| /* |
| * Copyright © 2019 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Rhys Perry (pendingchaos02@gmail.com) |
| * |
| */ |
| |
| #include <map> |
| |
| #include "aco_ir.h" |
| #include "aco_builder.h" |
| #include <algorithm> |
| |
| |
| namespace aco { |
| |
| struct phi_use { |
| Block *block; |
| unsigned phi_def; |
| |
| bool operator<(const phi_use& other) const { |
| return std::make_tuple(block, phi_def) < |
| std::make_tuple(other.block, other.phi_def); |
| } |
| }; |
| |
| struct ssa_state { |
| std::map<unsigned, unsigned> latest; |
| std::map<unsigned, std::map<phi_use, uint64_t>> phis; |
| }; |
| |
| Operand get_ssa(Program *program, unsigned block_idx, ssa_state *state) |
| { |
| while (true) { |
| auto pos = state->latest.find(block_idx); |
| if (pos != state->latest.end()) |
| return Operand({pos->second, s2}); |
| |
| Block& block = program->blocks[block_idx]; |
| size_t pred = block.linear_preds.size(); |
| if (pred == 0) { |
| return Operand(s2); |
| } else if (pred == 1) { |
| block_idx = block.linear_preds[0]; |
| continue; |
| } else { |
| unsigned res = program->allocateId(); |
| state->latest[block_idx] = res; |
| |
| aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)}; |
| for (unsigned i = 0; i < pred; i++) { |
| phi->operands[i] = get_ssa(program, block.linear_preds[i], state); |
| if (phi->operands[i].isTemp()) { |
| assert(i < 64); |
| state->phis[phi->operands[i].tempId()][(phi_use){&block, res}] |= (uint64_t)1 << i; |
| } |
| } |
| phi->definitions[0] = Definition(Temp{res, s2}); |
| block.instructions.emplace(block.instructions.begin(), std::move(phi)); |
| |
| return Operand({res, s2}); |
| } |
| } |
| } |
| |
| void update_phi(Program *program, ssa_state *state, Block *block, unsigned phi_def, uint64_t operand_mask) { |
| for (auto& phi : block->instructions) { |
| if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi) |
| break; |
| if (phi->opcode != aco_opcode::p_linear_phi) |
| continue; |
| if (phi->definitions[0].tempId() != phi_def) |
| continue; |
| assert(ffsll(operand_mask) <= phi->operands.size()); |
| |
| uint64_t operands = operand_mask; |
| while (operands) { |
| unsigned operand = u_bit_scan64(&operands); |
| Operand new_operand = get_ssa(program, block->linear_preds[operand], state); |
| phi->operands[operand] = new_operand; |
| if (!new_operand.isUndefined()) |
| state->phis[new_operand.tempId()][(phi_use){block, phi_def}] |= (uint64_t)1 << operand; |
| } |
| return; |
| } |
| assert(false); |
| } |
| |
| Temp write_ssa(Program *program, Block *block, ssa_state *state, unsigned previous) { |
| unsigned id = program->allocateId(); |
| state->latest[block->index] = id; |
| |
| /* update phis */ |
| if (previous) { |
| std::map<phi_use, uint64_t> phis; |
| phis.swap(state->phis[previous]); |
| for (auto& phi : phis) |
| update_phi(program, state, phi.first.block, phi.first.phi_def, phi.second); |
| } |
| |
| return {id, s2}; |
| } |
| |
| void insert_before_logical_end(Block *block, aco_ptr<Instruction> instr) |
| { |
| auto IsLogicalEnd = [] (const aco_ptr<Instruction>& instr) -> bool { |
| return instr->opcode == aco_opcode::p_logical_end; |
| }; |
| auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd); |
| |
| if (it == block->instructions.crend()) { |
| assert(block->instructions.back()->format == Format::PSEUDO_BRANCH); |
| block->instructions.insert(std::prev(block->instructions.end()), std::move(instr)); |
| } |
| else |
| block->instructions.insert(std::prev(it.base()), std::move(instr)); |
| } |
| |
| void lower_divergent_bool_phi(Program *program, Block *block, aco_ptr<Instruction>& phi) |
| { |
| Builder bld(program); |
| |
| ssa_state state; |
| state.latest[block->index] = phi->definitions[0].tempId(); |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| Block *pred = &program->blocks[block->logical_preds[i]]; |
| |
| if (phi->operands[i].isUndefined()) |
| continue; |
| |
| assert(phi->operands[i].isTemp()); |
| Temp phi_src = phi->operands[i].getTemp(); |
| assert(phi_src.regClass() == s2); |
| |
| Operand cur = get_ssa(program, pred->index, &state); |
| Temp new_cur = write_ssa(program, pred, &state, cur.isTemp() ? cur.tempId() : 0); |
| |
| if (cur.isUndefined()) { |
| insert_before_logical_end(pred, bld.sop1(aco_opcode::s_mov_b64, Definition(new_cur), phi_src).get_ptr()); |
| } else { |
| Temp tmp1 = bld.tmp(s2), tmp2 = bld.tmp(s2); |
| insert_before_logical_end(pred, |
| bld.sop2(aco_opcode::s_andn2_b64, Definition(tmp1), bld.def(s1, scc), |
| cur, Operand(exec, s2)).get_ptr()); |
| insert_before_logical_end(pred, |
| bld.sop2(aco_opcode::s_and_b64, Definition(tmp2), bld.def(s1, scc), |
| phi_src, Operand(exec, s2)).get_ptr()); |
| insert_before_logical_end(pred, |
| bld.sop2(aco_opcode::s_or_b64, Definition(new_cur), bld.def(s1, scc), |
| tmp1, tmp2).get_ptr()); |
| } |
| } |
| |
| unsigned num_preds = block->linear_preds.size(); |
| if (phi->operands.size() != num_preds) { |
| Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)}; |
| new_phi->definitions[0] = phi->definitions[0]; |
| phi.reset(new_phi); |
| } else { |
| phi->opcode = aco_opcode::p_linear_phi; |
| } |
| assert(phi->operands.size() == num_preds); |
| |
| for (unsigned i = 0; i < num_preds; i++) |
| phi->operands[i] = get_ssa(program, block->linear_preds[i], &state); |
| |
| return; |
| } |
| |
| void lower_linear_bool_phi(Program *program, Block *block, aco_ptr<Instruction>& phi) |
| { |
| Builder bld(program); |
| |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| if (!phi->operands[i].isTemp()) |
| continue; |
| |
| Temp phi_src = phi->operands[i].getTemp(); |
| if (phi_src.regClass() == s2) { |
| Temp new_phi_src = bld.tmp(s1); |
| insert_before_logical_end(&program->blocks[block->linear_preds[i]], |
| bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(Definition(new_phi_src)), |
| Operand(0u), phi_src).get_ptr()); |
| phi->operands[i].setTemp(new_phi_src); |
| } |
| } |
| } |
| |
| void lower_bool_phis(Program* program) |
| { |
| for (Block& block : program->blocks) { |
| for (aco_ptr<Instruction>& phi : block.instructions) { |
| if (phi->opcode == aco_opcode::p_phi) { |
| assert(phi->definitions[0].regClass() != s1); |
| if (phi->definitions[0].regClass() == s2) |
| lower_divergent_bool_phi(program, &block, phi); |
| } else if (phi->opcode == aco_opcode::p_linear_phi) { |
| /* if it's a valid non-boolean phi, this should be a no-op */ |
| if (phi->definitions[0].regClass() == s1) |
| lower_linear_bool_phi(program, &block, phi); |
| } else { |
| break; |
| } |
| } |
| } |
| } |
| |
| } |