blob: 53443e9eb88b7ac65329c2fa1b7e5262a462d554 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "radv_meta.h"
#include "radv_private.h"
#include "nir/nir_builder.h"
#include "sid.h"
/**
* Vertex attributes used by all pipelines.
*/
struct vertex_attrs {
float position[2]; /**< 3DPRIM_RECTLIST */
};
/* passthrough vertex shader */
static nir_shader *
build_nir_vs(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b;
nir_variable *a_position;
nir_variable *v_position;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
b.shader->info->name = ralloc_strdup(b.shader, "meta_depth_decomp_vs");
a_position = nir_variable_create(b.shader, nir_var_shader_in, vec4,
"a_position");
a_position->data.location = VERT_ATTRIB_GENERIC0;
v_position = nir_variable_create(b.shader, nir_var_shader_out, vec4,
"gl_Position");
v_position->data.location = VARYING_SLOT_POS;
nir_copy_var(&b, v_position, a_position);
return b.shader;
}
/* simple passthrough shader */
static nir_shader *
build_nir_fs(void)
{
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info->name = ralloc_asprintf(b.shader,
"meta_depth_decomp_noop_fs");
return b.shader;
}
static VkResult
create_pass(struct radv_device *device)
{
VkResult result;
VkDevice device_h = radv_device_to_handle(device);
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
VkAttachmentDescription attachment;
attachment.format = VK_FORMAT_UNDEFINED;
attachment.samples = 1;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
result = radv_CreateRenderPass(device_h,
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &attachment,
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 0,
.pColorAttachments = NULL,
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 0,
},
alloc,
&device->meta_state.depth_decomp.pass);
return result;
}
static VkResult
create_pipeline(struct radv_device *device,
VkShaderModule vs_module_h)
{
VkResult result;
VkDevice device_h = radv_device_to_handle(device);
struct radv_shader_module fs_module = {
.nir = build_nir_fs(),
};
if (!fs_module.nir) {
/* XXX: Need more accurate error */
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto cleanup;
}
const VkGraphicsPipelineCreateInfo pipeline_create_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = (VkPipelineShaderStageCreateInfo[]) {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vs_module_h,
.pName = "main",
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = radv_shader_module_to_handle(&fs_module),
.pName = "main",
},
},
.pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
{
.binding = 0,
.stride = sizeof(struct vertex_attrs),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
},
},
.vertexAttributeDescriptionCount = 1,
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
{
/* Position */
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof(struct vertex_attrs, position),
},
},
},
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 0,
.scissorCount = 0,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = false,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = false,
.attachmentCount = 0,
.pAttachments = NULL,
},
.pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.depthTestEnable = false,
.depthWriteEnable = false,
.depthBoundsTestEnable = false,
.stencilTestEnable = false,
},
.pDynamicState = NULL,
.renderPass = device->meta_state.depth_decomp.pass,
.subpass = 0,
};
result = radv_graphics_pipeline_create(device_h,
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&pipeline_create_info,
&(struct radv_graphics_pipeline_create_info) {
.use_rectlist = true,
.db_flush_depth_inplace = true,
.db_flush_stencil_inplace = true,
},
&device->meta_state.alloc,
&device->meta_state.depth_decomp.decompress_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
result = radv_graphics_pipeline_create(device_h,
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&pipeline_create_info,
&(struct radv_graphics_pipeline_create_info) {
.use_rectlist = true,
.db_flush_depth_inplace = true,
.db_flush_stencil_inplace = true,
.db_resummarize = true,
},
&device->meta_state.alloc,
&device->meta_state.depth_decomp.resummarize_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
goto cleanup;
cleanup:
ralloc_free(fs_module.nir);
return result;
}
void
radv_device_finish_meta_depth_decomp_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
VkDevice device_h = radv_device_to_handle(device);
VkRenderPass pass_h = device->meta_state.depth_decomp.pass;
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
if (pass_h)
radv_DestroyRenderPass(device_h, pass_h,
&device->meta_state.alloc);
VkPipeline pipeline_h = state->depth_decomp.decompress_pipeline;
if (pipeline_h) {
radv_DestroyPipeline(device_h, pipeline_h, alloc);
}
pipeline_h = state->depth_decomp.resummarize_pipeline;
if (pipeline_h) {
radv_DestroyPipeline(device_h, pipeline_h, alloc);
}
}
VkResult
radv_device_init_meta_depth_decomp_state(struct radv_device *device)
{
VkResult res = VK_SUCCESS;
zero(device->meta_state.depth_decomp);
struct radv_shader_module vs_module = { .nir = build_nir_vs() };
if (!vs_module.nir) {
/* XXX: Need more accurate error */
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
res = create_pass(device);
if (res != VK_SUCCESS)
goto fail;
VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module);
res = create_pipeline(device, vs_module_h);
if (res != VK_SUCCESS)
goto fail;
goto cleanup;
fail:
radv_device_finish_meta_depth_decomp_state(device);
cleanup:
ralloc_free(vs_module.nir);
return res;
}
static void
emit_depth_decomp(struct radv_cmd_buffer *cmd_buffer,
const VkOffset2D *dest_offset,
const VkExtent2D *depth_decomp_extent,
VkPipeline pipeline_h)
{
struct radv_device *device = cmd_buffer->device;
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
uint32_t offset;
const struct vertex_attrs vertex_data[3] = {
{
.position = {
dest_offset->x,
dest_offset->y,
},
},
{
.position = {
dest_offset->x,
dest_offset->y + depth_decomp_extent->height,
},
},
{
.position = {
dest_offset->x + depth_decomp_extent->width,
dest_offset->y,
},
},
};
radv_cmd_buffer_upload_data(cmd_buffer, sizeof(vertex_data), 16, vertex_data, &offset);
struct radv_buffer vertex_buffer = {
.device = device,
.size = sizeof(vertex_data),
.bo = cmd_buffer->upload.upload_bo,
.offset = offset,
};
VkBuffer vertex_buffer_h = radv_buffer_to_handle(&vertex_buffer);
radv_CmdBindVertexBuffers(cmd_buffer_h,
/*firstBinding*/ 0,
/*bindingCount*/ 1,
(VkBuffer[]) { vertex_buffer_h },
(VkDeviceSize[]) { 0 });
RADV_FROM_HANDLE(radv_pipeline, pipeline, pipeline_h);
if (cmd_buffer->state.pipeline != pipeline) {
radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline_h);
}
radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
}
static void radv_process_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageSubresourceRange *subresourceRange,
VkPipeline pipeline_h)
{
struct radv_meta_saved_state saved_state;
struct radv_meta_saved_pass_state saved_pass_state;
VkDevice device_h = radv_device_to_handle(cmd_buffer->device);
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
uint32_t width = radv_minify(image->extent.width,
subresourceRange->baseMipLevel);
uint32_t height = radv_minify(image->extent.height,
subresourceRange->baseMipLevel);
if (!image->htile.size)
return;
radv_meta_save_pass(&saved_pass_state, cmd_buffer);
radv_meta_save_graphics_reset_vport_scissor(&saved_state, cmd_buffer);
for (uint32_t layer = 0; layer < radv_get_layerCount(image, subresourceRange); layer++) {
struct radv_image_view iview;
radv_image_view_init(&iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.format = image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseMipLevel = subresourceRange->baseMipLevel,
.levelCount = 1,
.baseArrayLayer = subresourceRange->baseArrayLayer + layer,
.layerCount = 1,
},
},
cmd_buffer, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
VkFramebuffer fb_h;
radv_CreateFramebuffer(device_h,
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkImageView[]) {
radv_image_view_to_handle(&iview)
},
.width = width,
.height = height,
.layers = 1
},
&cmd_buffer->pool->alloc,
&fb_h);
radv_CmdBeginRenderPass(cmd_buffer_h,
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = cmd_buffer->device->meta_state.depth_decomp.pass,
.framebuffer = fb_h,
.renderArea = {
.offset = {
0,
0,
},
.extent = {
width,
height,
}
},
.clearValueCount = 0,
.pClearValues = NULL,
},
VK_SUBPASS_CONTENTS_INLINE);
emit_depth_decomp(cmd_buffer, &(VkOffset2D){0, 0 }, &(VkExtent2D){width, height}, pipeline_h);
radv_CmdEndRenderPass(cmd_buffer_h);
radv_DestroyFramebuffer(device_h, fb_h,
&cmd_buffer->pool->alloc);
}
radv_meta_restore(&saved_state, cmd_buffer);
radv_meta_restore_pass(&saved_pass_state, cmd_buffer);
}
void radv_decompress_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageSubresourceRange *subresourceRange)
{
assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL);
radv_process_depth_image_inplace(cmd_buffer, image, subresourceRange,
cmd_buffer->device->meta_state.depth_decomp.decompress_pipeline);
}
void radv_resummarize_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageSubresourceRange *subresourceRange)
{
assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL);
radv_process_depth_image_inplace(cmd_buffer, image, subresourceRange,
cmd_buffer->device->meta_state.depth_decomp.resummarize_pipeline);
}