blob: 9e5374fe6a025a93cf587b00f6903e9d622166f4 [file] [log] [blame]
/*
* Copyright © 2019 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Rhys Perry (pendingchaos02@gmail.com)
*
*/
#include <map>
#include "aco_ir.h"
#include "aco_builder.h"
#include <algorithm>
namespace aco {
struct phi_use {
Block *block;
unsigned phi_def;
bool operator<(const phi_use& other) const {
return std::make_tuple(block, phi_def) <
std::make_tuple(other.block, other.phi_def);
}
};
struct ssa_state {
std::map<unsigned, unsigned> latest;
std::map<unsigned, std::map<phi_use, uint64_t>> phis;
};
Operand get_ssa(Program *program, unsigned block_idx, ssa_state *state)
{
while (true) {
auto pos = state->latest.find(block_idx);
if (pos != state->latest.end())
return Operand({pos->second, s2});
Block& block = program->blocks[block_idx];
size_t pred = block.linear_preds.size();
if (pred == 0) {
return Operand(s2);
} else if (pred == 1) {
block_idx = block.linear_preds[0];
continue;
} else {
unsigned res = program->allocateId();
state->latest[block_idx] = res;
aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)};
for (unsigned i = 0; i < pred; i++) {
phi->operands[i] = get_ssa(program, block.linear_preds[i], state);
if (phi->operands[i].isTemp()) {
assert(i < 64);
state->phis[phi->operands[i].tempId()][(phi_use){&block, res}] |= (uint64_t)1 << i;
}
}
phi->definitions[0] = Definition(Temp{res, s2});
block.instructions.emplace(block.instructions.begin(), std::move(phi));
return Operand({res, s2});
}
}
}
void update_phi(Program *program, ssa_state *state, Block *block, unsigned phi_def, uint64_t operand_mask) {
for (auto& phi : block->instructions) {
if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
break;
if (phi->opcode != aco_opcode::p_linear_phi)
continue;
if (phi->definitions[0].tempId() != phi_def)
continue;
assert(ffsll(operand_mask) <= phi->operands.size());
uint64_t operands = operand_mask;
while (operands) {
unsigned operand = u_bit_scan64(&operands);
Operand new_operand = get_ssa(program, block->linear_preds[operand], state);
phi->operands[operand] = new_operand;
if (!new_operand.isUndefined())
state->phis[new_operand.tempId()][(phi_use){block, phi_def}] |= (uint64_t)1 << operand;
}
return;
}
assert(false);
}
Temp write_ssa(Program *program, Block *block, ssa_state *state, unsigned previous) {
unsigned id = program->allocateId();
state->latest[block->index] = id;
/* update phis */
if (previous) {
std::map<phi_use, uint64_t> phis;
phis.swap(state->phis[previous]);
for (auto& phi : phis)
update_phi(program, state, phi.first.block, phi.first.phi_def, phi.second);
}
return {id, s2};
}
void insert_before_logical_end(Block *block, aco_ptr<Instruction> instr)
{
auto IsLogicalEnd = [] (const aco_ptr<Instruction>& instr) -> bool {
return instr->opcode == aco_opcode::p_logical_end;
};
auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
if (it == block->instructions.crend()) {
assert(block->instructions.back()->format == Format::PSEUDO_BRANCH);
block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
}
else
block->instructions.insert(std::prev(it.base()), std::move(instr));
}
void lower_divergent_bool_phi(Program *program, Block *block, aco_ptr<Instruction>& phi)
{
Builder bld(program);
ssa_state state;
state.latest[block->index] = phi->definitions[0].tempId();
for (unsigned i = 0; i < phi->operands.size(); i++) {
Block *pred = &program->blocks[block->logical_preds[i]];
if (phi->operands[i].isUndefined())
continue;
assert(phi->operands[i].isTemp());
Temp phi_src = phi->operands[i].getTemp();
assert(phi_src.regClass() == s2);
Operand cur = get_ssa(program, pred->index, &state);
Temp new_cur = write_ssa(program, pred, &state, cur.isTemp() ? cur.tempId() : 0);
if (cur.isUndefined()) {
insert_before_logical_end(pred, bld.sop1(aco_opcode::s_mov_b64, Definition(new_cur), phi_src).get_ptr());
} else {
Temp tmp1 = bld.tmp(s2), tmp2 = bld.tmp(s2);
insert_before_logical_end(pred,
bld.sop2(aco_opcode::s_andn2_b64, Definition(tmp1), bld.def(s1, scc),
cur, Operand(exec, s2)).get_ptr());
insert_before_logical_end(pred,
bld.sop2(aco_opcode::s_and_b64, Definition(tmp2), bld.def(s1, scc),
phi_src, Operand(exec, s2)).get_ptr());
insert_before_logical_end(pred,
bld.sop2(aco_opcode::s_or_b64, Definition(new_cur), bld.def(s1, scc),
tmp1, tmp2).get_ptr());
}
}
unsigned num_preds = block->linear_preds.size();
if (phi->operands.size() != num_preds) {
Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
new_phi->definitions[0] = phi->definitions[0];
phi.reset(new_phi);
} else {
phi->opcode = aco_opcode::p_linear_phi;
}
assert(phi->operands.size() == num_preds);
for (unsigned i = 0; i < num_preds; i++)
phi->operands[i] = get_ssa(program, block->linear_preds[i], &state);
return;
}
void lower_linear_bool_phi(Program *program, Block *block, aco_ptr<Instruction>& phi)
{
Builder bld(program);
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (!phi->operands[i].isTemp())
continue;
Temp phi_src = phi->operands[i].getTemp();
if (phi_src.regClass() == s2) {
Temp new_phi_src = bld.tmp(s1);
insert_before_logical_end(&program->blocks[block->linear_preds[i]],
bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(Definition(new_phi_src)),
Operand(0u), phi_src).get_ptr());
phi->operands[i].setTemp(new_phi_src);
}
}
}
void lower_bool_phis(Program* program)
{
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& phi : block.instructions) {
if (phi->opcode == aco_opcode::p_phi) {
assert(phi->definitions[0].regClass() != s1);
if (phi->definitions[0].regClass() == s2)
lower_divergent_bool_phi(program, &block, phi);
} else if (phi->opcode == aco_opcode::p_linear_phi) {
/* if it's a valid non-boolean phi, this should be a no-op */
if (phi->definitions[0].regClass() == s1)
lower_linear_bool_phi(program, &block, phi);
} else {
break;
}
}
}
}
}