context_ptr,
struct gallivm_state *gallivm,
LLVMValueRef viewport_index)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef ptr;
LLVMValueRef res;
struct lp_type viewport_type =
lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
ptr = lp_jit_context_viewports(gallivm, context_ptr);
ptr = LLVMBuildPointerCast(builder, ptr,
LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
res = lp_build_pointer_get(builder, ptr, viewport_index);
return res;
}
static LLVMValueRef
lp_build_depth_clamp(struct gallivm_state *gallivm,
LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef context_ptr,
LLVMValueRef thread_data_ptr,
LLVMValueRef z)
{
LLVMValueRef viewport, min_depth, max_depth;
LLVMValueRef viewport_index;
struct lp_build_context f32_bld;
assert(type.floating);
lp_build_context_init(&f32_bld, gallivm, type);
/*
* Assumes clamping of the viewport index will occur in setup/gs. Value
* is passed through the rasterization stage via lp_rast_shader_inputs.
*
* See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
* semantics.
*/
viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
thread_data_ptr);
/*
* Load the min and max depth from the lp_jit_context.viewports
* array of lp_jit_viewport structures.
*/
viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
/* viewports[viewport_index].min_depth */
min_depth = LLVMBuildExtractElement(builder, viewport,
lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
/* viewports[viewport_index].max_depth */
max_depth = LLVMBuildExtractElement(builder, viewport,
lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
/*
* Clamp to the min and max depth values for the given viewport.
*/
return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
}
static void
lp_build_sample_alpha_to_coverage(struct gallivm_state *gallivm,
struct lp_type type,
unsigned coverage_samples,
LLVMValueRef num_loop,
LLVMValueRef loop_counter,
LLVMValueRef coverage_mask_store,
LLVMValueRef alpha)
{
struct lp_build_context bld;
LLVMBuilderRef builder = gallivm->builder;
float step = 1.0 / coverage_samples;
lp_build_context_init(&bld, gallivm, type);
for (unsigned s = 0; s < coverage_samples; s++) {
LLVMValueRef alpha_ref_value = lp_build_const_vec(gallivm, type, step * s);
LLVMValueRef test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);
LLVMValueRef s_mask_idx = LLVMBuildMul(builder, lp_build_const_int32(gallivm, s), num_loop, "");
s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_counter, "");
LLVMValueRef s_mask_ptr = LLVMBuildGEP(builder, coverage_mask_store, &s_mask_idx, 1, "");
LLVMValueRef s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
s_mask = LLVMBuildAnd(builder, s_mask, test, "");
LLVMBuildStore(builder, s_mask, s_mask_ptr);
}
};
struct lp_build_fs_llvm_iface {
struct lp_build_fs_iface base;
struct lp_build_interp_soa_context *interp;
struct lp_build_for_loop_state *loop_state;
LLVMValueRef mask_store;
};
static LLVMValueRef fs_interp(const struct lp_build_fs_iface *iface,
struct lp_build_context *bld,
unsigned attrib, unsigned chan,
bool centroid, bool sample,
LLVMValueRef attrib_indir,
LLVMValueRef offsets[2])
{
struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface;
struct lp_build_interp_soa_context *interp = fs_iface->interp;
unsigned loc = TGSI_INTERPOLATE_LOC_CENTER;
if (centroid)
loc = TGSI_INTERPOLATE_LOC_CENTROID;
if (sample)
loc = TGSI_INTERPOLATE_LOC_SAMPLE;
return lp_build_interp_soa(interp, bld->gallivm, fs_iface->loop_state->counter,
fs_iface->mask_store,
attrib, chan, loc, attrib_indir, offsets);
}
/**
* Generate the fragment shader, depth/stencil test, and alpha tests.
*/
static void
generate_fs_loop(struct gallivm_state *gallivm,
struct lp_fragment_shader *shader,
const struct lp_fragment_shader_variant_key *key,
LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef context_ptr,
LLVMValueRef sample_pos_array,
LLVMValueRef num_loop,
struct lp_build_interp_soa_context *interp,
const struct lp_build_sampler_soa *sampler,
const struct lp_build_image_soa *image,
LLVMValueRef mask_store,
LLVMValueRef (*out_color)[4],
LLVMValueRef depth_base_ptr,
LLVMValueRef depth_stride,
LLVMValueRef depth_sample_stride,
LLVMValueRef facing,
LLVMValueRef thread_data_ptr)
{
const struct util_format_description *zs_format_desc = NULL;
const struct tgsi_token *tokens = shader->base.tokens;
struct lp_type int_type = lp_int_type(type);
LLVMTypeRef vec_type, int_vec_type;
LLVMValueRef mask_ptr = NULL, mask_val = NULL;
LLVMValueRef consts_ptr, num_consts_ptr;
LLVMValueRef ssbo_ptr, num_ssbo_ptr;
LLVMValueRef z;
LLVMValueRef z_value, s_value;
LLVMValueRef z_fb, s_fb;
LLVMValueRef depth_ptr;
LLVMValueRef stencil_refs[2];
LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples);
struct lp_build_for_loop_state loop_state, sample_loop_state;
struct lp_build_mask_context mask;
/*
* TODO: figure out if simple_shader optimization is really worthwile to
* keep. Disabled because it may hide some real bugs in the (depth/stencil)
* code since tests tend to take another codepath than real shaders.
*/
boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
shader->info.base.num_inputs < 3 &&
shader->info.base.num_instructions < 8) && 0;
const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
util_blend_state_is_dual(&key->blend, 0);
unsigned attrib;
unsigned chan;
unsigned cbuf;
unsigned depth_mode;
struct lp_bld_tgsi_system_values system_values;
memset(&system_values, 0, sizeof(system_values));
/* truncate then sign extend. */
system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
if (key->depth.enabled ||
key->stencil[0].enabled) {
zs_format_desc = util_format_description(key->zsbuf_format);
assert(zs_format_desc);
if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
if (shader->info.base.writes_memory)
depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
else if (key->alpha.enabled ||
key->blend.alpha_to_coverage ||
shader->info.base.uses_kill ||
shader->info.base.writes_samplemask) {
/* With alpha test and kill, can do the depth test early
* and hopefully eliminate some quads. But need to do a
* special deferred depth write once the final mask value
* is known. This only works though if there's either no
* stencil test or the stencil value isn't written.
*/
if (key->stencil[0].enabled && (key->stencil[0].writemask ||
(key->stencil[1].enabled &&
key->stencil[1].writemask)))
depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
else
depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
}
else
depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
}
else {
depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
}
if (!(key->depth.enabled && key->depth.writemask) &&
!(key->stencil[0].enabled && (key->stencil[0].writemask ||
(key->stencil[1].enabled &&
key->stencil[1].writemask))))
depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
}
else {
depth_mode = 0;
}
vec_type = lp_build_vec_type(gallivm, type);
int_vec_type = lp_build_vec_type(gallivm, int_type);
stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
/* convert scalar stencil refs into vectors */
stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
memset(outputs, 0, sizeof outputs);
/* Allocate color storage for each fragment sample */
LLVMValueRef color_store_size = num_loop;
if (key->min_samples > 1)
color_store_size = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, key->min_samples), "");
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
lp_build_vec_type(gallivm,
type),
color_store_size, "color");
}
}
if (dual_source_blend) {
assert(key->nr_cbufs <= 1);
for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
out_color[1][chan] = lp_build_array_alloca(gallivm,
lp_build_vec_type(gallivm,
type),
color_store_size, "color1");
}
}
lp_build_for_loop_begin(&loop_state, gallivm,
lp_build_const_int32(gallivm, 0),
LLVMIntULT,
num_loop,
lp_build_const_int32(gallivm, 1));
LLVMValueRef sample_mask_in;
if (key->multisample) {
sample_mask_in = lp_build_const_int_vec(gallivm, type, 0);
/* create shader execution mask by combining all sample masks. */
for (unsigned s = 0; s < key->coverage_samples; s++) {
LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
if (s == 0)
mask_val = s_mask;
else
mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
LLVMValueRef mask_in = LLVMBuildAnd(builder, s_mask, lp_build_const_int_vec(gallivm, type, (1 << s)), "");
sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
}
} else {
sample_mask_in = lp_build_const_int_vec(gallivm, type, 1);
mask_ptr = LLVMBuildGEP(builder, mask_store,
&loop_state.counter, 1, "mask_ptr");
mask_val = LLVMBuildLoad(builder, mask_ptr, "");
LLVMValueRef mask_in = LLVMBuildAnd(builder, mask_val, lp_build_const_int_vec(gallivm, type, 1), "");
sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
}
/* 'mask' will control execution based on quad's pixel alive/killed state */
lp_build_mask_begin(&mask, gallivm, type, mask_val);
if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
lp_build_mask_check(&mask);
/* Create storage for recombining sample masks after early Z pass. */
LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL;
LLVMValueRef z_fb_store = NULL, s_fb_store = NULL;
LLVMTypeRef z_type = NULL, z_fb_type = NULL;
/* Run early depth once per sample */
if (key->multisample) {
if (zs_format_desc) {
struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length);
struct lp_type z_type = zs_type;
struct lp_type s_type = zs_type;
if (zs_format_desc->block.bits < type.width)
z_type.width = type.width;
else if (zs_format_desc->block.bits > 32) {
z_type.width = z_type.width / 2;
s_type.width = s_type.width / 2;
s_type.floating = 0;
}
z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
zs_samples, "z_sample_store");
s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
zs_samples, "s_sample_store");
z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type),
zs_samples, "z_fb_store");
s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type),
zs_samples, "s_fb_store");
}
lp_build_for_loop_begin(&sample_loop_state, gallivm,
lp_build_const_int32(gallivm, 0),
LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
lp_build_const_int32(gallivm, 1));
LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
}
/* for multisample Z needs to be interpolated at sample points for testing. */
lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
z = interp->pos[2];
depth_ptr = depth_base_ptr;
if (key->multisample) {
LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
}
if (depth_mode & EARLY_DEPTH_TEST) {
/*
* Clamp according to ARB_depth_clamp semantics.
*/
if (key->depth_clamp) {
z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
thread_data_ptr, z);
}
lp_build_depth_stencil_load_swizzled(gallivm, type,
zs_format_desc, key->resource_1d,
depth_ptr, depth_stride,
&z_fb, &s_fb, loop_state.counter);
lp_build_depth_stencil_test(gallivm,
&key->depth,
key->stencil,
type,
zs_format_desc,
key->multisample ? NULL : &mask,
&s_mask,
stencil_refs,
z, z_fb, s_fb,
facing,
&z_value, &s_value,
!simple_shader && !key->multisample);
if (depth_mode & EARLY_DEPTH_WRITE) {
lp_build_depth_stencil_write_swizzled(gallivm, type,
zs_format_desc, key->resource_1d,
NULL, NULL, NULL, loop_state.counter,
depth_ptr, depth_stride,
z_value, s_value);
}
/*
* Note mask check if stencil is enabled must be after ds write not after
* stencil test otherwise new stencil values may not get written if all
* fragments got killed by depth/stencil test.
*/
if (!simple_shader && key->stencil[0].enabled && !key->multisample)
lp_build_mask_check(&mask);
if (key->multisample) {
z_fb_type = LLVMTypeOf(z_fb);
z_type = LLVMTypeOf(z_value);
lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), ""));
lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), ""));
lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb);
lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb);
}
}
if (key->multisample) {
/*
* Store the post-early Z coverage mask.
* Recombine the resulting coverage masks post early Z into the fragment
* shader execution mask.
*/
LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
LLVMBuildStore(builder, s_mask, s_mask_ptr);
lp_build_for_loop_end(&sample_loop_state);
/* recombined all the coverage masks in the shader exec mask. */
tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
lp_build_mask_update(&mask, tmp_s_mask_or);
if (key->min_samples == 1) {
/* for multisample Z needs to be re interpolated at pixel center */
lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL);
lp_build_mask_update(&mask, tmp_s_mask_or);
}
}
LLVMValueRef out_sample_mask_storage = NULL;
if (shader->info.base.writes_samplemask) {
out_sample_mask_storage = lp_build_alloca(gallivm, int_vec_type, "write_mask");
if (key->min_samples > 1)
LLVMBuildStore(builder, LLVMConstNull(int_vec_type), out_sample_mask_storage);
}
if (key->multisample && key->min_samples > 1) {
lp_build_for_loop_begin(&sample_loop_state, gallivm,
lp_build_const_int32(gallivm, 0),
LLVMIntULT,
lp_build_const_int32(gallivm, key->min_samples),
lp_build_const_int32(gallivm, 1));
LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
lp_build_mask_force(&mask, s_mask);
lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, sample_loop_state.counter);
system_values.sample_id = sample_loop_state.counter;
} else
system_values.sample_id = lp_build_const_int32(gallivm, 0);
system_values.sample_mask_in = sample_mask_in;
system_values.sample_pos = sample_pos_array;
lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, mask_store, sample_loop_state.counter);
struct lp_build_fs_llvm_iface fs_iface = {
.base.interp_fn = fs_interp,
.interp = interp,
.loop_state = &loop_state,
.mask_store = mask_store,
};
struct lp_build_tgsi_params params;
memset(&params, 0, sizeof(params));
params.type = type;
params.mask = &mask;
params.fs_iface = &fs_iface.base;
params.consts_ptr = consts_ptr;
params.const_sizes_ptr = num_consts_ptr;
params.system_values = &system_values;
params.inputs = interp->inputs;
params.context_ptr = context_ptr;
params.thread_data_ptr = thread_data_ptr;
params.sampler = sampler;
params.info = &shader->info.base;
params.ssbo_ptr = ssbo_ptr;
params.ssbo_sizes_ptr = num_ssbo_ptr;
params.image = image;
/* Build the actual shader */
if (shader->base.type == PIPE_SHADER_IR_TGSI)
lp_build_tgsi_soa(gallivm, tokens, &params,
outputs);
else
lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
outputs);
/* Alpha test */
if (key->alpha.enabled) {
int color0 = find_output_by_semantic(&shader->info.base,
TGSI_SEMANTIC_COLOR,
0);
if (color0 != -1 && outputs[color0][3]) {
const struct util_format_description *cbuf_format_desc;
LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
LLVMValueRef alpha_ref_value;
alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
cbuf_format_desc = util_format_description(key->cbuf_format[0]);
lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
&mask, alpha, alpha_ref_value,
(depth_mode & LATE_DEPTH_TEST) != 0);
}
}
/* Emulate Alpha to Coverage with Alpha test */
if (key->blend.alpha_to_coverage) {
int color0 = find_output_by_semantic(&shader->info.base,
TGSI_SEMANTIC_COLOR,
0);
if (color0 != -1 && outputs[color0][3]) {
LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
if (!key->multisample) {
lp_build_alpha_to_coverage(gallivm, type,
&mask, alpha,
(depth_mode & LATE_DEPTH_TEST) != 0);
} else {
lp_build_sample_alpha_to_coverage(gallivm, type, key->coverage_samples, num_loop,
loop_state.counter,
mask_store, alpha);
}
}
}
if (key->blend.alpha_to_one && key->multisample) {
for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) {
unsigned cbuf = shader->info.base.output_semantic_index[attrib];
if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
if (outputs[cbuf][3]) {
LLVMBuildStore(builder, lp_build_const_vec(gallivm, type, 1.0), outputs[cbuf][3]);
}
}
}
if (shader->info.base.writes_samplemask) {
LLVMValueRef output_smask = NULL;
int smaski = find_output_by_semantic(&shader->info.base,
TGSI_SEMANTIC_SAMPLEMASK,
0);
struct lp_build_context smask_bld;
lp_build_context_init(&smask_bld, gallivm, int_type);
assert(smaski >= 0);
output_smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
output_smask = LLVMBuildBitCast(builder, output_smask, smask_bld.vec_type, "");
if (key->min_samples > 1) {
/* only the bit corresponding to this sample is to be used. */
LLVMValueRef tmp_mask = LLVMBuildLoad(builder, out_sample_mask_storage, "tmp_mask");
LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, lp_build_broadcast(gallivm, int_vec_type, out_smask_idx), "");
output_smask = LLVMBuildOr(builder, tmp_mask, smask_bit, "");
}
LLVMBuildStore(builder, output_smask, out_sample_mask_storage);
}
/* Color write - per fragment sample */
for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
{
unsigned cbuf = shader->info.base.output_semantic_index[attrib];
if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
{
for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
if(outputs[attrib][chan]) {
/* XXX: just initialize outputs to point at colors[] and
* skip this.
*/
LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
LLVMValueRef color_ptr;
LLVMValueRef color_idx = loop_state.counter;
if (key->min_samples > 1)
color_idx = LLVMBuildAdd(builder, color_idx,
LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
&color_idx, 1, "");
lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
LLVMBuildStore(builder, out, color_ptr);
}
}
}
}
if (key->multisample && key->min_samples > 1) {
LLVMBuildStore(builder, lp_build_mask_value(&mask), s_mask_ptr);
lp_build_for_loop_end(&sample_loop_state);
}
if (key->multisample) {
/* execute depth test for each sample */
lp_build_for_loop_begin(&sample_loop_state, gallivm,
lp_build_const_int32(gallivm, 0),
LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
lp_build_const_int32(gallivm, 1));
/* load the per-sample coverage mask */
LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
/* combine the execution mask post fragment shader with the coverage mask. */
s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
if (key->min_samples == 1)
s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
/* if the shader writes sample mask use that */
if (shader->info.base.writes_samplemask) {
LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx);
LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, "");
LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, "");
LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), "");
smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, "");
s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
}
}
depth_ptr = depth_base_ptr;
if (key->multisample) {
LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
}
/* Late Z test */
if (depth_mode & LATE_DEPTH_TEST) {
int pos0 = find_output_by_semantic(&shader->info.base,
TGSI_SEMANTIC_POSITION,
0);
int s_out = find_output_by_semantic(&shader->info.base,
TGSI_SEMANTIC_STENCIL,
0);
if (pos0 != -1 && outputs[pos0][2]) {
z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
}
/*
* Clamp according to ARB_depth_clamp semantics.
*/
if (key->depth_clamp) {
z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
thread_data_ptr, z);
}
if (s_out != -1 && outputs[s_out][1]) {
/* there's only one value, and spec says to discard additional bits */
LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
stencil_refs[1] = stencil_refs[0];
}
lp_build_depth_stencil_load_swizzled(gallivm, type,
zs_format_desc, key->resource_1d,
depth_ptr, depth_stride,
&z_fb, &s_fb, loop_state.counter);
lp_build_depth_stencil_test(gallivm,
&key->depth,
key->stencil,
type,
zs_format_desc,
key->multisample ? NULL : &mask,
&s_mask,
stencil_refs,
z, z_fb, s_fb,
facing,
&z_value, &s_value,
!simple_shader);
/* Late Z write */
if (depth_mode & LATE_DEPTH_WRITE) {
lp_build_depth_stencil_write_swizzled(gallivm, type,
zs_format_desc, key->resource_1d,
NULL, NULL, NULL, loop_state.counter,
depth_ptr, depth_stride,
z_value, s_value);
}
}
else if ((depth_mode & EARLY_DEPTH_TEST) &&
(depth_mode & LATE_DEPTH_WRITE))
{
/* Need to apply a reduced mask to the depth write. Reload the
* depth value, update from zs_value with the new mask value and
* write that out.
*/
if (key->multisample) {
z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");;
s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter);
z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, "");
s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter);
}
lp_build_depth_stencil_write_swizzled(gallivm, type,
zs_format_desc, key->resource_1d,
key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
depth_ptr, depth_stride,
z_value, s_value);
}
if (key->occlusion_count) {
LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
lp_build_name(counter, "counter");
lp_build_occlusion_count(gallivm, type,
key->multisample ? s_mask : lp_build_mask_value(&mask), counter);
}
if (key->multisample) {
/* store the sample mask for this loop */
LLVMBuildStore(builder, s_mask, s_mask_ptr);
lp_build_for_loop_end(&sample_loop_state);
}
mask_val = lp_build_mask_end(&mask);
if (!key->multisample)
LLVMBuildStore(builder, mask_val, mask_ptr);
lp_build_for_loop_end(&loop_state);
}
/**
* This function will reorder pixels from the fragment shader SoA to memory layout AoS
*
* Fragment Shader outputs pixels in small 2x2 blocks
* e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
*
* However in memory pixels are stored in rows
* e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
*
* @param type fragment shader type (4x or 8x float)
* @param num_fs number of fs_src
* @param is_1d whether we're outputting to a 1d resource
* @param dst_channels number of output channels
* @param fs_src output from fragment shader
* @param dst pointer to store result
* @param pad_inline is channel padding inline or at end of row
* @return the number of dsts
*/
static int
generate_fs_twiddle(struct gallivm_state *gallivm,
struct lp_type type,
unsigned num_fs,
unsigned dst_channels,
LLVMValueRef fs_src[][4],
LLVMValueRef* dst,
bool pad_inline)
{
LLVMValueRef src[16];
bool swizzle_pad;
bool twiddle;
bool split;
unsigned pixels = type.length / 4;
unsigned reorder_group;
unsigned src_channels;
unsigned src_count;
unsigned i;
src_channels = dst_channels < 3 ? dst_channels : 4;
src_count = num_fs * src_channels;
assert(pixels == 2 || pixels == 1);
assert(num_fs * src_channels <= ARRAY_SIZE(src));
/*
* Transpose from SoA -> AoS
*/
for (i = 0; i < num_fs; ++i) {
lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
}
/*
* Pick transformation options
*/
swizzle_pad = false;
twiddle = false;
split = false;
reorder_group = 0;
if (dst_channels == 1) {
twiddle = true;
if (pixels == 2) {
split = true;
}
} else if (dst_channels == 2) {
if (pixels == 1) {
reorder_group = 1;
}
} else if (dst_channels > 2) {
if (pixels == 1) {
reorder_group = 2;
} else {
twiddle = true;
}
if (!pad_inline && dst_channels == 3 && pixels > 1) {
swizzle_pad = true;
}
}
/*
* Split the src in half
*/
if (split) {
for (i = num_fs; i > 0; --i) {
src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
}
src_count *= 2;
type.length = 4;
}
/*
* Ensure pixels are in memory order
*/
if (reorder_group) {
/* Twiddle pixels by reordering the array, e.g.:
*
* src_count = 8 -> 0 2 1 3 4 6 5 7
* src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
*/
const unsigned reorder_sw[] = { 0, 2, 1, 3 };
for (i = 0; i < src_count; ++i) {
unsigned group = i / reorder_group;
unsigned block = (group / 4) * 4 * reorder_group;
unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
dst[i] = src[j];
}
} else if (twiddle) {
/* Twiddle pixels across elements of array */
/*
* XXX: we should avoid this in some cases, but would need to tell
* lp_build_conv to reorder (or deal with it ourselves).
*/
lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
} else {
/* Do nothing */
memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
}
/*
* Moves any padding between pixels to the end
* e.g. RGBXRGBX -> RGBRGBXX
*/
if (swizzle_pad) {
unsigned char swizzles[16];
unsigned elems = pixels * dst_channels;
for (i = 0; i < type.length; ++i) {
if (i < elems)
swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
else
swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
}
for (i = 0; i < src_count; ++i) {
dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
}
}
return src_count;
}
/*
* Untwiddle and transpose, much like the above.
* However, this is after conversion, so we get packed vectors.
* At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
* the vectors will look like:
* r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
* be swizzled here). Extending to 16bit should be trivial.
* Should also be extended to handle twice wide vectors with AVX2...
*/
static void
fs_twiddle_transpose(struct gallivm_state *gallivm,
struct lp_type type,
LLVMValueRef *src,
unsigned src_count,
LLVMValueRef *dst)
{
unsigned i, j;
struct lp_type type64, type16, type32;
LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef tmp[4], shuf[8];
for (j = 0; j < 2; j++) {
shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
}
assert(src_count == 4 || src_count == 2 || src_count == 1);
assert(type.width == 8);
assert(type.length == 16);
type8_t = lp_build_vec_type(gallivm, type);
type64 = type;
type64.length /= 8;
type64.width *= 8;
type64_t = lp_build_vec_type(gallivm, type64);
type16 = type;
type16.length /= 2;
type16.width *= 2;
type16_t = lp_build_vec_type(gallivm, type16);
type32 = type;
type32.length /= 4;
type32.width *= 4;
type32_t = lp_build_vec_type(gallivm, type32);
lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
if (src_count == 1) {
/* transpose was no-op, just untwiddle */
LLVMValueRef shuf_vec;
shuf_vec = LLVMConstVector(shuf, 8);
tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
} else if (src_count == 2) {
LLVMValueRef shuf_vec;
shuf_vec = LLVMConstVector(shuf, 4);
for (i = 0; i < 2; i++) {
tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
}
} else {
for (j = 0; j < 2; j++) {
LLVMValueRef lo, hi, lo2, hi2;
/*
* Note that if we only really have 3 valid channels (rgb)
* and we don't need alpha we could substitute a undef here
* for the respective channel (causing llvm to drop conversion
* for alpha).
*/
/* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
}
}
}
/**
* Load an unswizzled block of pixels from memory
*/
static void
load_unswizzled_block(struct gallivm_state *gallivm,
LLVMValueRef base_ptr,
LLVMValueRef stride,
unsigned block_width,
unsigned block_height,
LLVMValueRef* dst,
struct lp_type dst_type,
unsigned dst_count,
unsigned dst_alignment)
{
LLVMBuilderRef builder = gallivm->builder;
unsigned row_size = dst_count / block_height;
unsigned i;
/* Ensure block exactly fits into dst */
assert((block_width * block_height) % dst_count == 0);
for (i = 0; i < dst_count; ++i) {
unsigned x = i % row_size;
unsigned y = i / row_size;
LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
LLVMValueRef gep[2];
LLVMValueRef dst_ptr;
gep[0] = lp_build_const_int32(gallivm, 0);
gep[1] = LLVMBuildAdd(builder, bx, by, "");
dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
LLVMSetAlignment(dst[i], dst_alignment);
}
}
/**
* Store an unswizzled block of pixels to memory
*/
static void
store_unswizzled_block(struct gallivm_state *gallivm,
LLVMValueRef base_ptr,
LLVMValueRef stride,
unsigned block_width,
unsigned block_height,
LLVMValueRef* src,
struct lp_type src_type,
unsigned src_count,
unsigned src_alignment)
{
LLVMBuilderRef builder = gallivm->builder;
unsigned row_size = src_count / block_height;
unsigned i;
/* Ensure src exactly fits into block */
assert((block_width * block_height) % src_count == 0);
for (i = 0; i < src_count; ++i) {
unsigned x = i % row_size;
unsigned y = i / row_size;
LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
LLVMValueRef gep[2];
LLVMValueRef src_ptr;
gep[0] = lp_build_const_int32(gallivm, 0);
gep[1] = LLVMBuildAdd(builder, bx, by, "");
src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
src_ptr = LLVMBuildBitCast(builder, src_ptr,
LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
LLVMSetAlignment(src_ptr, src_alignment);
}
}
/**
* Checks if a format description is an arithmetic format
*
* A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
*/
static inline boolean
is_arithmetic_format(const struct util_format_description *format_desc)
{
boolean arith = false;
unsigned i;
for (i = 0; i < format_desc->nr_channels; ++i) {
arith |= format_desc->channel[i].size != format_desc->channel[0].size;
arith |= (format_desc->channel[i].size % 8) != 0;
}
return arith;
}
/**
* Checks if this format requires special handling due to required expansion
* to floats for blending, and furthermore has "natural" packed AoS -> unpacked
* SoA conversion.
*/
static inline boolean
format_expands_to_float_soa(const struct util_format_description *format_desc)
{
if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
return true;
}
return false;
}
/**
* Retrieves the type representing the memory layout for a format
*
* e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
*/
static inline void
lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
struct lp_type* type)
{
unsigned i;
unsigned chan;
if (format_expands_to_float_soa(format_desc)) {
/* just make this a uint with width of block */
type->floating = false;
type->fixed = false;
type->sign = false;
type->norm = false;
type->width = format_desc->block.bits;
type->length = 1;
return;
}
for (i = 0; i < 4; i++)
if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
break;
chan = i;
memset(type, 0, sizeof(struct lp_type));
type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
type->norm = format_desc->channel[chan].normalized;
if (is_arithmetic_format(format_desc)) {
type->width = 0;
type->length = 1;
for (i = 0; i < format_desc->nr_channels; ++i) {
type->width += format_desc->channel[i].size;
}
} else {
type->width = format_desc->channel[chan].size;
type->length = format_desc->nr_channels;
}
}
/**
* Retrieves the type for a format which is usable in the blending code.
*
* e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
*/
static inline void
lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
struct lp_type* type)
{
unsigned i;
unsigned chan;
if (format_expands_to_float_soa(format_desc)) {
/* always use ordinary floats for blending */
type->floating = true;
type->fixed = false;
type->sign = true;
type->norm = false;
type->width = 32;
type->length = 4;
return;
}
for (i = 0; i < 4; i++)
if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
break;
chan = i;
memset(type, 0, sizeof(struct lp_type));
type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
type->norm = format_desc->channel[chan].normalized;
type->width = format_desc->channel[chan].size;
type->length = format_desc->nr_channels;
for (i = 1; i < format_desc->nr_channels; ++i) {
if (format_desc->channel[i].size > type->width)
type->width = format_desc->channel[i].size;
}
if (type->floating) {
type->width = 32;
} else {
if (type->width <= 8) {
type->width = 8;
} else if (type->width <= 16) {
type->width = 16;
} else {
type->width = 32;
}
}
if (is_arithmetic_format(format_desc) && type->length == 3) {
type->length = 4;
}
}
/**
* Scale a normalized value from src_bits to dst_bits.
*
* The exact calculation is
*
* dst = iround(src * dst_mask / src_mask)
*
* or with integer rounding
*
* dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
*
* where
*
* src_mask = (1 << src_bits) - 1
* dst_mask = (1 << dst_bits) - 1
*
* but we try to avoid division and multiplication through shifts.
*/
static inline LLVMValueRef
scale_bits(struct gallivm_state *gallivm,
int src_bits,
int dst_bits,
LLVMValueRef src,
struct lp_type src_type)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef result = src;
if (dst_bits < src_bits) {
int delta_bits = src_bits - dst_bits;
if (delta_bits <= dst_bits) {
/*
* Approximate the rescaling with a single shift.
*
* This gives the wrong rounding.
*/
result = LLVMBuildLShr(builder,
src,
lp_build_const_int_vec(gallivm, src_type, delta_bits),
"");
} else {
/*
* Try more accurate rescaling.
*/
/*
* Drop the least significant bits to make space for the multiplication.
*
* XXX: A better approach would be to use a wider integer type as intermediate. But
* this is enough to convert alpha from 16bits -> 2 when rendering to
* PIPE_FORMAT_R10G10B10A2_UNORM.
*/
result = LLVMBuildLShr(builder,
src,
lp_build_const_int_vec(gallivm, src_type, dst_bits),
"");
result = LLVMBuildMul(builder,
result,
lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
"");
/*
* Add a rounding term before the division.
*
* TODO: Handle signed integers too.
*/
if (!src_type.sign) {
result = LLVMBuildAdd(builder,
result,
lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
"");
}
/*
* Approximate the division by src_mask with a src_bits shift.
*
* Given the src has already been shifted by dst_bits, all we need
* to do is to shift by the difference.
*/
result = LLVMBuildLShr(builder,
result,
lp_build_const_int_vec(gallivm, src_type, delta_bits),
"");
}
} else if (dst_bits > src_bits) {
/* Scale up bits */
int db = dst_bits - src_bits;
/* Shift left by difference in bits */
result = LLVMBuildShl(builder,
src,
lp_build_const_int_vec(gallivm, src_type, db),
"");
if (db <= src_bits) {
/* Enough bits in src to fill the remainder */
LLVMValueRef lower = LLVMBuildLShr(builder,
src,
lp_build_const_int_vec(gallivm, src_type, src_bits - db),
"");
result = LLVMBuildOr(builder, result, lower, "");
} else if (db > src_bits) {
/* Need to repeatedly copy src bits to fill remainder in dst */
unsigned n;
for (n = src_bits; n < dst_bits; n *= 2) {
LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
result = LLVMBuildOr(builder,
result,
LLVMBuildLShr(builder, result, shuv, ""),
"");
}
}
}
return result;
}
/**
* If RT is a smallfloat (needing denorms) format
*/
static inline int
have_smallfloat_format(struct lp_type dst_type,
enum pipe_format format)
{
return ((dst_type.floating && dst_type.width != 32) ||
/* due to format handling hacks this format doesn't have floating set
* here (and actually has width set to 32 too) so special case this. */
(format == PIPE_FORMAT_R11G11B10_FLOAT));
}
/**
* Convert from memory format to blending format
*
* e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
*/
static void
convert_to_blend_type(struct gallivm_state *gallivm,
unsigned block_size,
const struct util_format_description *src_fmt,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef* src, // and dst
unsigned num_srcs)
{
LLVMValueRef *dst = src;
LLVMBuilderRef builder = gallivm->builder;
struct lp_type blend_type;
struct lp_type mem_type;
unsigned i, j;
unsigned pixels = block_size / num_srcs;
bool is_arith;
/*
* full custom path for packed floats and srgb formats - none of the later
* functions would do anything useful, and given the lp_type representation they
* can't be fixed. Should really have some SoA blend path for these kind of
* formats rather than hacking them in here.
*/
if (format_expands_to_float_soa(src_fmt)) {
LLVMValueRef tmpsrc[4];
/*
* This is pretty suboptimal for this case blending in SoA would be much
* better, since conversion gets us SoA values so need to convert back.
*/
assert(src_type.width == 32 || src_type.width == 16);
assert(dst_type.floating);
assert(dst_type.width == 32);
assert(dst_type.length % 4 == 0);
assert(num_srcs % 4 == 0);
if (src_type.width == 16) {
/* expand 4x16bit values to 4x32bit */
struct lp_type type32x4 = src_type;
LLVMTypeRef ltype32x4;
unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
type32x4.width = 32;
ltype32x4 = lp_build_vec_type(gallivm, type32x4);
for (i = 0; i < num_fetch; i++) {
src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
}
src_type.width = 32;
}
for (i = 0; i < 4; i++) {
tmpsrc[i] = src[i];
}
for (i = 0; i < num_srcs / 4; i++) {
LLVMValueRef tmpsoa[4];
LLVMValueRef tmps = tmpsrc[i];
if (dst_type.length == 8) {
LLVMValueRef shuffles[8];
unsigned j;
/* fetch was 4 values but need 8-wide output values */
tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
/*
* for 8-wide aos transpose would give us wrong order not matching
* incoming converted fs values and mask. ARGH.
*/
for (j = 0; j < 4; j++) {
shuffles[j] = lp_build_const_int32(gallivm, j * 2);
shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
}
tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
LLVMConstVector(shuffles, 8), "");
}
if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
}
else {
lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
}
lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
}
return;
}
lp_mem_type_from_format_desc(src_fmt, &mem_type);
lp_blend_type_from_format_desc(src_fmt, &blend_type);
/* Is the format arithmetic */
is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
is_arith &= !(mem_type.width == 16 && mem_type.floating);
/* Pad if necessary */
if (!is_arith && src_type.length < dst_type.length) {
for (i = 0; i < num_srcs; ++i) {
dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
}
src_type.length = dst_type.length;
}
/* Special case for half-floats */
if (mem_type.width == 16 && mem_type.floating) {
assert(blend_type.width == 32 && blend_type.floating);
lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
is_arith = false;
}
if (!is_arith) {
return;
}
src_type.width = blend_type.width * blend_type.length;
blend_type.length *= pixels;
src_type.length *= pixels / (src_type.length / mem_type.length);
for (i = 0; i < num_srcs; ++i) {
LLVMValueRef chans[4];
LLVMValueRef res = NULL;
dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
for (j = 0; j < src_fmt->nr_channels; ++j) {
unsigned mask = 0;
unsigned sa = src_fmt->channel[j].shift;
#if UTIL_ARCH_LITTLE_ENDIAN
unsigned from_lsb = j;
#else
unsigned from_lsb = src_fmt->nr_channels - j - 1;
#endif
mask = (1 << src_fmt->channel[j].size) - 1;
/* Extract bits from source */
chans[j] = LLVMBuildLShr(builder,
dst[i],
lp_build_const_int_vec(gallivm, src_type, sa),
"");
chans[j] = LLVMBuildAnd(builder,
chans[j],
lp_build_const_int_vec(gallivm, src_type, mask),
"");
/* Scale bits */
if (src_type.norm) {
chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
blend_type.width, chans[j], src_type);
}
/* Insert bits into correct position */
chans[j] = LLVMBuildShl(builder,
chans[j],
lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
"");
if (j == 0) {
res = chans[j];
} else {
res = LLVMBuildOr(builder, res, chans[j], "");
}
}
dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
}
}
/**
* Convert from blending format to memory format
*
* e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
*/
static void
convert_from_blend_type(struct gallivm_state *gallivm,
unsigned block_size,
const struct util_format_description *src_fmt,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef* src, // and dst
unsigned num_srcs)
{
LLVMValueRef* dst = src;
unsigned i, j, k;
struct lp_type mem_type;
struct lp_type blend_type;
LLVMBuilderRef builder = gallivm->builder;
unsigned pixels = block_size / num_srcs;
bool is_arith;
/*
* full custom path for packed floats and srgb formats - none of the later
* functions would do anything useful, and given the lp_type representation they
* can't be fixed. Should really have some SoA blend path for these kind of
* formats rather than hacking them in here.
*/
if (format_expands_to_float_soa(src_fmt)) {
/*
* This is pretty suboptimal for this case blending in SoA would be much
* better - we need to transpose the AoS values back to SoA values for
* conversion/packing.
*/
assert(src_type.floating);
assert(src_type.width == 32);
assert(src_type.length % 4 == 0);
assert(dst_type.width == 32 || dst_type.width == 16);
for (i = 0; i < num_srcs / 4; i++) {
LLVMValueRef tmpsoa[4], tmpdst;
lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
/* really really need SoA here */
if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
}
else {
tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
src_type, tmpsoa);
}
if (src_type.length == 8) {
LLVMValueRef tmpaos, shuffles[8];
unsigned j;
/*
* for 8-wide aos transpose has given us wrong order not matching
* output order. HMPF. Also need to split the output values manually.
*/
for (j = 0; j < 4; j++) {
shuffles[j * 2] = lp_build_const_int32(gallivm, j);
shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
}
tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
LLVMConstVector(shuffles, 8), "");
src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
}
else {
src[i] = tmpdst;
}
}
if (dst_type.width == 16) {
struct lp_type type16x8 = dst_type;
struct lp_type type32x4 = dst_type;
LLVMTypeRef ltype16x4, ltypei64, ltypei128;
unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
type16x8.length = 8;
type32x4.width = 32;
ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
ltype16x4 = lp_build_vec_type(gallivm, dst_type);
/* We could do vector truncation but it doesn't generate very good code */
for (i = 0; i < num_fetch; i++) {
src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
src[i], lp_build_zero(gallivm, type32x4));
src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
}
}
return;
}
lp_mem_type_from_format_desc(src_fmt, &mem_type);
lp_blend_type_from_format_desc(src_fmt, &blend_type);
is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
/* Special case for half-floats */
if (mem_type.width == 16 && mem_type.floating) {
int length = dst_type.length;
assert(blend_type.width == 32 && blend_type.floating);
dst_type.length = src_type.length;
lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
dst_type.length = length;
is_arith = false;
}
/* Remove any padding */
if (!is_arith && (src_type.length % mem_type.length)) {
src_type.length -= (src_type.length % mem_type.length);
for (i = 0; i < num_srcs; ++i) {
dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
}
}
/* No bit arithmetic to do */
if (!is_arith) {
return;
}
src_type.length = pixels;
src_type.width = blend_type.length * blend_type.width;
dst_type.length = pixels;
for (i = 0; i < num_srcs; ++i) {
LLVMValueRef chans[4];
LLVMValueRef res = NULL;
dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
for (j = 0; j < src_fmt->nr_channels; ++j) {
unsigned mask = 0;
unsigned sa = src_fmt->channel[j].shift;
unsigned sz_a = src_fmt->channel[j].size;
#if UTIL_ARCH_LITTLE_ENDIAN
unsigned from_lsb = j;
#else
unsigned from_lsb = src_fmt->nr_channels - j - 1;
#endif
assert(blend_type.width > src_fmt->channel[j].size);
for (k = 0; k < blend_type.width; ++k) {
mask |= 1 << k;
}
/* Extract bits */
chans[j] = LLVMBuildLShr(builder,
dst[i],
lp_build_const_int_vec(gallivm, src_type,
from_lsb * blend_type.width),
"");
chans[j] = LLVMBuildAnd(builder,
chans[j],
lp_build_const_int_vec(gallivm, src_type, mask),
"");
/* Scale down bits */
if (src_type.norm) {
chans[j] = scale_bits(gallivm, blend_type.width,
src_fmt->channel[j].size, chans[j], src_type);
} else if (!src_type.floating && sz_a < blend_type.width) {
LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
}
/* Insert bits */
chans[j] = LLVMBuildShl(builder,
chans[j],
lp_build_const_int_vec(gallivm, src_type, sa),
"");
sa += src_fmt->channel[j].size;
if (j == 0) {
res = chans[j];
} else {
res = LLVMBuildOr(builder, res, chans[j], "");
}
}
assert (dst_type.width != 24);
dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
}
}
/**
* Convert alpha to same blend type as src
*/
static void
convert_alpha(struct gallivm_state *gallivm,
struct lp_type row_type,
struct lp_type alpha_type,
const unsigned block_size,
const unsigned block_height,
const unsigned src_count,
const unsigned dst_channels,
const bool pad_inline,
LLVMValueRef* src_alpha)
{
LLVMBuilderRef builder = gallivm->builder;
unsigned i, j;
unsigned length = row_type.length;
row_type.length = alpha_type.length;
/* Twiddle the alpha to match pixels */
lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
/*
* TODO this should use single lp_build_conv call for
* src_count == 1 && dst_channels == 1 case (dropping the concat below)
*/
for (i = 0; i < block_height; ++i) {
lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
}
alpha_type = row_type;
row_type.length = length;
/* If only one channel we can only need the single alpha value per pixel */
if (src_count == 1 && dst_channels == 1) {
lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
} else {
/* If there are more srcs than rows then we need to split alpha up */
if (src_count > block_height) {
for (i = src_count; i > 0; --i) {
unsigned pixels = block_size / src_count;
unsigned idx = i - 1;
src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
(idx * pixels) % 4, pixels);
}
}
/* If there is a src for each pixel broadcast the alpha across whole row */
if (src_count == block_size) {
for (i = 0; i < src_count; ++i) {
src_alpha[i] = lp_build_broadcast(gallivm,
lp_build_vec_type(gallivm, row_type), src_alpha[i]);
}
} else {
unsigned pixels = block_size / src_count;
unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
unsigned alpha_span = 1;
LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
/* Check if we need 2 src_alphas for our shuffles */
if (pixels > alpha_type.length) {
alpha_span = 2;
}
/* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
for (j = 0; j < row_type.length; ++j) {
if (j < pixels * channels) {
shuffles[j] = lp_build_const_int32(gallivm, j / channels);
} else {
shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
}
}
for (i = 0; i < src_count; ++i) {
unsigned idx1 = i, idx2 = i;
if (alpha_span > 1){
idx1 *= alpha_span;
idx2 = idx1 + 1;
}
src_alpha[i] = LLVMBuildShuffleVector(builder,
src_alpha[idx1],
src_alpha[idx2],
LLVMConstVector(shuffles, row_type.length),
"");
}
}
}
}
/**
* Generates the blend function for unswizzled colour buffers
* Also generates the read & write from colour buffer
*/
static void
generate_unswizzled_blend(struct gallivm_state *gallivm,
unsigned rt,
struct lp_fragment_shader_variant *variant,
enum pipe_format out_format,
unsigned int num_fs,
struct lp_type fs_type,
LLVMValueRef* fs_mask,
LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
LLVMValueRef context_ptr,
LLVMValueRef color_ptr,
LLVMValueRef stride,
unsigned partial_mask,
boolean do_branch)
{
const unsigned alpha_channel = 3;
const unsigned block_width = LP_RASTER_BLOCK_SIZE;
const unsigned block_height = LP_RASTER_BLOCK_SIZE;
const unsigned block_size = block_width * block_height;
const unsigned lp_integer_vector_width = 128;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
LLVMValueRef src_alpha[4 * 4];
LLVMValueRef src1_alpha[4 * 4] = { NULL };
LLVMValueRef src_mask[4 * 4];
LLVMValueRef src[4 * 4];
LLVMValueRef src1[4 * 4];
LLVMValueRef dst[4 * 4];
LLVMValueRef blend_color;
LLVMValueRef blend_alpha;
LLVMValueRef i32_zero;
LLVMValueRef check_mask;
LLVMValueRef undef_src_val;
struct lp_build_mask_context mask_ctx;
struct lp_type mask_type;
struct lp_type blend_type;
struct lp_type row_type;
struct lp_type dst_type;
struct lp_type ls_type;
unsigned char swizzle[TGSI_NUM_CHANNELS];
unsigned vector_width;
unsigned src_channels = TGSI_NUM_CHANNELS;
unsigned dst_channels;
unsigned dst_count;
unsigned src_count;
unsigned i, j;
const struct util_format_description* out_format_desc = util_format_description(out_format);
unsigned dst_alignment;
bool pad_inline = is_arithmetic_format(out_format_desc);
bool has_alpha = false;
const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
util_blend_state_is_dual(&variant->key.blend, 0);
const boolean is_1d = variant->key.resource_1d;
boolean twiddle_after_convert = FALSE;
unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
LLVMValueRef fpstate = 0;
/* Get type from output format */
lp_blend_type_from_format_desc(out_format_desc, &row_type);
lp_mem_type_from_format_desc(out_format_desc, &dst_type);
/*
* Technically this code should go into lp_build_smallfloat_to_float
* and lp_build_float_to_smallfloat but due to the
* http://llvm.org/bugs/show_bug.cgi?id=6393
* llvm reorders the mxcsr intrinsics in a way that breaks the code.
* So the ordering is important here and there shouldn't be any
* llvm ir instrunctions in this function before
* this, otherwise half-float format conversions won't work
* (again due to llvm bug #6393).
*/
if (have_smallfloat_format(dst_type, out_format)) {
/* We need to make sure that denorms are ok for half float
conversions */
fpstate = lp_build_fpstate_get(gallivm);
lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
}
mask_type = lp_int32_vec4_type();
mask_type.length = fs_type.length;
for (i = num_fs; i < num_fullblock_fs; i++) {
fs_mask[i] = lp_build_zero(gallivm, mask_type);
}
/* Do not bother executing code when mask is empty.. */
if (do_branch) {
check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
for (i = 0; i < num_fullblock_fs; ++i) {
check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
}
lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
lp_build_mask_check(&mask_ctx);
}
partial_mask |= !variant->opaque;
i32_zero = lp_build_const_int32(gallivm, 0);
undef_src_val = lp_build_undef(gallivm, fs_type);
row_type.length = fs_type.length;
vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
/* Compute correct swizzle and count channels */
memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
dst_channels = 0;
for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
/* Ensure channel is used */
if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
continue;
}
/* Ensure not already written to (happens in case with GL_ALPHA) */
if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
continue;
}
/* Ensure we havn't already found all channels */
if (dst_channels >= out_format_desc->nr_channels) {
continue;
}
swizzle[out_format_desc->swizzle[i]] = i;
++dst_channels;
if (i == alpha_channel) {
has_alpha = true;
}
}
if (format_expands_to_float_soa(out_format_desc)) {
/*
* the code above can't work for layout_other
* for srgb it would sort of work but we short-circuit swizzles, etc.
* as that is done as part of unpack / pack.
*/
dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
has_alpha = true;
swizzle[0] = 0;
swizzle[1] = 1;
swizzle[2] = 2;
swizzle[3] = 3;
pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
}
/* If 3 channels then pad to include alpha for 4 element transpose */
if (dst_channels == 3) {
assert (!has_alpha);
for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
if (swizzle[i] > TGSI_NUM_CHANNELS)
swizzle[i] = 3;
}
if (out_format_desc->nr_channels == 4) {
dst_channels = 4;
/*
* We use alpha from the color conversion, not separate one.
* We had to include it for transpose, hence it will get converted
* too (albeit when doing transpose after conversion, that would
* no longer be the case necessarily).
* (It works only with 4 channel dsts, e.g. rgbx formats, because
* otherwise we really have padding, not alpha, included.)
*/
has_alpha = true;
}
}
/*
* Load shader output
*/
for (i = 0; i < num_fullblock_fs; ++i) {
/* Always load alpha for use in blending */
LLVMValueRef alpha;
if (i < num_fs) {
alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
}
else {
alpha = undef_src_val;
}
/* Load each channel */
for (j = 0; j < dst_channels; ++j) {
assert(swizzle[j] < 4);
if (i < num_fs) {
fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
}
else {
fs_src[i][j] = undef_src_val;
}
}
/* If 3 channels then pad to include alpha for 4 element transpose */
/*
* XXX If we include that here maybe could actually use it instead of
* separate alpha for blending?
* (Difficult though we actually convert pad channels, not alpha.)
*/
if (dst_channels == 3 && !has_alpha) {
fs_src[i][3] = alpha;
}
/* We split the row_mask and row_alpha as we want 128bit interleave */
if (fs_type.length == 8) {
src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
0, src_channels);
src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
src_channels, src_channels);
src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
src_channels, src_channels);
} else {
src_mask[i] = fs_mask[i];
src_alpha[i] = alpha;
}
}
if (dual_source_blend) {
/* same as above except different src/dst, skip masks and comments... */
for (i = 0; i < num_fullblock_fs; ++i) {
LLVMValueRef alpha;
if (i < num_fs) {
alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
}
else {
alpha = undef_src_val;
}
for (j = 0; j < dst_channels; ++j) {
assert(swizzle[j] < 4);
if (i < num_fs) {
fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
}
else {
fs_src1[i][j] = undef_src_val;
}
}
if (dst_channels == 3 && !has_alpha) {
fs_src1[i][3] = alpha;
}
if (fs_type.length == 8) {
src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
src_channels, src_channels);
} else {
src1_alpha[i] = alpha;
}
}
}
if (util_format_is_pure_integer(out_format)) {
/*
* In this case fs_type was really ints or uints disguised as floats,
* fix that up now.
*/
fs_type.floating = 0;
fs_type.sign = dst_type.sign;
for (i = 0; i < num_fullblock_fs; ++i) {
for (j = 0; j < dst_channels; ++j) {
fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
lp_build_vec_type(gallivm, fs_type), "");
}
if (dst_channels == 3 && !has_alpha) {
fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
lp_build_vec_type(gallivm, fs_type), "");
}
}
}
/*
* We actually should generally do conversion first (for non-1d cases)
* when the blend format is 8 or 16 bits. The reason is obvious,
* there's 2 or 4 times less vectors to deal with for the interleave...
* Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
* vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
* unpack only with 128bit vectors).
* Note: for 16bit sizes really need matching pack conversion code
*/
if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
twiddle_after_convert = TRUE;
}
/*
* Pixel twiddle from fragment shader order to memory order
*/
if (!twiddle_after_convert) {
src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
dst_channels, fs_src, src, pad_inline);
if (dual_source_blend) {
generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
fs_src1, src1, pad_inline);
}
} else {
src_count = num_fullblock_fs * dst_channels;
/*
* We reorder things a bit here, so the cases for 4-wide and 8-wide
* (AVX) turn out the same later when untwiddling/transpose (albeit
* for true AVX2 path untwiddle needs to be different).
* For now just order by colors first (so we can use unpack later).
*/
for (j = 0; j < num_fullblock_fs; j++) {
for (i = 0; i < dst_channels; i++) {
src[i*num_fullblock_fs + j] = fs_src[j][i];
if (dual_source_blend) {
src1[i*num_fullblock_fs + j] = fs_src1[j][i];
}
}
}
}
src_channels = dst_channels < 3 ? dst_channels : 4;
if (src_count != num_fullblock_fs * src_channels) {
unsigned ds = src_count / (num_fullblock_fs * src_channels);
row_type.length /= ds;
fs_type.length = row_type.length;
}
blend_type = row_type;
mask_type.length = 4;
/* Convert src to row_type */
if (dual_source_blend) {
struct lp_type old_row_type = row_type;
lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
}
else {
src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
}
/* If the rows are not an SSE vector, combine them to become SSE size! */
if ((row_type.width * row_type.length) % 128) {
unsigned bits = row_type.width * row_type.length;
unsigned combined;
assert(src_count >= (vector_width / bits));
dst_count = src_count / (vector_width / bits);
combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
if (dual_source_blend) {
lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
}
row_type.length *= combined;
src_count /= combined;
bits = row_type.width * row_type.length;
assert(bits == 128 || bits == 256);
}
if (twiddle_after_convert) {
fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
if (dual_source_blend) {
fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
}
}
/*
* Blend Colour conversion
*/
blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
blend_color = LLVMBuildPointerCast(builder, blend_color,
LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
&i32_zero, 1, ""), "");
/* Convert */
lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
/*
* since blending is done with floats, there was no conversion.
* However, the rules according to fixed point renderbuffers still
* apply, that is we must clamp inputs to 0.0/1.0.
* (This would apply to separate alpha conversion too but we currently
* force has_alpha to be true.)
* TODO: should skip this with "fake" blend, since post-blend conversion
* will clamp anyway.
* TODO: could also skip this if fragment color clamping is enabled. We
* don't support it natively so it gets baked into the shader however, so
* can't really tell here.
*/
struct lp_build_context f32_bld;
assert(row_type.floating);
lp_build_context_init(&f32_bld, gallivm, row_type);
for (i = 0; i < src_count; i++) {
src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
}
if (dual_source_blend) {
for (i = 0; i < src_count; i++) {
src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
}
}
/* probably can't be different than row_type but better safe than sorry... */
lp_build_context_init(&f32_bld, gallivm, blend_type);
blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
}
/* Extract alpha */
blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
/* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
if (pad_inline) {
/* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
} else {
/* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
}
/*
* Mask conversion
*/
lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
if (src_count < block_height) {
lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
} else if (src_count > block_height) {
for (i = src_count; i > 0; --i) {
unsigned pixels = block_size / src_count;
unsigned idx = i - 1;
src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
(idx * pixels) % 4, pixels);
}
}
assert(mask_type.width == 32);
for (i = 0; i < src_count; ++i) {
unsigned pixels = block_size / src_count;
unsigned pixel_width = row_type.width * dst_channels;
if (pixel_width == 24) {
mask_type.width = 8;
mask_type.length = vector_width / mask_type.width;
} else {
mask_type.length = pixels;
mask_type.width = row_type.width * dst_channels;
/*
* If mask_type width is smaller than 32bit, this doesn't quite
* generate the most efficient code (could use some pack).
*/
src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
lp_build_int_vec_type(gallivm, mask_type), "");
mask_type.length *= dst_channels;
mask_type.width /= dst_channels;
}
src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
lp_build_int_vec_type(gallivm, mask_type), "");
src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
}
/*
* Alpha conversion
*/
if (!has_alpha) {
struct lp_type alpha_type = fs_type;
alpha_type.length = 4;
convert_alpha(gallivm, row_type, alpha_type,
block_size, block_height,
src_count, dst_channels,
pad_inline, src_alpha);
if (dual_source_blend) {
convert_alpha(gallivm, row_type, alpha_type,
block_size, block_height,
src_count, dst_channels,
pad_inline, src1_alpha);
}
}
/*
* Load dst from memory
*/
if (src_count < block_height) {
dst_count = block_height;
} else {
dst_count = src_count;
}
dst_type.length *= block_size / dst_count;
if (format_expands_to_float_soa(out_format_desc)) {
/*
* we need multiple values at once for the conversion, so can as well
* load them vectorized here too instead of concatenating later.
* (Still need concatenation later for 8-wide vectors).
*/
dst_count = block_height;
dst_type.length = block_width;
}
/*
* Compute the alignment of the destination pointer in bytes
* We fetch 1-4 pixels, if the format has pot alignment then those fetches
* are always aligned by MIN2(16, fetch_width) except for buffers (not
* 1d tex but can't distinguish here) so need to stick with per-pixel
* alignment in this case.
*/
if (is_1d) {
dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
}
else {
dst_alignment = dst_type.length * dst_type.width / 8;
}
/* Force power-of-two alignment by extracting only the least-significant-bit */
dst_alignment = 1 << (ffs(dst_alignment) - 1);
/*
* Resource base and stride pointers are aligned to 16 bytes, so that's
* the maximum alignment we can guarantee
*/
dst_alignment = MIN2(16, dst_alignment);
ls_type = dst_type;
if (dst_count > src_count) {
if ((dst_type.width == 8 || dst_type.width == 16) &&
util_is_power_of_two_or_zero(dst_type.length) &&
dst_type.length * dst_type.width < 128) {
/*
* Never try to load values as 4xi8 which we will then
* concatenate to larger vectors. This gives llvm a real
* headache (the problem is the type legalizer (?) will
* try to load that as 4xi8 zext to 4xi32 to fill the vector,
* then the shuffles to concatenate are more or less impossible
* - llvm is easily capable of generating a sequence of 32
* pextrb/pinsrb instructions for that. Albeit it appears to
* be fixed in llvm 4.0. So, load and concatenate with 32bit
* width to avoid the trouble (16bit seems not as bad, llvm
* probably recognizes the load+shuffle as only one shuffle
* is necessary, but we can do just the same anyway).
*/
ls_type.length = dst_type.length * dst_type.width / 32;
ls_type.width = 32;
}
}
if (is_1d) {
load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
dst, ls_type, dst_count / 4, dst_alignment);
for (i = dst_count / 4; i < dst_count; i++) {
dst[i] = lp_build_undef(gallivm, ls_type);
}
}
else {
load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
dst, ls_type, dst_count, dst_alignment);
}
/*
* Convert from dst/output format to src/blending format.
*
* This is necessary as we can only read 1 row from memory at a time,
* so the minimum dst_count will ever be at this point is 4.
*
* With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
* this will take the 4 dsts and combine them into 1 src so we can perform blending
* on all 16 pixels in that single vector at once.
*/
if (dst_count > src_count) {
if (ls_type.length != dst_type.length && ls_type.length == 1) {
LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
for (i = 0; i < dst_count; i++) {
dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
}
}
lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
if (ls_type.length != dst_type.length) {
struct lp_type tmp_type = dst_type;
tmp_type.length = dst_type.length * 4 / src_count;
for (i = 0; i < src_count; i++) {
dst[i] = LLVMBuildBitCast(builder, dst[i],
lp_build_vec_type(gallivm, tmp_type), "");
}
}
}
/*
* Blending
*/
/* XXX this is broken for RGB8 formats -
* they get expanded from 12 to 16 elements (to include alpha)
* by convert_to_blend_type then reduced to 15 instead of 12
* by convert_from_blend_type (a simple fix though breaks A8...).
* R16G16B16 also crashes differently however something going wrong
* inside llvm handling npot vector sizes seemingly.
* It seems some cleanup could be done here (like skipping conversion/blend
* when not needed).
*/
convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
row_type, dst, src_count);
/*
* FIXME: Really should get logic ops / masks out of generic blend / row
* format. Logic ops will definitely not work on the blend float format
* used for SRGB here and I think OpenGL expects this to work as expected
* (that is incoming values converted to srgb then logic op applied).
*/
for (i = 0; i < src_count; ++i) {
dst[i] = lp_build_blend_aos(gallivm,
&variant->key.blend,
out_format,
row_type,
rt,
src[i],
has_alpha ? NULL : src_alpha[i],
src1[i],
has_alpha ? NULL : src1_alpha[i],
dst[i],
partial_mask ? src_mask[i] : NULL,
blend_color,
has_alpha ? NULL : blend_alpha,
swizzle,
pad_inline ? 4 : dst_channels);
}
convert_from_blend_type(gallivm, block_size, out_format_desc,
row_type, dst_type, dst, src_count);
/* Split the blend rows back to memory rows */
if (dst_count > src_count) {
row_type.length = dst_type.length * (dst_count / src_count);
if (src_count == 1) {
dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
row_type.length /= 2;
src_count *= 2;
}
dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
row_type.length /= 2;
src_count *= 2;
}
/*
* Store blend result to memory
*/
if (is_1d) {
store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
dst, dst_type, dst_count / 4, dst_alignment);
}
else {
store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
dst, dst_type, dst_count, dst_alignment);
}
if (have_smallfloat_format(dst_type, out_format)) {
lp_build_fpstate_set(gallivm, fpstate);
}
if (do_branch) {
lp_build_mask_end(&mask_ctx);
}
}
/**
* Generate the runtime callable function for the whole fragment pipeline.
* Note that the function which we generate operates on a block of 16
* pixels at at time. The block contains 2x2 quads. Each quad contains
* 2x2 pixels.
*/
static void
generate_fragment(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
struct lp_fragment_shader_variant *variant,
unsigned partial_mask)
{
struct gallivm_state *gallivm = variant->gallivm;
struct lp_fragment_shader_variant_key *key = &variant->key;
struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
char func_name[64];
struct lp_type fs_type;
struct lp_type blend_type;
LLVMTypeRef fs_elem_type;
LLVMTypeRef blend_vec_type;
LLVMTypeRef arg_types[15];
LLVMTypeRef func_type;
LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
LLVMValueRef context_ptr;
LLVMValueRef x;
LLVMValueRef y;
LLVMValueRef a0_ptr;
LLVMValueRef dadx_ptr;
LLVMValueRef dady_ptr;
LLVMValueRef color_ptr_ptr;
LLVMValueRef stride_ptr;
LLVMValueRef color_sample_stride_ptr;
LLVMValueRef depth_ptr;
LLVMValueRef depth_stride;
LLVMValueRef depth_sample_stride;
LLVMValueRef mask_input;
LLVMValueRef thread_data_ptr;
LLVMBasicBlockRef block;
LLVMBuilderRef builder;
struct lp_build_sampler_soa *sampler;
struct lp_build_image_soa *image;
struct lp_build_interp_soa_context interp;
LLVMValueRef fs_mask[(16 / 4) * LP_MAX_SAMPLES];
LLVMValueRef fs_out_color[LP_MAX_SAMPLES][PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
LLVMValueRef function;
LLVMValueRef facing;
unsigned num_fs;
unsigned i;
unsigned chan;
unsigned cbuf;
boolean cbuf0_write_all;
const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
util_blend_state_is_dual(&key->blend, 0);
assert(lp_native_vector_width / 32 >= 4);
/* Adjust color input interpolation according to flatshade state:
*/
memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
for (i = 0; i < shader->info.base.num_inputs; i++) {
if (inputs[i].interp == LP_INTERP_COLOR) {
if (key->flatshade)
inputs[i].interp = LP_INTERP_CONSTANT;
else
inputs[i].interp = LP_INTERP_PERSPECTIVE;
}
}
/* check if writes to cbuf[0] are to be copied to all cbufs */
cbuf0_write_all =
shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
/* TODO: actually pick these based on the fs and color buffer
* characteristics. */
memset(&fs_type, 0, sizeof fs_type);
fs_type.floating = TRUE; /* floating point values */
fs_type.sign = TRUE; /* values are signed */
fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
fs_type.width = 32; /* 32-bit float */
fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
memset(&blend_type, 0, sizeof blend_type);
blend_type.floating = FALSE; /* values are integers */
blend_type.sign = FALSE; /* values are unsigned */
blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
blend_type.width = 8; /* 8-bit ubyte values */
blend_type.length = 16; /* 16 elements per vector */
/*
* Generate the function prototype. Any change here must be reflected in
* lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
*/
fs_elem_type = lp_build_elem_type(gallivm, fs_type);
blend_vec_type = lp_build_vec_type(gallivm, blend_type);
snprintf(func_name, sizeof(func_name), "fs_variant_%s",
partial_mask ? "partial" : "whole");
arg_types[0] = variant->jit_context_ptr_type; /* context */
arg_types[1] = int32_type; /* x */
arg_types[2] = int32_type; /* y */
arg_types[3] = int32_type; /* facing */
arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
arg_types[7] = LLVMPointerType(LLVMPointerType(int8_type, 0), 0); /* color */
arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */
arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
arg_types[12] = int32_type; /* depth_stride */
arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
arg_types[14] = int32_type; /* depth sample stride */
func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
arg_types, ARRAY_SIZE(arg_types), 0);
function = LLVMAddFunction(gallivm->module, func_name, func_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
variant->function[partial_mask] = function;
/* XXX: need to propagate noalias down into color param now we are
* passing a pointer-to-pointer?
*/
for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
if (variant->gallivm->cache->data_size)
return;
context_ptr = LLVMGetParam(function, 0);
x = LLVMGetParam(function, 1);
y = LLVMGetParam(function, 2);
facing = LLVMGetParam(function, 3);
a0_ptr = LLVMGetParam(function, 4);
dadx_ptr = LLVMGetParam(function, 5);
dady_ptr = LLVMGetParam(function, 6);
color_ptr_ptr = LLVMGetParam(function, 7);
depth_ptr = LLVMGetParam(function, 8);
mask_input = LLVMGetParam(function, 9);
thread_data_ptr = LLVMGetParam(function, 10);
stride_ptr = LLVMGetParam(function, 11);
depth_stride = LLVMGetParam(function, 12);
color_sample_stride_ptr = LLVMGetParam(function, 13);
depth_sample_stride = LLVMGetParam(function, 14);
lp_build_name(context_ptr, "context");
lp_build_name(x, "x");
lp_build_name(y, "y");
lp_build_name(a0_ptr, "a0");
lp_build_name(dadx_ptr, "dadx");
lp_build_name(dady_ptr, "dady");
lp_build_name(color_ptr_ptr, "color_ptr_ptr");
lp_build_name(depth_ptr, "depth");
lp_build_name(mask_input, "mask_input");
lp_build_name(thread_data_ptr, "thread_data");
lp_build_name(stride_ptr, "stride_ptr");
lp_build_name(depth_stride, "depth_stride");
lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
lp_build_name(depth_sample_stride, "depth_sample_stride");
/*
* Function body
*/
block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
builder = gallivm->builder;
assert(builder);
LLVMPositionBuilderAtEnd(builder, block);
/*
* Must not count ps invocations if there's a null shader.
* (It would be ok to count with null shader if there's d/s tests,
* but only if there's d/s buffers too, which is different
* to implicit rasterization disable which must not depend
* on the d/s buffers.)
* Could use popcount on mask, but pixel accuracy is not required.
* Could disable if there's no stats query, but maybe not worth it.
*/
if (shader->info.base.num_instructions > 1) {
LLVMValueRef invocs, val;
invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
val = LLVMBuildLoad(builder, invocs, "");
val = LLVMBuildAdd(builder, val,
LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
"invoc_count");
LLVMBuildStore(builder, val, invocs);
}
/* code generated texture sampling */
sampler = lp_llvm_sampler_soa_create(key->samplers, key->nr_samplers);
image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key), key->nr_images);
num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
/* for 1d resources only run "upper half" of stamp */
if (key->resource_1d)
num_fs /= 2;
{
LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
num_loop_samp, "mask_store");
LLVMTypeRef flt_type = LLVMFloatTypeInContext(gallivm->context);
LLVMValueRef glob_sample_pos = LLVMAddGlobal(gallivm->module, LLVMArrayType(flt_type, key->coverage_samples * 2), "");
LLVMValueRef sample_pos_array;
if (key->multisample && key->coverage_samples == 4) {
LLVMValueRef sample_pos_arr[8];
for (unsigned i = 0; i < 4; i++) {
sample_pos_arr[i * 2] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][0]);
sample_pos_arr[i * 2 + 1] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][1]);
}
sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 8);
} else {
LLVMValueRef sample_pos_arr[2];
sample_pos_arr[0] = LLVMConstReal(flt_type, 0.5);
sample_pos_arr[1] = LLVMConstReal(flt_type, 0.5);
sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 2);
}
LLVMSetInitializer(glob_sample_pos, sample_pos_array);
LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
boolean pixel_center_integer =
shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
/*
* The shader input interpolation info is not explicitely baked in the
* shader key, but everything it derives from (TGSI, and flatshade) is
* already included in the shader key.
*/
lp_build_interp_soa_init(&interp,
gallivm,
shader->info.base.num_inputs,
inputs,
pixel_center_integer,
key->coverage_samples, glob_sample_pos,
num_loop,
key->depth_clamp,
builder, fs_type,
a0_ptr, dadx_ptr, dady_ptr,
x, y);
for (i = 0; i < num_fs; i++) {
if (key->multisample) {
LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
/*
* For multisampling, extract the per-sample mask from the incoming 64-bit mask,
* store to the per sample mask storage. Or all of them together to generate
* the fragment shader mask. (sample shading TODO).
* Take the incoming state coverage mask into account.
*/
for (unsigned s = 0; s < key->coverage_samples; s++) {
LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
&sindexi, 1, "sample_mask_ptr");
LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
i*fs_type.length/4, s, mask_input);
LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
LLVMBuildStore(builder, s_mask, sample_mask_ptr);
}
} else {
LLVMValueRef mask;
LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
&indexi, 1, "mask_ptr");
if (partial_mask) {
mask = generate_quad_mask(gallivm, fs_type,
i*fs_type.length/4, 0, mask_input);
}
else {
mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
}
LLVMBuildStore(builder, mask, mask_ptr);
}
}
generate_fs_loop(gallivm,
shader, key,
builder,
fs_type,
context_ptr,
glob_sample_pos,
num_loop,
&interp,
sampler,
image,
mask_store, /* output */
color_store,
depth_ptr,
depth_stride,
depth_sample_stride,
facing,
thread_data_ptr);
for (i = 0; i < num_fs; i++) {
LLVMValueRef ptr;
for (unsigned s = 0; s < key->coverage_samples; s++) {
int idx = (i + (s * num_fs));
LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, "");
fs_mask[idx] = LLVMBuildLoad(builder, ptr, "smask");
}
for (unsigned s = 0; s < key->min_samples; s++) {
/* This is fucked up need to reorganize things */
int idx = s * num_fs + i;
LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
ptr = LLVMBuildGEP(builder,
color_store[cbuf * !cbuf0_write_all][chan],
&sindexi, 1, "");
fs_out_color[s][cbuf][chan][i] = ptr;
}
}
if (dual_source_blend) {
/* only support one dual source blend target hence always use output 1 */
for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
ptr = LLVMBuildGEP(builder,
color_store[1][chan],
&sindexi, 1, "");
fs_out_color[s][1][chan][i] = ptr;
}
}
}
}
}
sampler->destroy(sampler);
image->destroy(image);
/* Loop over color outputs / color buffers to do blending.
*/
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
LLVMValueRef color_ptr;
LLVMValueRef stride;
LLVMValueRef sample_stride = NULL;
LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
boolean do_branch = ((key->depth.enabled
|| key->stencil[0].enabled
|| key->alpha.enabled)
&& !shader->info.base.uses_kill);
color_ptr = LLVMBuildLoad(builder,
LLVMBuildGEP(builder, color_ptr_ptr,
&index, 1, ""),
"");
stride = LLVMBuildLoad(builder,
LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
"");
if (key->multisample)
sample_stride = LLVMBuildLoad(builder,
LLVMBuildGEP(builder, color_sample_stride_ptr,
&index, 1, ""), "");
for (unsigned s = 0; s < key->cbuf_nr_samples[cbuf]; s++) {
unsigned mask_idx = num_fs * (key->multisample ? s : 0);
unsigned out_idx = key->min_samples == 1 ? 0 : s;
LLVMValueRef out_ptr = color_ptr;;
if (key->multisample) {
LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, lp_build_const_int32(gallivm, s), "");
out_ptr = LLVMBuildGEP(builder, out_ptr, &sample_offset, 1, "");
}
out_ptr = LLVMBuildBitCast(builder, out_ptr, LLVMPointerType(blend_vec_type, 0), "");
lp_build_name(out_ptr, "color_ptr%d", cbuf);
generate_unswizzled_blend(gallivm, cbuf, variant,
key->cbuf_format[cbuf],
num_fs, fs_type, &fs_mask[mask_idx], fs_out_color[out_idx],
context_ptr, out_ptr, stride,
partial_mask, do_branch);
}
}
}
LLVMBuildRetVoid(builder);
gallivm_verify_function(gallivm, function);
}
static void
dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
{
unsigned i;
debug_printf("fs variant %p:\n", (void *) key);
if (key->flatshade) {
debug_printf("flatshade = 1\n");
}
if (key->multisample) {
debug_printf("multisample = 1\n");
debug_printf("coverage samples = %d\n", key->coverage_samples);
debug_printf("min samples = %d\n", key->min_samples);
}
for (i = 0; i < key->nr_cbufs; ++i) {
debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
}
if (key->depth.enabled || key->stencil[0].enabled) {
debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
}
if (key->depth.enabled) {
debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
debug_printf("depth.writemask = %u\n", key->depth.writemask);
}
for (i = 0; i < 2; ++i) {
if (key->stencil[i].enabled) {
debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
}
}
if (key->alpha.enabled) {
debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
}
if (key->occlusion_count) {
debug_printf("occlusion_count = 1\n");
}
if (key->blend.logicop_enable) {
debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
}
else if (key->blend.rt[0].blend_enable) {
debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
}
debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
if (key->blend.alpha_to_coverage) {
debug_printf("blend.alpha_to_coverage is enabled\n");
}
for (i = 0; i < key->nr_samplers; ++i) {
const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
debug_printf("sampler[%u] = \n", i);
debug_printf(" .wrap = %s %s %s\n",
util_str_tex_wrap(sampler->wrap_s, TRUE),
util_str_tex_wrap(sampler->wrap_t, TRUE),
util_str_tex_wrap(sampler->wrap_r, TRUE));
debug_printf(" .min_img_filter = %s\n",
util_str_tex_filter(sampler->min_img_filter, TRUE));
debug_printf(" .min_mip_filter = %s\n",
util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
debug_printf(" .mag_img_filter = %s\n",
util_str_tex_filter(sampler->mag_img_filter, TRUE));
if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
}
for (i = 0; i < key->nr_sampler_views; ++i) {
const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
debug_printf("texture[%u] = \n", i);
debug_printf(" .format = %s\n",
util_format_name(texture->format));
debug_printf(" .target = %s\n",
util_str_tex_target(texture->target, TRUE));
debug_printf(" .level_zero_only = %u\n",
texture->level_zero_only);
debug_printf(" .pot = %u %u %u\n",
texture->pot_width,
texture->pot_height,
texture->pot_depth);
}
struct lp_image_static_state *images = lp_fs_variant_key_images(key);
for (i = 0; i < key->nr_images; ++i) {
const struct lp_static_texture_state *image = &images[i].image_state;
debug_printf("image[%u] = \n", i);
debug_printf(" .format = %s\n",
util_format_name(image->format));
debug_printf(" .target = %s\n",
util_str_tex_target(image->target, TRUE));
debug_printf(" .level_zero_only = %u\n",
image->level_zero_only);
debug_printf(" .pot = %u %u %u\n",
image->pot_width,
image->pot_height,
image->pot_depth);
}
}
void
lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
{
debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
variant->shader->no, variant->no);
if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
tgsi_dump(variant->shader->base.tokens, 0);
else
nir_print_shader(variant->shader->base.ir.nir, stderr);
dump_fs_variant_key(&variant->key);
debug_printf("variant->opaque = %u\n", variant->opaque);
debug_printf("\n");
}
static void
lp_fs_get_ir_cache_key(struct lp_fragment_shader_variant *variant,
unsigned char ir_sha1_cache_key[20])
{
struct blob blob = { 0 };
unsigned ir_size;
void *ir_binary;
blob_init(&blob);
nir_serialize(&blob, variant->shader->base.ir.nir, true);
ir_binary = blob.data;
ir_size = blob.size;
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, &variant->key, variant->shader->variant_key_size);
_mesa_sha1_update(&ctx, ir_binary, ir_size);
_mesa_sha1_final(&ctx, ir_sha1_cache_key);
blob_finish(&blob);
}
/**
* Generate a new fragment shader variant from the shader code and
* other state indicated by the key.
*/
static struct lp_fragment_shader_variant *
generate_variant(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
const struct lp_fragment_shader_variant_key *key)
{
struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
struct lp_fragment_shader_variant *variant;
const struct util_format_description *cbuf0_format_desc = NULL;
boolean fullcolormask;
char module_name[64];
unsigned char ir_sha1_cache_key[20];
struct lp_cached_code cached = { 0 };
bool needs_caching = false;
variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
if (!variant)
return NULL;
memset(variant, 0, sizeof(*variant));
snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
shader->no, shader->variants_created);
variant->shader = shader;
memcpy(&variant->key, key, shader->variant_key_size);
if (shader->base.ir.nir) {
lp_fs_get_ir_cache_key(variant, ir_sha1_cache_key);
lp_disk_cache_find_shader(screen, &cached, ir_sha1_cache_key);
if (!cached.data_size)
needs_caching = true;
}
variant->gallivm = gallivm_create(module_name, lp->context, &cached);
if (!variant->gallivm) {
FREE(variant);
return NULL;
}
variant->list_item_global.base = variant;
variant->list_item_local.base = variant;
variant->no = shader->variants_created++;
/*
* Determine whether we are touching all channels in the color buffer.
*/
fullcolormask = FALSE;
if (key->nr_cbufs == 1) {
cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
}
variant->opaque =
!key->blend.logicop_enable &&
!key->blend.rt[0].blend_enable &&
fullcolormask &&
!key->stencil[0].enabled &&
!key->alpha.enabled &&
!key->multisample &&
!key->blend.alpha_to_coverage &&
!key->depth.enabled &&
!shader->info.base.uses_kill &&
!shader->info.base.writes_samplemask
? TRUE : FALSE;
if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
lp_debug_fs_variant(variant);
}
lp_jit_init_types(variant);
if (variant->jit_function[RAST_EDGE_TEST] == NULL)
generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
if (variant->jit_function[RAST_WHOLE] == NULL) {
if (variant->opaque) {
/* Specialized shader, which doesn't need to read the color buffer. */
generate_fragment(lp, shader, variant, RAST_WHOLE);
}
}
/*
* Compile everything
*/
gallivm_compile_module(variant->gallivm);
variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
if (variant->function[RAST_EDGE_TEST]) {
variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
gallivm_jit_function(variant->gallivm,
variant->function[RAST_EDGE_TEST]);
}
if (variant->function[RAST_WHOLE]) {
variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
gallivm_jit_function(variant->gallivm,
variant->function[RAST_WHOLE]);
} else if (!variant->jit_function[RAST_WHOLE]) {
variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
}
if (needs_caching) {
lp_disk_cache_insert_shader(screen, &cached, ir_sha1_cache_key);
}
gallivm_free_ir(variant->gallivm);
return variant;
}
static void *
llvmpipe_create_fs_state(struct pipe_context *pipe,
const struct pipe_shader_state *templ)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct lp_fragment_shader *shader;
int nr_samplers;
int nr_sampler_views;
int nr_images;
int i;
shader = CALLOC_STRUCT(lp_fragment_shader);
if (!shader)
return NULL;
shader->no = fs_no++;
make_empty_list(&shader->variants);
shader->base.type = templ->type;
if (templ->type == PIPE_SHADER_IR_TGSI) {
/* get/save the summary info for this shader */
lp_build_tgsi_info(templ->tokens, &shader->info);
/* we need to keep a local copy of the tokens */
shader->base.tokens = tgsi_dup_tokens(templ->tokens);
} else {
shader->base.ir.nir = templ->ir.nir;
nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
}
shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
if (shader->draw_data == NULL) {
FREE((void *) shader->base.tokens);
FREE(shader);
return NULL;
}
nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
for (i = 0; i < shader->info.base.num_inputs; i++) {
shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
switch (shader->info.base.input_interpolate[i]) {
case TGSI_INTERPOLATE_CONSTANT:
shader->inputs[i].interp = LP_INTERP_CONSTANT;
break;
case TGSI_INTERPOLATE_LINEAR:
shader->inputs[i].interp = LP_INTERP_LINEAR;
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
break;
case TGSI_INTERPOLATE_COLOR:
shader->inputs[i].interp = LP_INTERP_COLOR;
break;
default:
assert(0);
break;
}
switch (shader->info.base.input_semantic_name[i]) {
case TGSI_SEMANTIC_FACE:
shader->inputs[i].interp = LP_INTERP_FACING;
break;
case TGSI_SEMANTIC_POSITION:
/* Position was already emitted above
*/
shader->inputs[i].interp = LP_INTERP_POSITION;
shader->inputs[i].src_index = 0;
continue;
}
/* XXX this is a completely pointless index map... */
shader->inputs[i].src_index = i+1;
}
if (LP_DEBUG & DEBUG_TGSI) {
unsigned attrib;
debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
shader->no, (void *) shader);
tgsi_dump(templ->tokens, 0);
debug_printf("usage masks:\n");
for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
debug_printf(" IN[%u].%s%s%s%s\n",
attrib,
usage_mask & TGSI_WRITEMASK_X ? "x" : "",
usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
usage_mask & TGSI_WRITEMASK_W ? "w" : "");
}
debug_printf("\n");
}
return shader;
}
static void
llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
if (llvmpipe->fs == lp_fs)
return;
draw_bind_fragment_shader(llvmpipe->draw,
(lp_fs ? lp_fs->draw_data : NULL));
llvmpipe->fs = lp_fs;
llvmpipe->dirty |= LP_NEW_FS;
}
/**
* Remove shader variant from two lists: the shader's variant list
* and the context's variant list.
*/
static void
llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
struct lp_fragment_shader_variant *variant)
{
if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
"v total cached %u inst %u total inst %u\n",
variant->shader->no, variant->no,
variant->shader->variants_created,
variant->shader->variants_cached,
lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
}
gallivm_destroy(variant->gallivm);
/* remove from shader's list */
remove_from_list(&variant->list_item_local);
variant->shader->variants_cached--;
/* remove from context's list */
remove_from_list(&variant->list_item_global);
lp->nr_fs_variants--;
lp->nr_fs_instrs -= variant->nr_instrs;
FREE(variant);
}
static void
llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct lp_fragment_shader *shader = fs;
struct lp_fs_variant_list_item *li;
assert(fs != llvmpipe->fs);
/*
* XXX: we need to flush the context until we have some sort of reference
* counting in fragment shaders as they may still be binned
* Flushing alone might not sufficient we need to wait on it too.
*/
llvmpipe_finish(pipe, __FUNCTION__);
/* Delete all the variants */
li = first_elem(&shader->variants);
while(!at_end(&shader->variants, li)) {
struct lp_fs_variant_list_item *next = next_elem(li);
llvmpipe_remove_shader_variant(llvmpipe, li->base);
li = next;
}
/* Delete draw module's data */
draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
if (shader->base.ir.nir)
ralloc_free(shader->base.ir.nir);
assert(shader->variants_cached == 0);
FREE((void *) shader->base.tokens);
FREE(shader);
}
static void
llvmpipe_set_constant_buffer(struct pipe_context *pipe,
enum pipe_shader_type shader, uint index,
const struct pipe_constant_buffer *cb)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct pipe_resource *constants = cb ? cb->buffer : NULL;
assert(shader < PIPE_SHADER_TYPES);
assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
/* note: reference counting */
util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
if (constants) {
if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
debug_printf("Illegal set constant without bind flag\n");
constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
}
}
if (shader == PIPE_SHADER_VERTEX ||
shader == PIPE_SHADER_GEOMETRY ||
shader == PIPE_SHADER_TESS_CTRL ||
shader == PIPE_SHADER_TESS_EVAL) {
/* Pass the constants to the 'draw' module */
const unsigned size = cb ? cb->buffer_size : 0;
const ubyte *data;
if (constants) {
data = (ubyte *) llvmpipe_resource_data(constants);
}
else if (cb && cb->user_buffer) {
data = (ubyte *) cb->user_buffer;
}
else {
data = NULL;
}
if (data)
data += cb->buffer_offset;
draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
index, data, size);
}
else if (shader == PIPE_SHADER_COMPUTE)
llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
else
llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
if (cb && cb->user_buffer) {
pipe_resource_reference(&constants, NULL);
}
}
static void
llvmpipe_set_shader_buffers(struct pipe_context *pipe,
enum pipe_shader_type shader, unsigned start_slot,
unsigned count, const struct pipe_shader_buffer *buffers,
unsigned writable_bitmask)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
unsigned i, idx;
for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
if (shader == PIPE_SHADER_VERTEX ||
shader == PIPE_SHADER_GEOMETRY ||
shader == PIPE_SHADER_TESS_CTRL ||
shader == PIPE_SHADER_TESS_EVAL) {
const unsigned size = buffer ? buffer->buffer_size : 0;
const ubyte *data = NULL;
if (buffer && buffer->buffer)
data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
if (data)
data += buffer->buffer_offset;
draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
i, data, size);
} else if (shader == PIPE_SHADER_COMPUTE) {
llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
} else if (shader == PIPE_SHADER_FRAGMENT) {
llvmpipe->dirty |= LP_NEW_FS_SSBOS;
}
}
}
static void
llvmpipe_set_shader_images(struct pipe_context *pipe,
enum pipe_shader_type shader, unsigned start_slot,
unsigned count, const struct pipe_image_view *images)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
unsigned i, idx;
draw_flush(llvmpipe->draw);
for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
const struct pipe_image_view *image = images ? &images[idx] : NULL;
util_copy_image_view(&llvmpipe->images[shader][i], image);
}
llvmpipe->num_images[shader] = start_slot + count;
if (shader == PIPE_SHADER_VERTEX ||
shader == PIPE_SHADER_GEOMETRY ||
shader == PIPE_SHADER_TESS_CTRL ||
shader == PIPE_SHADER_TESS_EVAL) {
draw_set_images(llvmpipe->draw,
shader,
llvmpipe->images[shader],
start_slot + count);
} else if (shader == PIPE_SHADER_COMPUTE)
llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
else
llvmpipe->dirty |= LP_NEW_FS_IMAGES;
}
/**
* Return the blend factor equivalent to a destination alpha of one.
*/
static inline unsigned
force_dst_alpha_one(unsigned factor, boolean clamped_zero)
{
switch(factor) {
case PIPE_BLENDFACTOR_DST_ALPHA:
return PIPE_BLENDFACTOR_ONE;
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
return PIPE_BLENDFACTOR_ZERO;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
if (clamped_zero)
return PIPE_BLENDFACTOR_ZERO;
else
return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
}
return factor;
}
/**
* We need to generate several variants of the fragment pipeline to match
* all the combinations of the contributing state atoms.
*
* TODO: there is actually no reason to tie this to context state -- the
* generated code could be cached globally in the screen.
*/
static struct lp_fragment_shader_variant_key *
make_variant_key(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
char *store)
{
unsigned i;
struct lp_fragment_shader_variant_key *key;
key = (struct lp_fragment_shader_variant_key *)store;
memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
if (lp->framebuffer.zsbuf) {
enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
const struct util_format_description *zsbuf_desc =
util_format_description(zsbuf_format);
if (lp->depth_stencil->depth.enabled &&
util_format_has_depth(zsbuf_desc)) {
key->zsbuf_format = zsbuf_format;
memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
}
if (lp->depth_stencil->stencil[0].enabled &&
util_format_has_stencil(zsbuf_desc)) {
key->zsbuf_format = zsbuf_format;
memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
}
if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
key->resource_1d = TRUE;
}
key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
}
/*
* Propagate the depth clamp setting from the rasterizer state.
* depth_clip == 0 implies depth clamping is enabled.
*
* When clip_halfz is enabled, then always clamp the depth values.
*
* XXX: This is incorrect for GL, but correct for d3d10 (depth
* clamp is always active in d3d10, regardless if depth clip is
* enabled or not).
* (GL has an always-on [0,1] clamp on fs depth output instead
* to ensure the depth values stay in range. Doesn't look like
* we do that, though...)
*/
if (lp->rasterizer->clip_halfz) {
key->depth_clamp = 1;
} else {
key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
}
/* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
if (!lp->framebuffer.nr_cbufs ||
!lp->framebuffer.cbufs[0] ||
!util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
key->alpha.enabled = lp->depth_stencil->alpha.enabled;
}
if(key->alpha.enabled)
key->alpha.func = lp->depth_stencil->alpha.func;
/* alpha.ref_value is passed in jit_context */
key->flatshade = lp->rasterizer->flatshade;
key->multisample = lp->rasterizer->multisample;
if (lp->active_occlusion_queries && !lp->queries_disabled) {
key->occlusion_count = TRUE;
}
if (lp->framebuffer.nr_cbufs) {
memcpy(&key->blend, lp->blend, sizeof key->blend);
}
key->coverage_samples = 1;
key->min_samples = 1;
if (key->multisample) {
key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
key->min_samples = lp->min_samples == 1 ? 1 : key->coverage_samples;
}
key->nr_cbufs = lp->framebuffer.nr_cbufs;
if (!key->blend.independent_blend_enable) {
/* we always need independent blend otherwise the fixups below won't work */
for (i = 1; i < key->nr_cbufs; i++) {
memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
}
key->blend.independent_blend_enable = 1;
}
for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
if (lp->framebuffer.cbufs[i]) {
enum pipe_format format = lp->framebuffer.cbufs[i]->format;
const struct util_format_description *format_desc;
key->cbuf_format[i] = format;
key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
/*
* Figure out if this is a 1d resource. Note that OpenGL allows crazy
* mixing of 2d textures with height 1 and 1d textures, so make sure
* we pick 1d if any cbuf or zsbuf is 1d.
*/
if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
key->resource_1d = TRUE;
}
format_desc = util_format_description(format);
assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
/*
* Mask out color channels not present in the color buffer.
*/
blend_rt->colormask &= util_format_colormask(format_desc);
/*
* Disable blend for integer formats.
*/
if (util_format_is_pure_integer(format)) {
blend_rt->blend_enable = 0;
}
/*
* Our swizzled render tiles always have an alpha channel, but the
* linear render target format often does not, so force here the dst
* alpha to be one.
*
* This is not a mere optimization. Wrong results will be produced if
* the dst alpha is used, the dst format does not have alpha, and the
* previous rendering was not flushed from the swizzled to linear
* buffer. For example, NonPowTwo DCT.
*
* TODO: This should be generalized to all channels for better
* performance, but only alpha causes correctness issues.
*
* Also, force rgb/alpha func/factors match, to make AoS blending
* easier.
*/
if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
format_desc->swizzle[3] == format_desc->swizzle[0]) {
/* Doesn't cover mixed snorm/unorm but can't render to them anyway */
boolean clamped_zero = !util_format_is_float(format) &&
!util_format_is_snorm(format);
blend_rt->rgb_src_factor =
force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
blend_rt->rgb_dst_factor =
force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
blend_rt->alpha_func = blend_rt->rgb_func;
blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
}
}
else {
/* no color buffer for this fragment output */
key->cbuf_format[i] = PIPE_FORMAT_NONE;
key->cbuf_nr_samples[i] = 0;
blend_rt->colormask = 0x0;
blend_rt->blend_enable = 0;
}
}
/* This value will be the same for all the variants of a given shader:
*/
key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
struct lp_sampler_static_state *fs_sampler;
fs_sampler = key->samplers;
memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
for(i = 0; i < key->nr_samplers; ++i) {
if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
lp->samplers[PIPE_SHADER_FRAGMENT][i]);
}
}
/*
* XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
* are dx10-style? Can't really have mixed opcodes, at least not
* if we want to skip the holes here (without rescanning tgsi).
*/
if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
for(i = 0; i < key->nr_sampler_views; ++i) {
/*
* Note sview may exceed what's representable by file_mask.
* This will still work, the only downside is that not actually
* used views may be included in the shader key.
*/
if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
}
}
}
else {
key->nr_sampler_views = key->nr_samplers;
for(i = 0; i < key->nr_sampler_views; ++i) {
if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
}
}
}
struct lp_image_static_state *lp_image;
lp_image = lp_fs_variant_key_images(key);
key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
for (i = 0; i < key->nr_images; ++i) {
if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
lp_sampler_static_texture_state_image(&lp_image[i].image_state,
&lp->images[PIPE_SHADER_FRAGMENT][i]);
}
}
return key;
}
/**
* Update fragment shader state. This is called just prior to drawing
* something when some fragment-related state has changed.
*/
void
llvmpipe_update_fs(struct llvmpipe_context *lp)
{
struct lp_fragment_shader *shader = lp->fs;
struct lp_fragment_shader_variant_key *key;
struct lp_fragment_shader_variant *variant = NULL;
struct lp_fs_variant_list_item *li;
char store[LP_FS_MAX_VARIANT_KEY_SIZE];
key = make_variant_key(lp, shader, store);
/* Search the variants for one which matches the key */
li = first_elem(&shader->variants);
while(!at_end(&shader->variants, li)) {
if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
variant = li->base;
break;
}
li = next_elem(li);
}
if (variant) {
/* Move this variant to the head of the list to implement LRU
* deletion of shader's when we have too many.
*/
move_to_head(&lp->fs_variants_list, &variant->list_item_global);
}
else {
/* variant not found, create it now */
int64_t t0, t1, dt;
unsigned i;
unsigned variants_to_cull;
if (LP_DEBUG & DEBUG_FS) {
debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
lp->nr_fs_variants,
lp->nr_fs_instrs,
lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
}
/* First, check if we've exceeded the max number of shader variants.
* If so, free 6.25% of them (the least recently used ones).
*/
variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
if (variants_to_cull ||
lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
struct pipe_context *pipe = &lp->pipe;
if (gallivm_debug & GALLIVM_DEBUG_PERF) {
debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
"\t%u instrs,\t%u instrs/variant\n",
shader->variants_cached,
lp->nr_fs_variants, lp->nr_fs_instrs,
lp->nr_fs_instrs / lp->nr_fs_variants);
}
/*
* XXX: we need to flush the context until we have some sort of
* reference counting in fragment shaders as they may still be binned
* Flushing alone might not be sufficient we need to wait on it too.
*/
llvmpipe_finish(pipe, __FUNCTION__);
/*
* We need to re-check lp->nr_fs_variants because an arbitrarliy large
* number of shader variants (potentially all of them) could be
* pending for destruction on flush.
*/
for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
struct lp_fs_variant_list_item *item;
if (is_empty_list(&lp->fs_variants_list)) {
break;
}
item = last_elem(&lp->fs_variants_list);
assert(item);
assert(item->base);
llvmpipe_remove_shader_variant(lp, item->base);
}
}
/*
* Generate the new variant.
*/
t0 = os_time_get();
variant = generate_variant(lp, shader, key);
t1 = os_time_get();
dt = t1 - t0;
LP_COUNT_ADD(llvm_compile_time, dt);
LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
/* Put the new variant into the list */
if (variant) {
insert_at_head(&shader->variants, &variant->list_item_local);
insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
lp->nr_fs_variants++;
lp->nr_fs_instrs += variant->nr_instrs;
shader->variants_cached++;
}
}
/* Bind this variant */
lp_setup_set_fs_variant(lp->setup, variant);
}
void
llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
{
llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
}