blob: b4e3524aa51f1adda4046d523f8ce279796fcf67 [file] [log] [blame]
/*
* Copyright 2006 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <GL/gl.h>
#include <GL/internal/dri_interface.h>
#include <drm_fourcc.h>
#include "intel_batchbuffer.h"
#include "intel_image.h"
#include "intel_mipmap_tree.h"
#include "intel_tex.h"
#include "intel_blit.h"
#include "intel_fbo.h"
#include "brw_blorp.h"
#include "brw_context.h"
#include "brw_state.h"
#include "main/enums.h"
#include "main/fbobject.h"
#include "main/formats.h"
#include "main/glformats.h"
#include "main/texcompress_etc.h"
#include "main/teximage.h"
#include "main/streaming-load-memcpy.h"
#include "util/format_srgb.h"
#include "x86/common_x86_asm.h"
#define FILE_DEBUG_FLAG DEBUG_MIPTREE
static void *intel_miptree_map_raw(struct brw_context *brw,
struct intel_mipmap_tree *mt,
GLbitfield mode);
static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
static bool
intel_miptree_supports_mcs(struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* MCS compression only applies to multisampled miptrees */
if (mt->surf.samples <= 1)
return false;
/* Prior to Gen7, all MSAA surfaces used IMS layout. */
if (devinfo->gen < 7)
return false;
/* See isl_surf_get_mcs_surf for details. */
if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
return false;
/* In Gen7, IMS layout is only used for depth and stencil buffers. */
switch (_mesa_get_format_base_format(mt->format)) {
case GL_DEPTH_COMPONENT:
case GL_STENCIL_INDEX:
case GL_DEPTH_STENCIL:
return false;
default:
/* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
*
* This field must be set to 0 for all SINT MSRTs when all RT channels
* are not written
*
* In practice this means that we have to disable MCS for all signed
* integer MSAA buffers. The alternative, to disable MCS only when one
* of the render target channels is disabled, is impractical because it
* would require converting between CMS and UMS MSAA layouts on the fly,
* which is expensive.
*/
if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
return false;
} else {
return true;
}
}
}
static bool
intel_tiling_supports_ccs(const struct brw_context *brw,
enum isl_tiling tiling)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p326):
*
* - Support is limited to tiled render targets.
*
* Gen9 changes the restriction to Y-tile only.
*/
if (devinfo->gen >= 9)
return tiling == ISL_TILING_Y0;
else if (devinfo->gen >= 7)
return tiling != ISL_TILING_LINEAR;
else
return false;
}
/**
* For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
* can be used. This doesn't (and should not) inspect any of the properties of
* the miptree's BO.
*
* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
* beneath the "Fast Color Clear" bullet (p326):
*
* - Support is for non-mip-mapped and non-array surface types only.
*
* And then later, on p327:
*
* - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
* 64bpp, and 128bpp.
*
* From the Skylake documentation, it is made clear that X-tiling is no longer
* supported:
*
* - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
* non-MSRTs only.
*/
static bool
intel_miptree_supports_ccs(struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* MCS support does not exist prior to Gen7 */
if (devinfo->gen < 7)
return false;
/* This function applies only to non-multisampled render targets. */
if (mt->surf.samples > 1)
return false;
/* MCS is only supported for color buffers */
if (!_mesa_is_format_color_format(mt->format))
return false;
if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
return false;
const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
mt->surf.logical_level0_px.depth > 1;
if (arrayed) {
/* Multisample surfaces with the CMS layout are not layered surfaces,
* yet still have physical_depth0 > 1. Assert that we don't
* accidentally reject a multisampled surface here. We should have
* rejected it earlier by explicitly checking the sample count.
*/
assert(mt->surf.samples == 1);
}
/* Handle the hardware restrictions...
*
* All GENs have the following restriction: "MCS buffer for non-MSRT is
* supported only for RT formats 32bpp, 64bpp, and 128bpp."
*
* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
* Non-MultiSampler Render Target Restrictions) Support is for
* non-mip-mapped and non-array surface types only.
*
* From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
* Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
* surfaces are supported with MCS buffer layout with these alignments in
* the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
*
* From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
* Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
* surfaces are supported with MCS buffer layout with these alignments in
* the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
*/
if (devinfo->gen < 8 && (mip_mapped || arrayed))
return false;
/* The PRM doesn't say this explicitly, but fast-clears don't appear to
* work for 3D textures until gen9 where the layout of 3D textures changes
* to match 2D array textures.
*/
if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
return false;
/* There's no point in using an MCS buffer if the surface isn't in a
* renderable format.
*/
if (!brw->mesa_format_supports_render[mt->format])
return false;
return true;
}
static bool
intel_tiling_supports_hiz(const struct brw_context *brw,
enum isl_tiling tiling)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
if (devinfo->gen < 6)
return false;
return tiling == ISL_TILING_Y0;
}
static bool
intel_miptree_supports_hiz(const struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
if (!brw->has_hiz)
return false;
switch (mt->format) {
case MESA_FORMAT_Z_FLOAT32:
case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
case MESA_FORMAT_Z24_UNORM_X8_UINT:
case MESA_FORMAT_Z24_UNORM_S8_UINT:
case MESA_FORMAT_Z_UNORM16:
return true;
default:
return false;
}
}
/**
* Return true if the format that will be used to access the miptree is
* CCS_E-compatible with the miptree's linear/non-sRGB format.
*
* Why use the linear format? Well, although the miptree may be specified with
* an sRGB format, the usage of that color space/format can be toggled. Since
* our HW tends to support more linear formats than sRGB ones, we use this
* format variant for check for CCS_E compatibility.
*/
static bool
format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
const struct intel_mipmap_tree *mt,
enum isl_format access_format)
{
assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
}
static bool
intel_miptree_supports_ccs_e(struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
if (devinfo->gen < 9)
return false;
/* For now compression is only enabled for integer formats even though
* there exist supported floating point formats also. This is a heuristic
* decision based on current public benchmarks. In none of the cases these
* formats provided any improvement but a few cases were seen to regress.
* Hence these are left to to be enabled in the future when they are known
* to improve things.
*/
if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
return false;
if (!intel_miptree_supports_ccs(brw, mt))
return false;
/* Many window system buffers are sRGB even if they are never rendered as
* sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
* surface is used as sRGB, we fall back to CCS_D.
*/
mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
}
/**
* Determine depth format corresponding to a depth+stencil format,
* for separate stencil.
*/
mesa_format
intel_depth_format_for_depthstencil_format(mesa_format format) {
switch (format) {
case MESA_FORMAT_Z24_UNORM_S8_UINT:
return MESA_FORMAT_Z24_UNORM_X8_UINT;
case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
return MESA_FORMAT_Z_FLOAT32;
default:
return format;
}
}
static bool
create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
unsigned depth0, struct intel_mipmap_level *table)
{
for (unsigned level = first_level; level <= last_level; level++) {
const unsigned d =
target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
table[level].slice = calloc(d, sizeof(*table[0].slice));
if (!table[level].slice)
goto unwind;
}
return true;
unwind:
for (unsigned level = first_level; level <= last_level; level++)
free(table[level].slice);
return false;
}
static bool
needs_separate_stencil(const struct brw_context *brw,
struct intel_mipmap_tree *mt,
mesa_format format)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
return false;
if (devinfo->must_use_separate_stencil)
return true;
return brw->has_separate_stencil &&
intel_miptree_supports_hiz(brw, mt);
}
/**
* Choose the aux usage for this miptree. This function must be called fairly
* late in the miptree create process after we have a tiling.
*/
static void
intel_miptree_choose_aux_usage(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
if (intel_miptree_supports_mcs(brw, mt)) {
assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
mt->aux_usage = ISL_AUX_USAGE_MCS;
} else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
intel_miptree_supports_ccs(brw, mt)) {
if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
intel_miptree_supports_ccs_e(brw, mt)) {
mt->aux_usage = ISL_AUX_USAGE_CCS_E;
} else {
mt->aux_usage = ISL_AUX_USAGE_CCS_D;
}
} else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
intel_miptree_supports_hiz(brw, mt)) {
mt->aux_usage = ISL_AUX_USAGE_HIZ;
}
/* We can do fast-clear on all auxiliary surface types that are
* allocated through the normal texture creation paths.
*/
if (mt->aux_usage != ISL_AUX_USAGE_NONE)
mt->supports_fast_clear = true;
}
/**
* Choose an appropriate uncompressed format for a requested
* compressed format, if unsupported.
*/
mesa_format
intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* No need to lower ETC formats on these platforms,
* they are supported natively.
*/
if (devinfo->gen >= 8 || devinfo->is_baytrail)
return format;
switch (format) {
case MESA_FORMAT_ETC1_RGB8:
return MESA_FORMAT_R8G8B8X8_UNORM;
case MESA_FORMAT_ETC2_RGB8:
return MESA_FORMAT_R8G8B8X8_UNORM;
case MESA_FORMAT_ETC2_SRGB8:
case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
return MESA_FORMAT_B8G8R8A8_SRGB;
case MESA_FORMAT_ETC2_RGBA8_EAC:
case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
return MESA_FORMAT_R8G8B8A8_UNORM;
case MESA_FORMAT_ETC2_R11_EAC:
return MESA_FORMAT_R_UNORM16;
case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
return MESA_FORMAT_R_SNORM16;
case MESA_FORMAT_ETC2_RG11_EAC:
return MESA_FORMAT_R16G16_UNORM;
case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
return MESA_FORMAT_R16G16_SNORM;
default:
/* Non ETC1 / ETC2 format */
return format;
}
}
unsigned
brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
{
if (mt->surf.dim == ISL_SURF_DIM_3D)
return minify(mt->surf.logical_level0_px.depth, level);
else
return mt->surf.logical_level0_px.array_len;
}
UNUSED static unsigned
get_num_phys_layers(const struct isl_surf *surf, unsigned level)
{
/* In case of physical dimensions one needs to consider also the layout.
* See isl_calc_phys_level0_extent_sa().
*/
if (surf->dim != ISL_SURF_DIM_3D)
return surf->phys_level0_sa.array_len;
if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
return minify(surf->phys_level0_sa.array_len, level);
return minify(surf->phys_level0_sa.depth, level);
}
/** \brief Assert that the level and layer are valid for the miptree. */
void
intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
uint32_t level,
uint32_t layer)
{
(void) mt;
(void) level;
(void) layer;
assert(level >= mt->first_level);
assert(level <= mt->last_level);
assert(layer < get_num_phys_layers(&mt->surf, level));
}
static enum isl_aux_state **
create_aux_state_map(struct intel_mipmap_tree *mt,
enum isl_aux_state initial)
{
const uint32_t levels = mt->last_level + 1;
uint32_t total_slices = 0;
for (uint32_t level = 0; level < levels; level++)
total_slices += brw_get_num_logical_layers(mt, level);
const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
/* We're going to allocate a single chunk of data for both the per-level
* reference array and the arrays of aux_state. This makes cleanup
* significantly easier.
*/
const size_t total_size = per_level_array_size +
total_slices * sizeof(enum isl_aux_state);
void *data = malloc(total_size);
if (data == NULL)
return NULL;
enum isl_aux_state **per_level_arr = data;
enum isl_aux_state *s = data + per_level_array_size;
for (uint32_t level = 0; level < levels; level++) {
per_level_arr[level] = s;
const unsigned level_layers = brw_get_num_logical_layers(mt, level);
for (uint32_t a = 0; a < level_layers; a++)
*(s++) = initial;
}
assert((void *)s == data + total_size);
return per_level_arr;
}
static void
free_aux_state_map(enum isl_aux_state **state)
{
free(state);
}
static bool
need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch,
enum isl_tiling tiling, unsigned samples)
{
if (samples > 1)
return false;
if (tiling == ISL_TILING_LINEAR)
return false;
if (blt_pitch >= 32768) {
perf_debug("blt pitch %u too large to blit, falling back to untiled",
blt_pitch);
return true;
}
return false;
}
static bool
need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
enum isl_tiling tiling)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* If the BO is too large to fit in the aperture, we need to use the
* BLT engine to support it. Prior to Sandybridge, the BLT paths can't
* handle Y-tiling, so we need to fall back to X.
*/
if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
tiling == ISL_TILING_Y0)
return true;
return false;
}
static struct intel_mipmap_tree *
make_surface(struct brw_context *brw, GLenum target, mesa_format format,
unsigned first_level, unsigned last_level,
unsigned width0, unsigned height0, unsigned depth0,
unsigned num_samples, isl_tiling_flags_t tiling_flags,
isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
unsigned row_pitch_B, struct brw_bo *bo)
{
struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
if (!mt)
return NULL;
if (!create_mapping_table(target, first_level, last_level, depth0,
mt->level)) {
free(mt);
return NULL;
}
mt->refcount = 1;
if (target == GL_TEXTURE_CUBE_MAP ||
target == GL_TEXTURE_CUBE_MAP_ARRAY)
isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
__func__,
_mesa_enum_to_string(target),
_mesa_get_format_name(format),
num_samples, width0, height0, depth0,
first_level, last_level, mt);
struct isl_surf_init_info init_info = {
.dim = get_isl_surf_dim(target),
.format = translate_tex_format(brw, format, false),
.width = width0,
.height = height0,
.depth = target == GL_TEXTURE_3D ? depth0 : 1,
.levels = last_level - first_level + 1,
.array_len = target == GL_TEXTURE_3D ? 1 : depth0,
.samples = num_samples,
.row_pitch_B = row_pitch_B,
.usage = isl_usage_flags,
.tiling_flags = tiling_flags,
};
if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
goto fail;
/* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
* on gen7 platforms we also need to create Y-tiled copies of stencil for
* texturing since the hardware can't sample from W-tiled surfaces. For
* everything else, check for corner cases needing special treatment.
*/
bool is_depth_stencil =
mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
if (!is_depth_stencil) {
if (need_to_retile_as_linear(brw, intel_miptree_blt_pitch(mt),
mt->surf.tiling, mt->surf.samples)) {
init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
goto fail;
} else if (need_to_retile_as_x(brw, mt->surf.size_B, mt->surf.tiling)) {
init_info.tiling_flags = 1u << ISL_TILING_X;
if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
goto fail;
}
}
/* In case of linear the buffer gets padded by fixed 64 bytes and therefore
* the size may not be multiple of row_pitch.
* See isl_apply_surface_padding().
*/
if (mt->surf.tiling != ISL_TILING_LINEAR)
assert(mt->surf.size_B % mt->surf.row_pitch_B == 0);
if (!bo) {
mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
mt->surf.size_B,
BRW_MEMZONE_OTHER,
isl_tiling_to_i915_tiling(
mt->surf.tiling),
mt->surf.row_pitch_B, alloc_flags);
if (!mt->bo)
goto fail;
} else {
mt->bo = bo;
}
mt->first_level = first_level;
mt->last_level = last_level;
mt->target = target;
mt->format = format;
mt->aux_state = NULL;
mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
mt->compressed = _mesa_is_format_compressed(format);
mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
return mt;
fail:
intel_miptree_release(&mt);
return NULL;
}
/* Return the usual surface usage flags for the given format. */
static isl_surf_usage_flags_t
mt_surf_usage(mesa_format format)
{
switch(_mesa_get_format_base_format(format)) {
case GL_DEPTH_COMPONENT:
return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
case GL_DEPTH_STENCIL:
return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
ISL_SURF_USAGE_TEXTURE_BIT;
case GL_STENCIL_INDEX:
return ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
default:
return ISL_SURF_USAGE_RENDER_TARGET_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
}
}
static struct intel_mipmap_tree *
miptree_create(struct brw_context *brw,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
GLuint num_samples,
enum intel_miptree_create_flags flags)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const uint32_t alloc_flags =
(flags & MIPTREE_CREATE_BUSY || num_samples > 1) ? BO_ALLOC_BUSY : 0;
isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK;
/* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
if (devinfo->gen < 6 && _mesa_is_format_color_format(format))
tiling_flags &= ~ISL_TILING_Y0_BIT;
mesa_format mt_fmt;
if (_mesa_is_format_color_format(format)) {
mt_fmt = intel_lower_compressed_format(brw, format);
} else {
/* Fix up the Z miptree format for how we're splitting out separate
* stencil. Gen7 expects there to be no stencil bits in its depth buffer.
*/
mt_fmt = (devinfo->gen < 6) ? format :
intel_depth_format_for_depthstencil_format(format);
}
struct intel_mipmap_tree *mt =
make_surface(brw, target, mt_fmt, first_level, last_level,
width0, height0, depth0, num_samples,
tiling_flags, mt_surf_usage(mt_fmt),
alloc_flags, 0, NULL);
if (mt == NULL)
return NULL;
if (needs_separate_stencil(brw, mt, format)) {
mt->stencil_mt =
make_surface(brw, target, MESA_FORMAT_S_UINT8, first_level, last_level,
width0, height0, depth0, num_samples,
ISL_TILING_W_BIT, mt_surf_usage(MESA_FORMAT_S_UINT8),
alloc_flags, 0, NULL);
if (mt->stencil_mt == NULL) {
intel_miptree_release(&mt);
return NULL;
}
}
mt->etc_format = (_mesa_is_format_color_format(format) && mt_fmt != format) ?
format : MESA_FORMAT_NONE;
if (!(flags & MIPTREE_CREATE_NO_AUX))
intel_miptree_choose_aux_usage(brw, mt);
return mt;
}
struct intel_mipmap_tree *
intel_miptree_create(struct brw_context *brw,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
GLuint num_samples,
enum intel_miptree_create_flags flags)
{
assert(num_samples > 0);
struct intel_mipmap_tree *mt = miptree_create(
brw, target, format,
first_level, last_level,
width0, height0, depth0, num_samples,
flags);
if (!mt)
return NULL;
mt->offset = 0;
/* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
* compress clear color so we wait until an actual fast-clear to allocate
* it.
*/
if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
!intel_miptree_alloc_aux(brw, mt)) {
intel_miptree_release(&mt);
return NULL;
}
return mt;
}
struct intel_mipmap_tree *
intel_miptree_create_for_bo(struct brw_context *brw,
struct brw_bo *bo,
mesa_format format,
uint32_t offset,
uint32_t width,
uint32_t height,
uint32_t depth,
int pitch,
enum isl_tiling tiling,
enum intel_miptree_create_flags flags)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
struct intel_mipmap_tree *mt;
const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
const GLenum base_format = _mesa_get_format_base_format(format);
if ((base_format == GL_DEPTH_COMPONENT ||
base_format == GL_DEPTH_STENCIL)) {
const mesa_format mt_fmt = (devinfo->gen < 6) ? format :
intel_depth_format_for_depthstencil_format(format);
mt = make_surface(brw, target, mt_fmt,
0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
mt_surf_usage(mt_fmt),
0, pitch, bo);
if (!mt)
return NULL;
brw_bo_reference(bo);
if (!(flags & MIPTREE_CREATE_NO_AUX))
intel_miptree_choose_aux_usage(brw, mt);
return mt;
} else if (format == MESA_FORMAT_S_UINT8) {
mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
0, 0, width, height, depth, 1,
ISL_TILING_W_BIT,
mt_surf_usage(MESA_FORMAT_S_UINT8),
0, pitch, bo);
if (!mt)
return NULL;
assert(bo->size >= mt->surf.size_B);
brw_bo_reference(bo);
return mt;
}
/* Nothing will be able to use this miptree with the BO if the offset isn't
* aligned.
*/
if (tiling != ISL_TILING_LINEAR)
assert(offset % 4096 == 0);
/* miptrees can't handle negative pitch. If you need flipping of images,
* that's outside of the scope of the mt.
*/
assert(pitch >= 0);
mt = make_surface(brw, target, format,
0, 0, width, height, depth, 1,
1lu << tiling,
mt_surf_usage(format),
0, pitch, bo);
if (!mt)
return NULL;
brw_bo_reference(bo);
mt->bo = bo;
mt->offset = offset;
if (!(flags & MIPTREE_CREATE_NO_AUX)) {
intel_miptree_choose_aux_usage(brw, mt);
/* Create the auxiliary surface up-front. CCS_D, on the other hand, can
* only compress clear color so we wait until an actual fast-clear to
* allocate it.
*/
if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
!intel_miptree_alloc_aux(brw, mt)) {
intel_miptree_release(&mt);
return NULL;
}
}
return mt;
}
static struct intel_mipmap_tree *
miptree_create_for_planar_image(struct brw_context *brw,
__DRIimage *image, GLenum target,
enum isl_tiling tiling)
{
const struct intel_image_format *f = image->planar_format;
struct intel_mipmap_tree *planar_mt = NULL;
for (int i = 0; i < f->nplanes; i++) {
const int index = f->planes[i].buffer_index;
const uint32_t dri_format = f->planes[i].dri_format;
const mesa_format format = driImageFormatToGLFormat(dri_format);
const uint32_t width = image->width >> f->planes[i].width_shift;
const uint32_t height = image->height >> f->planes[i].height_shift;
/* Disable creation of the texture's aux buffers because the driver
* exposes no EGL API to manage them. That is, there is no API for
* resolving the aux buffer's content to the main buffer nor for
* invalidating the aux buffer's content.
*/
struct intel_mipmap_tree *mt =
intel_miptree_create_for_bo(brw, image->bo, format,
image->offsets[index],
width, height, 1,
image->strides[index],
tiling,
MIPTREE_CREATE_NO_AUX);
if (mt == NULL) {
intel_miptree_release(&planar_mt);
return NULL;
}
mt->target = target;
if (i == 0)
planar_mt = mt;
else
planar_mt->plane[i - 1] = mt;
}
planar_mt->drm_modifier = image->modifier;
return planar_mt;
}
static bool
create_ccs_buf_for_image(struct brw_context *brw,
__DRIimage *image,
struct intel_mipmap_tree *mt,
enum isl_aux_state initial_state)
{
struct isl_surf temp_ccs_surf;
/* CCS is only supported for very simple miptrees */
assert(image->aux_offset != 0 && image->aux_pitch != 0);
assert(image->tile_x == 0 && image->tile_y == 0);
assert(mt->surf.samples == 1);
assert(mt->surf.levels == 1);
assert(mt->surf.logical_level0_px.depth == 1);
assert(mt->surf.logical_level0_px.array_len == 1);
assert(mt->first_level == 0);
assert(mt->last_level == 0);
/* We shouldn't already have a CCS */
assert(!mt->aux_buf);
if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
image->aux_pitch))
return false;
assert(image->aux_offset < image->bo->size);
assert(temp_ccs_surf.size_B <= image->bo->size - image->aux_offset);
mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
if (mt->aux_buf == NULL)
return false;
mt->aux_state = create_aux_state_map(mt, initial_state);
if (!mt->aux_state) {
free(mt->aux_buf);
mt->aux_buf = NULL;
return false;
}
/* On gen10+ we start using an extra space in the aux buffer to store the
* indirect clear color. However, if we imported an image from the window
* system with CCS, we don't have the extra space at the end of the aux
* buffer. So create a new bo here that will store that clear color.
*/
if (brw->isl_dev.ss.clear_color_state_size > 0) {
mt->aux_buf->clear_color_bo =
brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
brw->isl_dev.ss.clear_color_state_size,
BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
BO_ALLOC_ZEROED);
if (!mt->aux_buf->clear_color_bo) {
free(mt->aux_buf);
mt->aux_buf = NULL;
return false;
}
}
mt->aux_buf->bo = image->bo;
brw_bo_reference(image->bo);
mt->aux_buf->offset = image->aux_offset;
mt->aux_buf->surf = temp_ccs_surf;
return true;
}
struct intel_mipmap_tree *
intel_miptree_create_for_dri_image(struct brw_context *brw,
__DRIimage *image, GLenum target,
mesa_format format,
bool allow_internal_aux)
{
uint32_t bo_tiling, bo_swizzle;
brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(image->modifier);
const enum isl_tiling tiling =
mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
if (image->planar_format && image->planar_format->nplanes > 1)
return miptree_create_for_planar_image(brw, image, target, tiling);
if (image->planar_format)
assert(image->planar_format->planes[0].dri_format == image->dri_format);
if (!brw->ctx.TextureFormatSupported[format]) {
/* The texture storage paths in core Mesa detect if the driver does not
* support the user-requested format, and then searches for a
* fallback format. The DRIimage code bypasses core Mesa, though. So we
* do the fallbacks here for important formats.
*
* We must support DRM_FOURCC_XBGR8888 textures because the Android
* framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
* the Chrome OS compositor consumes as dma_buf EGLImages.
*/
format = _mesa_format_fallback_rgbx_to_rgba(format);
}
if (!brw->ctx.TextureFormatSupported[format])
return NULL;
enum intel_miptree_create_flags mt_create_flags = 0;
/* If this image comes in from a window system, we have different
* requirements than if it comes in via an EGL import operation. Window
* system images can use any form of auxiliary compression we wish because
* they get "flushed" before being handed off to the window system and we
* have the opportunity to do resolves. Non window-system images, on the
* other hand, have no resolve point so we can't have aux without a
* modifier.
*/
if (!allow_internal_aux)
mt_create_flags |= MIPTREE_CREATE_NO_AUX;
/* If we have a modifier which specifies aux, don't create one yet */
if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
mt_create_flags |= MIPTREE_CREATE_NO_AUX;
/* Disable creation of the texture's aux buffers because the driver exposes
* no EGL API to manage them. That is, there is no API for resolving the aux
* buffer's content to the main buffer nor for invalidating the aux buffer's
* content.
*/
struct intel_mipmap_tree *mt =
intel_miptree_create_for_bo(brw, image->bo, format,
image->offset, image->width, image->height, 1,
image->pitch, tiling, mt_create_flags);
if (mt == NULL)
return NULL;
mt->target = target;
mt->level[0].level_x = image->tile_x;
mt->level[0].level_y = image->tile_y;
mt->drm_modifier = image->modifier;
/* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
* for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
* trouble resolving back to destination image due to alignment issues.
*/
const struct gen_device_info *devinfo = &brw->screen->devinfo;
if (!devinfo->has_surface_tile_offset) {
uint32_t draw_x, draw_y;
intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
if (draw_x != 0 || draw_y != 0) {
_mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
intel_miptree_release(&mt);
return NULL;
}
}
if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
mt->aux_usage = mod_info->aux_usage;
/* If we are a window system buffer, then we can support fast-clears
* even if the modifier doesn't support them by doing a partial resolve
* as part of the flush operation.
*/
mt->supports_fast_clear =
allow_internal_aux || mod_info->supports_clear_color;
/* We don't know the actual state of the surface when we get it but we
* can make a pretty good guess based on the modifier. What we do know
* for sure is that it isn't in the AUX_INVALID state, so we just assume
* a worst case of compression.
*/
enum isl_aux_state initial_state =
isl_drm_modifier_get_default_aux_state(image->modifier);
if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
intel_miptree_release(&mt);
return NULL;
}
}
/* Don't assume coherency for imported EGLimages. We don't know what
* external clients are going to do with it. They may scan it out.
*/
image->bo->cache_coherent = false;
return mt;
}
/**
* For a singlesample renderbuffer, this simply wraps the given BO with a
* miptree.
*
* For a multisample renderbuffer, this wraps the window system's
* (singlesample) BO with a singlesample miptree attached to the
* intel_renderbuffer, then creates a multisample miptree attached to irb->mt
* that will contain the actual rendering (which is lazily resolved to
* irb->singlesample_mt).
*/
bool
intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
struct intel_renderbuffer *irb,
struct intel_mipmap_tree *singlesample_mt,
uint32_t width, uint32_t height,
uint32_t pitch)
{
struct intel_mipmap_tree *multisample_mt = NULL;
struct gl_renderbuffer *rb = &irb->Base.Base;
mesa_format format = rb->Format;
const unsigned num_samples = MAX2(rb->NumSamples, 1);
/* Only the front and back buffers, which are color buffers, are allocated
* through the image loader.
*/
assert(_mesa_get_format_base_format(format) == GL_RGB ||
_mesa_get_format_base_format(format) == GL_RGBA);
assert(singlesample_mt);
if (num_samples == 1) {
intel_miptree_release(&irb->mt);
irb->mt = singlesample_mt;
assert(!irb->singlesample_mt);
} else {
intel_miptree_release(&irb->singlesample_mt);
irb->singlesample_mt = singlesample_mt;
if (!irb->mt ||
irb->mt->surf.logical_level0_px.width != width ||
irb->mt->surf.logical_level0_px.height != height) {
multisample_mt = intel_miptree_create_for_renderbuffer(intel,
format,
width,
height,
num_samples);
if (!multisample_mt)
goto fail;
irb->need_downsample = false;
intel_miptree_release(&irb->mt);
irb->mt = multisample_mt;
}
}
return true;
fail:
intel_miptree_release(&irb->mt);
return false;
}
struct intel_mipmap_tree*
intel_miptree_create_for_renderbuffer(struct brw_context *brw,
mesa_format format,
uint32_t width,
uint32_t height,
uint32_t num_samples)
{
struct intel_mipmap_tree *mt;
uint32_t depth = 1;
GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
mt = intel_miptree_create(brw, target, format, 0, 0,
width, height, depth, num_samples,
MIPTREE_CREATE_BUSY);
if (!mt)
goto fail;
return mt;
fail:
intel_miptree_release(&mt);
return NULL;
}
void
intel_miptree_reference(struct intel_mipmap_tree **dst,
struct intel_mipmap_tree *src)
{
if (*dst == src)
return;
intel_miptree_release(dst);
if (src) {
src->refcount++;
DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
}
*dst = src;
}
static void
intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
{
if (aux_buf == NULL)
return;
brw_bo_unreference(aux_buf->bo);
brw_bo_unreference(aux_buf->clear_color_bo);
free(aux_buf);
}
void
intel_miptree_release(struct intel_mipmap_tree **mt)
{
if (!*mt)
return;
DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
if (--(*mt)->refcount <= 0) {
GLuint i;
DBG("%s deleting %p\n", __func__, *mt);
brw_bo_unreference((*mt)->bo);
intel_miptree_release(&(*mt)->stencil_mt);
intel_miptree_release(&(*mt)->r8stencil_mt);
intel_miptree_aux_buffer_free((*mt)->aux_buf);
free_aux_state_map((*mt)->aux_state);
intel_miptree_release(&(*mt)->plane[0]);
intel_miptree_release(&(*mt)->plane[1]);
for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
free((*mt)->level[i].slice);
}
free(*mt);
}
*mt = NULL;
}
void
intel_get_image_dims(struct gl_texture_image *image,
int *width, int *height, int *depth)
{
switch (image->TexObject->Target) {
case GL_TEXTURE_1D_ARRAY:
/* For a 1D Array texture the OpenGL API will treat the image height as
* the number of array slices. For Intel hardware, we treat the 1D array
* as a 2D Array with a height of 1. So, here we want to swap image
* height and depth.
*/
assert(image->Depth == 1);
*width = image->Width;
*height = 1;
*depth = image->Height;
break;
case GL_TEXTURE_CUBE_MAP:
/* For Cube maps, the mesa/main api layer gives us a depth of 1 even
* though we really have 6 slices.
*/
assert(image->Depth == 1);
*width = image->Width;
*height = image->Height;
*depth = 6;
break;
default:
*width = image->Width;
*height = image->Height;
*depth = image->Depth;
break;
}
}
/**
* Can the image be pulled into a unified mipmap tree? This mirrors
* the completeness test in a lot of ways.
*
* Not sure whether I want to pass gl_texture_image here.
*/
bool
intel_miptree_match_image(struct intel_mipmap_tree *mt,
struct gl_texture_image *image)
{
struct intel_texture_image *intelImage = intel_texture_image(image);
GLuint level = intelImage->base.Base.Level;
int width, height, depth;
/* glTexImage* choose the texture object based on the target passed in, and
* objects can't change targets over their lifetimes, so this should be
* true.
*/
assert(image->TexObject->Target == mt->target);
mesa_format mt_format = mt->format;
if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
if (mt->etc_format != MESA_FORMAT_NONE)
mt_format = mt->etc_format;
if (_mesa_get_srgb_format_linear(image->TexFormat) !=
_mesa_get_srgb_format_linear(mt_format))
return false;
intel_get_image_dims(image, &width, &height, &depth);
if (mt->target == GL_TEXTURE_CUBE_MAP)
depth = 6;
if (level >= mt->surf.levels)
return false;
const unsigned level_depth =
mt->surf.dim == ISL_SURF_DIM_3D ?
minify(mt->surf.logical_level0_px.depth, level) :
mt->surf.logical_level0_px.array_len;
return width == minify(mt->surf.logical_level0_px.width, level) &&
height == minify(mt->surf.logical_level0_px.height, level) &&
depth == level_depth &&
MAX2(image->NumSamples, 1) == mt->surf.samples;
}
void
intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
GLuint *x, GLuint *y)
{
if (level == 0 && slice == 0) {
*x = mt->level[0].level_x;
*y = mt->level[0].level_y;
return;
}
uint32_t x_offset_sa, y_offset_sa;
/* Miptree itself can have an offset only if it represents a single
* slice in an imported buffer object.
* See intel_miptree_create_for_dri_image().
*/
assert(mt->level[0].level_x == 0);
assert(mt->level[0].level_y == 0);
/* Given level is relative to level zero while the miptree may be
* represent just a subset of all levels starting from 'first_level'.
*/
assert(level >= mt->first_level);
level -= mt->first_level;
const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
&x_offset_sa, &y_offset_sa);
*x = x_offset_sa;
*y = y_offset_sa;
}
/**
* This function computes the tile_w (in bytes) and tile_h (in rows) of
* different tiling patterns. If the BO is untiled, tile_w is set to cpp
* and tile_h is set to 1.
*/
void
intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
uint32_t *tile_w, uint32_t *tile_h)
{
switch (tiling) {
case ISL_TILING_X:
*tile_w = 512;
*tile_h = 8;
break;
case ISL_TILING_Y0:
*tile_w = 128;
*tile_h = 32;
break;
case ISL_TILING_LINEAR:
*tile_w = cpp;
*tile_h = 1;
break;
default:
unreachable("not reached");
}
}
/**
* This function computes masks that may be used to select the bits of the X
* and Y coordinates that indicate the offset within a tile. If the BO is
* untiled, the masks are set to 0.
*/
void
intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
uint32_t *mask_x, uint32_t *mask_y)
{
uint32_t tile_w_bytes, tile_h;
intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
*mask_x = tile_w_bytes / cpp - 1;
*mask_y = tile_h - 1;
}
/**
* Compute the offset (in bytes) from the start of the BO to the given x
* and y coordinate. For tiled BOs, caller must ensure that x and y are
* multiples of the tile size.
*/
uint32_t
intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
uint32_t x, uint32_t y)
{
int cpp = mt->cpp;
uint32_t pitch = mt->surf.row_pitch_B;
switch (mt->surf.tiling) {
default:
unreachable("not reached");
case ISL_TILING_LINEAR:
return y * pitch + x * cpp;
case ISL_TILING_X:
assert((x % (512 / cpp)) == 0);
assert((y % 8) == 0);
return y * pitch + x / (512 / cpp) * 4096;
case ISL_TILING_Y0:
assert((x % (128 / cpp)) == 0);
assert((y % 32) == 0);
return y * pitch + x / (128 / cpp) * 4096;
}
}
/**
* Rendering with tiled buffers requires that the base address of the buffer
* be aligned to a page boundary. For renderbuffers, and sometimes with
* textures, we may want the surface to point at a texture image level that
* isn't at a page boundary.
*
* This function returns an appropriately-aligned base offset
* according to the tiling restrictions, plus any required x/y offset
* from there.
*/
uint32_t
intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
uint32_t *tile_x,
uint32_t *tile_y)
{
uint32_t x, y;
uint32_t mask_x, mask_y;
intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
intel_miptree_get_image_offset(mt, level, slice, &x, &y);
*tile_x = x & mask_x;
*tile_y = y & mask_y;
return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
}
static void
intel_miptree_copy_slice_sw(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
unsigned src_level, unsigned src_layer,
struct intel_mipmap_tree *dst_mt,
unsigned dst_level, unsigned dst_layer,
unsigned width, unsigned height)
{
void *src, *dst;
ptrdiff_t src_stride, dst_stride;
const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
intel_miptree_map(brw, src_mt,
src_level, src_layer,
0, 0,
width, height,
GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
&src, &src_stride);
intel_miptree_map(brw, dst_mt,
dst_level, dst_layer,
0, 0,
width, height,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
BRW_MAP_DIRECT_BIT,
&dst, &dst_stride);
DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
_mesa_get_format_name(src_mt->format),
src_mt, src, src_stride,
_mesa_get_format_name(dst_mt->format),
dst_mt, dst, dst_stride,
width, height);
int row_size = cpp * width;
if (src_stride == row_size &&
dst_stride == row_size) {
memcpy(dst, src, row_size * height);
} else {
for (int i = 0; i < height; i++) {
memcpy(dst, src, row_size);
dst += dst_stride;
src += src_stride;
}
}
intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
intel_miptree_unmap(brw, src_mt, src_level, src_layer);
/* Don't forget to copy the stencil data over, too. We could have skipped
* passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
* shuffling the two data sources in/out of temporary storage instead of
* the direct mapping we get this way.
*/
if (dst_mt->stencil_mt) {
assert(src_mt->stencil_mt);
intel_miptree_copy_slice_sw(brw,
src_mt->stencil_mt, src_level, src_layer,
dst_mt->stencil_mt, dst_level, dst_layer,
width, height);
}
}
void
intel_miptree_copy_slice(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
unsigned src_level, unsigned src_layer,
struct intel_mipmap_tree *dst_mt,
unsigned dst_level, unsigned dst_layer)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
mesa_format format = src_mt->format;
unsigned width = minify(src_mt->surf.phys_level0_sa.width,
src_level - src_mt->first_level);
unsigned height = minify(src_mt->surf.phys_level0_sa.height,
src_level - src_mt->first_level);
assert(src_layer < get_num_phys_layers(&src_mt->surf,
src_level - src_mt->first_level));
assert(_mesa_get_srgb_format_linear(src_mt->format) ==
_mesa_get_srgb_format_linear(dst_mt->format));
DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
_mesa_get_format_name(src_mt->format),
src_mt, src_level, src_layer,
_mesa_get_format_name(dst_mt->format),
dst_mt, dst_level, dst_layer,
width, height);
if (devinfo->gen >= 6) {
/* On gen6 and above, we just use blorp. It's faster than the blitter
* and can handle everything without software fallbacks.
*/
brw_blorp_copy_miptrees(brw,
src_mt, src_level, src_layer,
dst_mt, dst_level, dst_layer,
0, 0, 0, 0, width, height);
if (src_mt->stencil_mt) {
assert(dst_mt->stencil_mt);
brw_blorp_copy_miptrees(brw,
src_mt->stencil_mt, src_level, src_layer,
dst_mt->stencil_mt, dst_level, dst_layer,
0, 0, 0, 0, width, height);
}
return;
}
if (dst_mt->compressed) {
unsigned int i, j;
_mesa_get_format_block_size(dst_mt->format, &i, &j);
height = ALIGN_NPOT(height, j) / j;
width = ALIGN_NPOT(width, i) / i;
}
/* Gen4-5 doesn't support separate stencil */
assert(!src_mt->stencil_mt);
uint32_t dst_x, dst_y, src_x, src_y;
intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
&dst_x, &dst_y);
intel_miptree_get_image_offset(src_mt, src_level, src_layer,
&src_x, &src_y);
DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
_mesa_get_format_name(src_mt->format),
src_mt, src_x, src_y, src_mt->surf.row_pitch_B,
_mesa_get_format_name(dst_mt->format),
dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch_B,
width, height);
if (!intel_miptree_blit(brw,
src_mt, src_level, src_layer, 0, 0, false,
dst_mt, dst_level, dst_layer, 0, 0, false,
width, height, COLOR_LOGICOP_COPY)) {
perf_debug("miptree validate blit for %s failed\n",
_mesa_get_format_name(format));
intel_miptree_copy_slice_sw(brw,
src_mt, src_level, src_layer,
dst_mt, dst_level, dst_layer,
width, height);
}
}
/**
* Copies the image's current data to the given miptree, and associates that
* miptree with the image.
*/
void
intel_miptree_copy_teximage(struct brw_context *brw,
struct intel_texture_image *intelImage,
struct intel_mipmap_tree *dst_mt)
{
struct intel_mipmap_tree *src_mt = intelImage->mt;
struct intel_texture_object *intel_obj =
intel_texture_object(intelImage->base.Base.TexObject);
int level = intelImage->base.Base.Level;
const unsigned face = intelImage->base.Base.Face;
unsigned start_layer, end_layer;
if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
assert(face == 0);
assert(intelImage->base.Base.Height);
start_layer = 0;
end_layer = intelImage->base.Base.Height - 1;
} else if (face > 0) {
start_layer = face;
end_layer = face;
} else {
assert(intelImage->base.Base.Depth);
start_layer = 0;
end_layer = intelImage->base.Base.Depth - 1;
}
for (unsigned i = start_layer; i <= end_layer; i++) {
intel_miptree_copy_slice(brw,
src_mt, level, i,
dst_mt, level, i);
}
intel_miptree_reference(&intelImage->mt, dst_mt);
intel_obj->needs_validate = true;
}
static struct intel_miptree_aux_buffer *
intel_alloc_aux_buffer(struct brw_context *brw,
const struct isl_surf *aux_surf,
bool wants_memset,
uint8_t memset_value)
{
struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
if (!buf)
return false;
uint64_t size = aux_surf->size_B;
const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
if (has_indirect_clear) {
/* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
* will set a pointer to a dword somewhere that contains the color. So,
* allocate the space for the clear color value here on the aux buffer.
*/
buf->clear_color_offset = size;
size += brw->isl_dev.ss.clear_color_state_size;
}
/* If the buffer needs to be initialised (requiring the buffer to be
* immediately mapped to cpu space for writing), do not use the gpu access
* flag which can cause an unnecessary delay if the backing pages happened
* to be just used by the GPU.
*/
const bool alloc_zeroed = wants_memset && memset_value == 0;
const bool needs_memset =
!alloc_zeroed && (wants_memset || has_indirect_clear);
const uint32_t alloc_flags =
alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
/* ISL has stricter set of alignment rules then the drm allocator.
* Therefore one can pass the ISL dimensions in terms of bytes instead of
* trying to recalculate based on different format block sizes.
*/
buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
BRW_MEMZONE_OTHER, I915_TILING_Y,
aux_surf->row_pitch_B, alloc_flags);
if (!buf->bo) {
free(buf);
return NULL;
}
/* Initialize the bo to the desired value */
if (needs_memset) {
assert(!(alloc_flags & BO_ALLOC_BUSY));
void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
if (map == NULL) {
intel_miptree_aux_buffer_free(buf);
return NULL;
}
/* Memset the aux_surf portion of the BO. */
if (wants_memset)
memset(map, memset_value, aux_surf->size_B);
/* Zero the indirect clear color to match ::fast_clear_color. */
if (has_indirect_clear) {
memset((char *)map + buf->clear_color_offset, 0,
brw->isl_dev.ss.clear_color_state_size);
}
brw_bo_unmap(buf->bo);
}
if (has_indirect_clear) {
buf->clear_color_bo = buf->bo;
brw_bo_reference(buf->clear_color_bo);
}
buf->surf = *aux_surf;
return buf;
}
/**
* Helper for intel_miptree_alloc_aux() that sets
* \c mt->level[level].has_hiz. Return true if and only if
* \c has_hiz was set.
*/
static bool
intel_miptree_level_enable_hiz(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
assert(mt->aux_buf);
assert(mt->surf.size_B > 0);
if (devinfo->gen >= 8 || devinfo->is_haswell) {
uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
/* Disable HiZ for LOD > 0 unless the width is 8 aligned
* and the height is 4 aligned. This allows our HiZ support
* to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
* we can grow the width & height to allow the HiZ op to
* force the proper size alignments.
*/
if (level > 0 && ((width & 7) || (height & 3))) {
DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
return false;
}
}
DBG("mt %p level %d: HiZ enabled\n", mt, level);
mt->level[level].has_hiz = true;
return true;
}
/**
* Allocate the initial aux surface for a miptree based on mt->aux_usage
*
* Since MCS, HiZ, and CCS_E can compress more than just clear color, we
* create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
* compress clear color so we wait until an actual fast-clear to allocate it.
*/
bool
intel_miptree_alloc_aux(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
assert(mt->aux_buf == NULL);
/* Get the aux buf allocation parameters for this miptree. */
enum isl_aux_state initial_state;
uint8_t memset_value;
struct isl_surf aux_surf;
MAYBE_UNUSED bool aux_surf_ok = false;
switch (mt->aux_usage) {
case ISL_AUX_USAGE_NONE:
aux_surf.size_B = 0;
aux_surf_ok = true;
break;
case ISL_AUX_USAGE_HIZ:
initial_state = ISL_AUX_STATE_AUX_INVALID;
memset_value = 0;
aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
break;
case ISL_AUX_USAGE_MCS:
/* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
*
* When MCS buffer is enabled and bound to MSRT, it is required that
* it is cleared prior to any rendering.
*
* Since we don't use the MCS buffer for any purpose other than
* rendering, it makes sense to just clear it immediately upon
* allocation.
*
* Note: the clear value for MCS buffers is all 1's, so we memset to
* 0xff.
*/
initial_state = ISL_AUX_STATE_CLEAR;
memset_value = 0xFF;
aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
break;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
/* When CCS_E is used, we need to ensure that the CCS starts off in a
* valid state. From the Sky Lake PRM, "MCS Buffer for Render
* Target(s)":
*
* "If Software wants to enable Color Compression without Fast
* clear, Software needs to initialize MCS with zeros."
*
* A CCS value of 0 indicates that the corresponding block is in the
* pass-through state which is what we want.
*
* For CCS_D, do the same thing. On gen9+, this avoids having any
* undefined bits in the aux buffer.
*/
initial_state = ISL_AUX_STATE_PASS_THROUGH;
memset_value = 0;
aux_surf_ok =
isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
break;
}
/* We should have a valid aux_surf. */
assert(aux_surf_ok);
/* No work is needed for a zero-sized auxiliary buffer. */
if (aux_surf.size_B == 0)
return true;
/* Create the aux_state for the auxiliary buffer. */
mt->aux_state = create_aux_state_map(mt, initial_state);
if (mt->aux_state == NULL)
return false;
/* Allocate the auxiliary buffer. */
const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
memset_value);
if (mt->aux_buf == NULL) {
free_aux_state_map(mt->aux_state);
mt->aux_state = NULL;
return false;
}
/* Perform aux_usage-specific initialization. */
if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
intel_miptree_level_enable_hiz(brw, mt, level);
}
return true;
}
/**
* Can the miptree sample using the hiz buffer?
*/
bool
intel_miptree_sample_with_hiz(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
if (!devinfo->has_sample_with_hiz) {
return false;
}
if (!mt->aux_buf) {
return false;
}
/* It seems the hardware won't fallback to the depth buffer if some of the
* mipmap levels aren't available in the HiZ buffer. So we need all levels
* of the texture to be HiZ enabled.
*/
for (unsigned level = 0; level < mt->surf.levels; ++level) {
if (!intel_miptree_level_has_hiz(mt, level))
return false;
}
/* If compressed multisampling is enabled, then we use it for the auxiliary
* buffer instead.
*
* From the BDW PRM (Volume 2d: Command Reference: Structures
* RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
*
* "If this field is set to AUX_HIZ, Number of Multisamples must be
* MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
*
* There is no such blurb for 1D textures, but there is sufficient evidence
* that this is broken on SKL+.
*/
return (mt->surf.samples == 1 &&
mt->target != GL_TEXTURE_3D &&
mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
}
/**
* Does the miptree slice have hiz enabled?
*/
bool
intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
{
intel_miptree_check_level_layer(mt, level, 0);
return mt->level[level].has_hiz;
}
static inline uint32_t
miptree_level_range_length(const struct intel_mipmap_tree *mt,
uint32_t start_level, uint32_t num_levels)
{
assert(start_level >= mt->first_level);
assert(start_level <= mt->last_level);
if (num_levels == INTEL_REMAINING_LAYERS)
num_levels = mt->last_level - start_level + 1;
/* Check for overflow */
assert(start_level + num_levels >= start_level);
assert(start_level + num_levels <= mt->last_level + 1);
return num_levels;
}
static inline uint32_t
miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
uint32_t start_layer, uint32_t num_layers)
{
assert(level <= mt->last_level);
const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
assert(start_layer < total_num_layers);
if (num_layers == INTEL_REMAINING_LAYERS)
num_layers = total_num_layers - start_layer;
/* Check for overflow */
assert(start_layer + num_layers >= start_layer);
assert(start_layer + num_layers <= total_num_layers);
return num_layers;
}
bool
intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
unsigned start_level, unsigned num_levels,
unsigned start_layer, unsigned num_layers)
{
assert(_mesa_is_format_color_format(mt->format));
if (!mt->aux_buf)
return false;
/* Clamp the level range to fit the miptree */
num_levels = miptree_level_range_length(mt, start_level, num_levels);
for (uint32_t l = 0; l < num_levels; l++) {
const uint32_t level = start_level + l;
const uint32_t level_layers =
miptree_layer_range_length(mt, level, start_layer, num_layers);
for (unsigned a = 0; a < level_layers; a++) {
enum isl_aux_state aux_state =
intel_miptree_get_aux_state(mt, level, start_layer + a);
assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
return true;
}
}
return false;
}
static void
intel_miptree_check_color_resolve(const struct brw_context *brw,
const struct intel_mipmap_tree *mt,
unsigned level, unsigned layer)
{
if (!mt->aux_buf)
return;
/* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
assert(brw->screen->devinfo.gen >= 8 ||
(level == 0 && mt->first_level == 0 && mt->last_level == 0));
/* Compression of arrayed msaa surfaces is supported. */
if (mt->surf.samples > 1)
return;
/* Fast color clear is supported for non-msaa arrays only on Gen8+. */
assert(brw->screen->devinfo.gen >= 8 ||
(layer == 0 &&
mt->surf.logical_level0_px.depth == 1 &&
mt->surf.logical_level0_px.array_len == 1));
(void)level;
(void)layer;
}
static enum isl_aux_op
get_ccs_d_resolve_op(enum isl_aux_state aux_state,
enum isl_aux_usage aux_usage,
bool fast_clear_supported)
{
assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
assert(ccs_supported == fast_clear_supported);
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
case ISL_AUX_STATE_PARTIAL_CLEAR:
if (!ccs_supported)
return ISL_AUX_OP_FULL_RESOLVE;
else
return ISL_AUX_OP_NONE;
case ISL_AUX_STATE_PASS_THROUGH:
return ISL_AUX_OP_NONE;
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_AUX_INVALID:
case ISL_AUX_STATE_COMPRESSED_CLEAR:
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
break;
}
unreachable("Invalid aux state for CCS_D");
}
static enum isl_aux_op
get_ccs_e_resolve_op(enum isl_aux_state aux_state,
enum isl_aux_usage aux_usage,
bool fast_clear_supported)
{
/* CCS_E surfaces can be accessed as CCS_D if we're careful. */
assert(aux_usage == ISL_AUX_USAGE_NONE ||
aux_usage == ISL_AUX_USAGE_CCS_D ||
aux_usage == ISL_AUX_USAGE_CCS_E);
if (aux_usage == ISL_AUX_USAGE_CCS_D)
assert(fast_clear_supported);
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
case ISL_AUX_STATE_PARTIAL_CLEAR:
if (fast_clear_supported)
return ISL_AUX_OP_NONE;
else if (aux_usage == ISL_AUX_USAGE_CCS_E)
return ISL_AUX_OP_PARTIAL_RESOLVE;
else
return ISL_AUX_OP_FULL_RESOLVE;
case ISL_AUX_STATE_COMPRESSED_CLEAR:
if (aux_usage != ISL_AUX_USAGE_CCS_E)
return ISL_AUX_OP_FULL_RESOLVE;
else if (!fast_clear_supported)
return ISL_AUX_OP_PARTIAL_RESOLVE;
else
return ISL_AUX_OP_NONE;
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
if (aux_usage != ISL_AUX_USAGE_CCS_E)
return ISL_AUX_OP_FULL_RESOLVE;
else
return ISL_AUX_OP_NONE;
case ISL_AUX_STATE_PASS_THROUGH:
return ISL_AUX_OP_NONE;
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_AUX_INVALID:
break;
}
unreachable("Invalid aux state for CCS_E");
}
static void
intel_miptree_prepare_ccs_access(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level, uint32_t layer,
enum isl_aux_usage aux_usage,
bool fast_clear_supported)
{
enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
enum isl_aux_op resolve_op;
if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
fast_clear_supported);
} else {
assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
fast_clear_supported);
}
if (resolve_op != ISL_AUX_OP_NONE) {
intel_miptree_check_color_resolve(brw, mt, level, layer);
brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
switch (resolve_op) {
case ISL_AUX_OP_FULL_RESOLVE:
/* The CCS full resolve operation destroys the CCS and sets it to the
* pass-through state. (You can also think of this as being both a
* resolve and an ambiguate in one operation.)
*/
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_PASS_THROUGH);
break;
case ISL_AUX_OP_PARTIAL_RESOLVE:
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
break;
default:
unreachable("Invalid resolve op");
}
}
}
static void
intel_miptree_finish_ccs_write(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level, uint32_t layer,
enum isl_aux_usage aux_usage)
{
assert(aux_usage == ISL_AUX_USAGE_NONE ||
aux_usage == ISL_AUX_USAGE_CCS_D ||
aux_usage == ISL_AUX_USAGE_CCS_E);
enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
case ISL_AUX_STATE_PARTIAL_CLEAR:
assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
aux_usage == ISL_AUX_USAGE_CCS_D);
if (aux_usage == ISL_AUX_USAGE_CCS_E) {
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_COMPRESSED_CLEAR);
} else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_PARTIAL_CLEAR);
}
break;
case ISL_AUX_STATE_COMPRESSED_CLEAR:
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
assert(aux_usage == ISL_AUX_USAGE_CCS_E);
break; /* Nothing to do */
case ISL_AUX_STATE_PASS_THROUGH:
if (aux_usage == ISL_AUX_USAGE_CCS_E) {
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
} else {
/* Nothing to do */
}
break;
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_AUX_INVALID:
unreachable("Invalid aux state for CCS_E");
}
} else {
assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
/* CCS_D is a bit simpler */
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
assert(aux_usage == ISL_AUX_USAGE_CCS_D);
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_PARTIAL_CLEAR);
break;
case ISL_AUX_STATE_PARTIAL_CLEAR:
assert(aux_usage == ISL_AUX_USAGE_CCS_D);
break; /* Nothing to do */
case ISL_AUX_STATE_PASS_THROUGH:
/* Nothing to do */
break;
case ISL_AUX_STATE_COMPRESSED_CLEAR:
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_AUX_INVALID:
unreachable("Invalid aux state for CCS_D");
}
}
}
static void
intel_miptree_prepare_mcs_access(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t layer,
enum isl_aux_usage aux_usage,
bool fast_clear_supported)
{
assert(aux_usage == ISL_AUX_USAGE_MCS);
switch (intel_miptree_get_aux_state(mt, 0, layer)) {
case ISL_AUX_STATE_CLEAR:
case ISL_AUX_STATE_COMPRESSED_CLEAR:
if (!fast_clear_supported) {
brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
}
break;
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
break; /* Nothing to do */
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_PASS_THROUGH:
case ISL_AUX_STATE_AUX_INVALID:
case ISL_AUX_STATE_PARTIAL_CLEAR:
unreachable("Invalid aux state for MCS");
}
}
static void
intel_miptree_finish_mcs_write(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t layer,
enum isl_aux_usage aux_usage)
{
assert(aux_usage == ISL_AUX_USAGE_MCS);
switch (intel_miptree_get_aux_state(mt, 0, layer)) {
case ISL_AUX_STATE_CLEAR:
intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
ISL_AUX_STATE_COMPRESSED_CLEAR);
break;
case ISL_AUX_STATE_COMPRESSED_CLEAR:
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
break; /* Nothing to do */
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_PASS_THROUGH:
case ISL_AUX_STATE_AUX_INVALID:
case ISL_AUX_STATE_PARTIAL_CLEAR:
unreachable("Invalid aux state for MCS");
}
}
static void
intel_miptree_prepare_hiz_access(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level, uint32_t layer,
enum isl_aux_usage aux_usage,
bool fast_clear_supported)
{
assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
switch (intel_miptree_get_aux_state(mt, level, layer)) {
case ISL_AUX_STATE_CLEAR:
case ISL_AUX_STATE_COMPRESSED_CLEAR:
if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
hiz_op = ISL_AUX_OP_FULL_RESOLVE;
break;
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
if (aux_usage != ISL_AUX_USAGE_HIZ)
hiz_op = ISL_AUX_OP_FULL_RESOLVE;
break;
case ISL_AUX_STATE_PASS_THROUGH:
case ISL_AUX_STATE_RESOLVED:
break;
case ISL_AUX_STATE_AUX_INVALID:
if (aux_usage == ISL_AUX_USAGE_HIZ)
hiz_op = ISL_AUX_OP_AMBIGUATE;
break;
case ISL_AUX_STATE_PARTIAL_CLEAR:
unreachable("Invalid HiZ state");
}
if (hiz_op != ISL_AUX_OP_NONE) {
intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
switch (hiz_op) {
case ISL_AUX_OP_FULL_RESOLVE:
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_RESOLVED);
break;
case ISL_AUX_OP_AMBIGUATE:
/* The HiZ resolve operation is actually an ambiguate */
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_PASS_THROUGH);
break;
default:
unreachable("Invalid HiZ op");
}
}
}
static void
intel_miptree_finish_hiz_write(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level, uint32_t layer,
enum isl_aux_usage aux_usage)
{
assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
switch (intel_miptree_get_aux_state(mt, level, layer)) {
case ISL_AUX_STATE_CLEAR:
assert(aux_usage == ISL_AUX_USAGE_HIZ);
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_COMPRESSED_CLEAR);
break;
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
case ISL_AUX_STATE_COMPRESSED_CLEAR:
assert(aux_usage == ISL_AUX_USAGE_HIZ);
break; /* Nothing to do */
case ISL_AUX_STATE_RESOLVED:
if (aux_usage == ISL_AUX_USAGE_HIZ) {
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
} else {
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_AUX_INVALID);
}
break;
case ISL_AUX_STATE_PASS_THROUGH:
if (aux_usage == ISL_AUX_USAGE_HIZ) {
intel_miptree_set_aux_state(brw, mt, level, layer, 1,
ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
}
break;
case ISL_AUX_STATE_AUX_INVALID:
assert(aux_usage != ISL_AUX_USAGE_HIZ);
break;
case ISL_AUX_STATE_PARTIAL_CLEAR:
unreachable("Invalid HiZ state");
}
}
void
intel_miptree_prepare_access(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t start_level, uint32_t num_levels,
uint32_t start_layer, uint32_t num_layers,
enum isl_aux_usage aux_usage,
bool fast_clear_supported)
{
num_levels = miptree_level_range_length(mt, start_level, num_levels);
switch (mt->aux_usage) {
case ISL_AUX_USAGE_NONE:
/* Nothing to do */
break;
case ISL_AUX_USAGE_MCS:
assert(mt->aux_buf);
assert(start_level == 0 && num_levels == 1);
const uint32_t level_layers =
miptree_layer_range_length(mt, 0, start_layer, num_layers);
for (uint32_t a = 0; a < level_layers; a++) {
intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
aux_usage, fast_clear_supported);
}
break;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
if (!mt->aux_buf)
return;
for (uint32_t l = 0; l < num_levels; l++) {
const uint32_t level = start_level + l;
const uint32_t level_layers =
miptree_layer_range_length(mt, level, start_layer, num_layers);
for (uint32_t a = 0; a < level_layers; a++) {
intel_miptree_prepare_ccs_access(brw, mt, level,
start_layer + a,
aux_usage, fast_clear_supported);
}
}
break;
case ISL_AUX_USAGE_HIZ:
assert(mt->aux_buf);
for (uint32_t l = 0; l < num_levels; l++) {
const uint32_t level = start_level + l;
if (!intel_miptree_level_has_hiz(mt, level))
continue;
const uint32_t level_layers =
miptree_layer_range_length(mt, level, start_layer, num_layers);
for (uint32_t a = 0; a < level_layers; a++) {
intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
aux_usage, fast_clear_supported);
}
}
break;
default:
unreachable("Invalid aux usage");
}
}
void
intel_miptree_finish_write(struct brw_context *brw,
struct intel_mipmap_tree *mt, uint32_t level,
uint32_t start_layer, uint32_t num_layers,
enum isl_aux_usage aux_usage)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
switch (mt->aux_usage) {
case ISL_AUX_USAGE_NONE:
if (mt->format == MESA_FORMAT_S_UINT8 && devinfo->gen <= 7)
mt->r8stencil_needs_update = true;
break;
case ISL_AUX_USAGE_MCS:
assert(mt->aux_buf);
for (uint32_t a = 0; a < num_layers; a++) {
intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
aux_usage);
}
break;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
if (!mt->aux_buf)
return;
for (uint32_t a = 0; a < num_layers; a++) {
intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
aux_usage);
}
break;
case ISL_AUX_USAGE_HIZ:
if (!intel_miptree_level_has_hiz(mt, level))
return;
for (uint32_t a = 0; a < num_layers; a++) {
intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
aux_usage);
}
break;
default:
unreachable("Invavlid aux usage");
}
}
enum isl_aux_state
intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
uint32_t level, uint32_t layer)
{
intel_miptree_check_level_layer(mt, level, layer);
if (_mesa_is_format_color_format(mt->format)) {
assert(mt->aux_buf != NULL);
assert(mt->surf.samples == 1 ||
mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
} else if (mt->format == MESA_FORMAT_S_UINT8) {
unreachable("Cannot get aux state for stencil");
} else {
assert(intel_miptree_level_has_hiz(mt, level));
}
return mt->aux_state[level][layer];
}
void
intel_miptree_set_aux_state(struct brw_context *brw,
struct intel_mipmap_tree *mt, uint32_t level,
uint32_t start_layer, uint32_t num_layers,
enum isl_aux_state aux_state)
{
num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
if (_mesa_is_format_color_format(mt->format)) {
assert(mt->aux_buf != NULL);
assert(mt->surf.samples == 1 ||
mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
} else if (mt->format == MESA_FORMAT_S_UINT8) {
unreachable("Cannot get aux state for stencil");
} else {
assert(intel_miptree_level_has_hiz(mt, level));
}
for (unsigned a = 0; a < num_layers; a++) {
if (mt->aux_state[level][start_layer + a] != aux_state) {
mt->aux_state[level][start_layer + a] = aux_state;
brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
}
}
}
/* On Gen9 color buffers may be compressed by the hardware (lossless
* compression). There are, however, format restrictions and care needs to be
* taken that the sampler engine is capable for re-interpreting a buffer with
* format different the buffer was originally written with.
*
* For example, SRGB formats are not compressible and the sampler engine isn't
* capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
* color buffer needs to be resolved so that the sampling surface can be
* sampled as non-compressed (i.e., without the auxiliary MCS buffer being
* set).
*/
static bool
can_texture_with_ccs(struct brw_context *brw,
struct intel_mipmap_tree *mt,
enum isl_format view_format)
{
if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
return false;
if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
mt, view_format)) {
perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
isl_format_get_layout(view_format)->name,
_mesa_get_format_name(mt->format));
return false;
}
return true;
}
enum isl_aux_usage
intel_miptree_texture_aux_usage(struct brw_context *brw,
struct intel_mipmap_tree *mt,
enum isl_format view_format,
enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits)
{
assert(brw->screen->devinfo.gen == 9 || astc5x5_wa_bits == 0);
/* On gen9, ASTC 5x5 textures cannot live in the sampler cache along side
* CCS or HiZ compressed textures. See gen9_apply_astc5x5_wa_flush() for
* details.
*/
if ((astc5x5_wa_bits & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) &&
mt->aux_usage != ISL_AUX_USAGE_MCS)
return ISL_AUX_USAGE_NONE;
switch (mt->aux_usage) {
case ISL_AUX_USAGE_HIZ:
if (intel_miptree_sample_with_hiz(brw, mt))
return ISL_AUX_USAGE_HIZ;
break;
case ISL_AUX_USAGE_MCS:
return ISL_AUX_USAGE_MCS;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
if (!mt->aux_buf) {
assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
return ISL_AUX_USAGE_NONE;
}
/* If we don't have any unresolved color, report an aux usage of
* ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
* aux surface and we can save some bandwidth.
*/
if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
0, INTEL_REMAINING_LAYERS))
return ISL_AUX_USAGE_NONE;
if (can_texture_with_ccs(brw, mt, view_format))
return ISL_AUX_USAGE_CCS_E;
break;
default:
break;
}
return ISL_AUX_USAGE_NONE;
}
static bool
isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
{
/* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
* values so sRGB curve application was a no-op for all fast-clearable
* formats.
*
* On gen9+, the hardware supports arbitrary clear values. For sRGB clear
* values, the hardware interprets the floats, not as what would be
* returned from the sampler (or written by the shader), but as being
* between format conversion and sRGB curve application. This means that
* we can switch between sRGB and UNORM without having to whack the clear
* color.
*/
return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
}
void
intel_miptree_prepare_texture(struct brw_context *brw,
struct intel_mipmap_tree *mt,
enum isl_format view_format,
uint32_t start_level, uint32_t num_levels,
uint32_t start_layer, uint32_t num_layers,
enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits)
{
enum isl_aux_usage aux_usage =
intel_miptree_texture_aux_usage(brw, mt, view_format, astc5x5_wa_bits);
bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
/* Clear color is specified as ints or floats and the conversion is done by
* the sampler. If we have a texture view, we would have to perform the
* clear color conversion manually. Just disable clear color.
*/
if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
clear_supported = false;
intel_miptree_prepare_access(brw, mt, start_level, num_levels,
start_layer, num_layers,
aux_usage, clear_supported);
}
void
intel_miptree_prepare_image(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
/* The data port doesn't understand any compression */
intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
0, INTEL_REMAINING_LAYERS,
ISL_AUX_USAGE_NONE, false);
}
enum isl_aux_usage
intel_miptree_render_aux_usage(struct brw_context *brw,
struct intel_mipmap_tree *mt,
enum isl_format render_format,
bool blend_enabled,
bool draw_aux_disabled)
{
struct gen_device_info *devinfo = &brw->screen->devinfo;
if (draw_aux_disabled)
return ISL_AUX_USAGE_NONE;
switch (mt->aux_usage) {
case ISL_AUX_USAGE_MCS:
assert(mt->aux_buf);
return ISL_AUX_USAGE_MCS;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
if (!mt->aux_buf) {
assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
return ISL_AUX_USAGE_NONE;
}
/* gen9+ hardware technically supports non-0/1 clear colors with sRGB
* formats. However, there are issues with blending where it doesn't
* properly apply the sRGB curve to the clear color when blending.
*/
if (devinfo->gen >= 9 && blend_enabled &&
isl_format_is_srgb(render_format) &&
!isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
return ISL_AUX_USAGE_NONE;
if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
mt, render_format))
return ISL_AUX_USAGE_CCS_E;
/* Otherwise, we have to fall back to CCS_D */
return ISL_AUX_USAGE_CCS_D;
default:
return ISL_AUX_USAGE_NONE;
}
}
void
intel_miptree_prepare_render(struct brw_context *brw,
struct intel_mipmap_tree *mt, uint32_t level,
uint32_t start_layer, uint32_t layer_count,
enum isl_aux_usage aux_usage)
{
intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
}
void
intel_miptree_finish_render(struct brw_context *brw,
struct intel_mipmap_tree *mt, uint32_t level,
uint32_t start_layer, uint32_t layer_count,
enum isl_aux_usage aux_usage)
{
assert(_mesa_is_format_color_format(mt->format));
intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
aux_usage);
}
void
intel_miptree_prepare_depth(struct brw_context *brw,
struct intel_mipmap_tree *mt, uint32_t level,
uint32_t start_layer, uint32_t layer_count)
{
intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
mt->aux_usage, mt->aux_buf != NULL);
}
void
intel_miptree_finish_depth(struct brw_context *brw,
struct intel_mipmap_tree *mt, uint32_t level,
uint32_t start_layer, uint32_t layer_count,
bool depth_written)
{
if (depth_written) {
intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
mt->aux_usage);
}
}
void
intel_miptree_prepare_external(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
bool supports_fast_clear = false;
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(mt->drm_modifier);
if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
/* CCS_E is the only supported aux for external images and it's only
* supported on very simple images.
*/
assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
assert(_mesa_is_format_color_format(mt->format));
assert(mt->first_level == 0 && mt->last_level == 0);
assert(mt->surf.logical_level0_px.depth == 1);
assert(mt->surf.logical_level0_px.array_len == 1);
assert(mt->surf.samples == 1);
assert(mt->aux_buf != NULL);
aux_usage = mod_info->aux_usage;
supports_fast_clear = mod_info->supports_clear_color;
}
intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
0, INTEL_REMAINING_LAYERS,
aux_usage, supports_fast_clear);
}
void
intel_miptree_finish_external(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
if (!mt->aux_buf)
return;
/* We don't know the actual aux state of the aux surface. The previous
* owner could have given it to us in a number of different states.
* Because we don't know the aux state, we reset the aux state to the
* least common denominator of possible valid states.
*/
enum isl_aux_state default_aux_state =
isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
assert(mt->last_level == mt->first_level);
intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
default_aux_state);
}
/**
* Make it possible to share the BO backing the given miptree with another
* process or another miptree.
*
* Fast color clears are unsafe with shared buffers, so we need to resolve and
* then discard the MCS buffer, if present. We also set the no_ccs flag to
* ensure that no MCS buffer gets allocated in the future.
*
* HiZ is similarly unsafe with shared buffers.
*/
void
intel_miptree_make_shareable(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
/* MCS buffers are also used for multisample buffers, but we can't resolve
* away a multisample MCS buffer because it's an integral part of how the
* pixel data is stored. Fortunately this code path should never be
* reached for multisample buffers.
*/
assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
mt->surf.samples == 1);
intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
0, INTEL_REMAINING_LAYERS,
ISL_AUX_USAGE_NONE, false);
if (mt->aux_buf) {
intel_miptree_aux_buffer_free(mt->aux_buf);
mt->aux_buf = NULL;
/* Make future calls of intel_miptree_level_has_hiz() return false. */
for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
mt->level[l].has_hiz = false;
}
free(mt->aux_state);
mt->aux_state = NULL;
brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
}
mt->aux_usage = ISL_AUX_USAGE_NONE;
mt->supports_fast_clear = false;
}
/**
* \brief Get pointer offset into stencil buffer.
*
* The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
* must decode the tile's layout in software.
*
* See
* - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
* Format.
* - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
*
* Even though the returned offset is always positive, the return type is
* signed due to
* commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
* mesa: Fix return type of _mesa_get_format_bytes() (#37351)
*/
static intptr_t
intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
{
uint32_t tile_size = 4096;
uint32_t tile_width = 64;
uint32_t tile_height = 64;
uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
uint32_t tile_x = x / tile_width;
uint32_t tile_y = y / tile_height;
/* The byte's address relative to the tile's base addres. */
uint32_t byte_x = x % tile_width;
uint32_t byte_y = y % tile_height;
uintptr_t u = tile_y * row_size
+ tile_x * tile_size
+ 512 * (byte_x / 8)
+ 64 * (byte_y / 8)
+ 32 * ((byte_y / 4) % 2)
+ 16 * ((byte_x / 4) % 2)
+ 8 * ((byte_y / 2) % 2)
+ 4 * ((byte_x / 2) % 2)
+ 2 * (byte_y % 2)
+ 1 * (byte_x % 2);
if (swizzled) {
/* adjust for bit6 swizzling */
if (((byte_x / 8) % 2) == 1) {
if (((byte_y / 8) % 2) == 0) {
u += 64;
} else {
u -= 64;
}
}
}
return u;
}
void
intel_miptree_updownsample(struct brw_context *brw,
struct intel_mipmap_tree *src,
struct intel_mipmap_tree *dst)
{
unsigned src_w = src->surf.logical_level0_px.width;
unsigned src_h = src->surf.logical_level0_px.height;
unsigned dst_w = dst->surf.logical_level0_px.width;
unsigned dst_h = dst->surf.logical_level0_px.height;
brw_blorp_blit_miptrees(brw,
src, 0 /* level */, 0 /* layer */,
src->format, SWIZZLE_XYZW,
dst, 0 /* level */, 0 /* layer */, dst->format,
0, 0, src_w, src_h,
0, 0, dst_w, dst_h,
GL_NEAREST, false, false /*mirror x, y*/,
false, false);
if (src->stencil_mt) {
src_w = src->stencil_mt->surf.logical_level0_px.width;
src_h = src->stencil_mt->surf.logical_level0_px.height;
dst_w = dst->stencil_mt->surf.logical_level0_px.width;
dst_h = dst->stencil_mt->surf.logical_level0_px.height;
brw_blorp_blit_miptrees(brw,
src->stencil_mt, 0 /* level */, 0 /* layer */,
src->stencil_mt->format, SWIZZLE_XYZW,
dst->stencil_mt, 0 /* level */, 0 /* layer */,
dst->stencil_mt->format,
0, 0, src_w, src_h,
0, 0, dst_w, dst_h,
GL_NEAREST, false, false /*mirror x, y*/,
false, false /* decode/encode srgb */);
}
}
void
intel_update_r8stencil(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
assert(devinfo->gen >= 7);
struct intel_mipmap_tree *src =
mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
if (!src || devinfo->gen >= 8)
return;
assert(src->surf.size_B > 0);
if (!mt->r8stencil_mt) {
assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
mt->r8stencil_mt = make_surface(
brw,
src->target,
MESA_FORMAT_R_UINT8,
src->first_level, src->last_level,
src->surf.logical_level0_px.width,
src->surf.logical_level0_px.height,
src->surf.dim == ISL_SURF_DIM_3D ?
src->surf.logical_level0_px.depth :
src->surf.logical_level0_px.array_len,
src->surf.samples,
ISL_TILING_Y0_BIT,
ISL_SURF_USAGE_TEXTURE_BIT,
BO_ALLOC_BUSY, 0, NULL);
assert(mt->r8stencil_mt);
}
if (src->r8stencil_needs_update == false)
return;
struct intel_mipmap_tree *dst = mt->r8stencil_mt;
for (int level = src->first_level; level <= src->last_level; level++) {
const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
minify(src->surf.phys_level0_sa.depth, level) :
src->surf.phys_level0_sa.array_len;
for (unsigned layer = 0; layer < depth; layer++) {
brw_blorp_copy_miptrees(brw,
src, level, layer,
dst, level, layer,
0, 0, 0, 0,
minify(src->surf.logical_level0_px.width,
level),
minify(src->surf.logical_level0_px.height,
level));
}
}
brw_cache_flush_for_read(brw, dst->bo);
src->r8stencil_needs_update = false;
}
static void *
intel_miptree_map_raw(struct brw_context *brw,
struct intel_mipmap_tree *mt,
GLbitfield mode)
{
struct brw_bo *bo = mt->bo;
if (brw_batch_references(&brw->batch, bo))
intel_batchbuffer_flush(brw);
return brw_bo_map(brw, bo, mode);
}
static void
intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
{
brw_bo_unmap(mt->bo);
}
static void
intel_miptree_unmap_map(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
intel_miptree_unmap_raw(mt);
}
static void
intel_miptree_map_map(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
unsigned int bw, bh;
void *base;
unsigned int image_x, image_y;
intptr_t x = map->x;
intptr_t y = map->y;
/* For compressed formats, the stride is the number of bytes per
* row of blocks. intel_miptree_get_image_offset() already does
* the divide.
*/
_mesa_get_format_block_size(mt->format, &bw, &bh);
assert(y % bh == 0);
assert(x % bw == 0);
y /= bh;
x /= bw;
intel_miptree_access_raw(brw, mt, level, slice,
map->mode & GL_MAP_WRITE_BIT);
base = intel_miptree_map_raw(brw, mt, map->mode);
if (base == NULL)
map->ptr = NULL;
else {
base += mt->offset;
/* Note that in the case of cube maps, the caller must have passed the
* slice number referencing the face.
*/
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
x += image_x;
y += image_y;
map->stride = mt->surf.row_pitch_B;
map->ptr = base + y * map->stride + x * mt->cpp;
}
DBG("%s: %d,%d %dx%d from mt %p (%s) "
"%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
x, y, map->ptr, map->stride);
map->unmap = intel_miptree_unmap_map;
}
static void
intel_miptree_unmap_blit(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
struct gl_context *ctx = &brw->ctx;
intel_miptree_unmap_raw(map->linear_mt);
if (map->mode & GL_MAP_WRITE_BIT) {
if (devinfo->gen >= 6) {
brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
mt, level, slice,
0, 0, map->x, map->y, map->w, map->h);
} else {
bool ok = intel_miptree_copy(brw,
map->linear_mt, 0, 0, 0, 0,
mt, level, slice, map->x, map->y,
map->w, map->h);
WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
}
}
intel_miptree_release(&map->linear_mt);
}
/* Compute extent parameters for use with tiled_memcpy functions.
* xs are in units of bytes and ys are in units of strides.
*/
static inline void
tile_extents(struct intel_mipmap_tree *mt, struct intel_miptree_map *map,
unsigned int level, unsigned int slice, unsigned int *x1_B,
unsigned int *x2_B, unsigned int *y1_el, unsigned int *y2_el)
{
unsigned int block_width, block_height;
unsigned int x0_el, y0_el;
_mesa_get_format_block_size(mt->format, &block_width, &block_height);
assert(map->x % block_width == 0);
assert(map->y % block_height == 0);
intel_miptree_get_image_offset(mt, level, slice, &x0_el, &y0_el);
*x1_B = (map->x / block_width + x0_el) * mt->cpp;
*y1_el = map->y / block_height + y0_el;
*x2_B = (DIV_ROUND_UP(map->x + map->w, block_width) + x0_el) * mt->cpp;
*y2_el = DIV_ROUND_UP(map->y + map->h, block_height) + y0_el;
}
static void
intel_miptree_unmap_tiled_memcpy(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
if (map->mode & GL_MAP_WRITE_BIT) {
unsigned int x1, x2, y1, y2;
tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2);
char *dst = intel_miptree_map_raw(brw, mt, map->mode | MAP_RAW);
dst += mt->offset;
isl_memcpy_linear_to_tiled(
x1, x2, y1, y2, dst, map->ptr, mt->surf.row_pitch_B, map->stride,
brw->has_swizzling, mt->surf.tiling, ISL_MEMCPY);
intel_miptree_unmap_raw(mt);
}
_mesa_align_free(map->buffer);
map->buffer = map->ptr = NULL;
}
/**
* Determine which copy function to use for the given format combination
*
* The only two possible copy functions which are ever returned are a
* direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and
* BGRA -> RGBA are exactly the same operation (and memcpy is obviously
* symmetric), it doesn't matter whether the copy is from the tiled image
* to the untiled or vice versa. The copy function required is the same in
* either case so this function can be used.
*
* \param[in] tiledFormat The format of the tiled image
* \param[in] format The GL format of the client data
* \param[in] type The GL type of the client data
* \param[out] mem_copy Will be set to one of either the standard
* library's memcpy or a different copy function
* that performs an RGBA to BGRA conversion
* \param[out] cpp Number of bytes per channel
*
* \return true if the format and type combination are valid
*/
MAYBE_UNUSED isl_memcpy_type
intel_miptree_get_memcpy_type(mesa_format tiledFormat, GLenum format, GLenum type,
uint32_t *cpp)
{
if (type == GL_UNSIGNED_INT_8_8_8_8_REV &&
!(format == GL_RGBA || format == GL_BGRA))
return ISL_MEMCPY_INVALID; /* Invalid type/format combination */
if ((tiledFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) ||
(tiledFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) {
*cpp = 1;
return ISL_MEMCPY;
} else if ((tiledFormat == MESA_FORMAT_B8G8R8A8_UNORM) ||
(tiledFormat == MESA_FORMAT_B8G8R8X8_UNORM) ||
(tiledFormat == MESA_FORMAT_B8G8R8A8_SRGB) ||
(tiledFormat == MESA_FORMAT_B8G8R8X8_SRGB)) {
*cpp = 4;
if (format == GL_BGRA) {
return ISL_MEMCPY;
} else if (format == GL_RGBA) {
return ISL_MEMCPY_BGRA8;
}
} else if ((tiledFormat == MESA_FORMAT_R8G8B8A8_UNORM) ||
(tiledFormat == MESA_FORMAT_R8G8B8X8_UNORM) ||
(tiledFormat == MESA_FORMAT_R8G8B8A8_SRGB) ||
(tiledFormat == MESA_FORMAT_R8G8B8X8_SRGB)) {
*cpp = 4;
if (format == GL_BGRA) {
/* Copying from RGBA to BGRA is the same as BGRA to RGBA so we can
* use the same function.
*/
return ISL_MEMCPY_BGRA8;
} else if (format == GL_RGBA) {
return ISL_MEMCPY;
}
}
return ISL_MEMCPY_INVALID;
}
static void
intel_miptree_map_tiled_memcpy(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
intel_miptree_access_raw(brw, mt, level, slice,
map->mode & GL_MAP_WRITE_BIT);
unsigned int x1, x2, y1, y2;
tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2);
map->stride = ALIGN(_mesa_format_row_stride(mt->format, map->w), 16);
/* The tiling and detiling functions require that the linear buffer
* has proper 16-byte alignment (that is, its `x0` is 16-byte
* aligned). Here we over-allocate the linear buffer by enough
* bytes to get the proper alignment.
*/
map->buffer = _mesa_align_malloc(map->stride * (y2 - y1) + (x1 & 0xf), 16);
map->ptr = (char *)map->buffer + (x1 & 0xf);
assert(map->buffer);
if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
char *src = intel_miptree_map_raw(brw, mt, map->mode | MAP_RAW);
src += mt->offset;
const isl_memcpy_type copy_type =
#if defined(USE_SSE41)
cpu_has_sse4_1 ? ISL_MEMCPY_STREAMING_LOAD :
#endif
ISL_MEMCPY;
isl_memcpy_tiled_to_linear(
x1, x2, y1, y2, map->ptr, src, map->stride,
mt->surf.row_pitch_B, brw->has_swizzling, mt->surf.tiling,
copy_type);
intel_miptree_unmap_raw(mt);
}
map->unmap = intel_miptree_unmap_tiled_memcpy;
}
static void
intel_miptree_map_blit(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
map->linear_mt = make_surface(brw, GL_TEXTURE_2D, mt->format,
0, 0, map->w, map->h, 1, 1,
ISL_TILING_LINEAR_BIT,
ISL_SURF_USAGE_RENDER_TARGET_BIT |
ISL_SURF_USAGE_TEXTURE_BIT,
0, 0, NULL);
if (!map->linear_mt) {
fprintf(stderr, "Failed to allocate blit temporary\n");
goto fail;
}
map->stride = map->linear_mt->surf.row_pitch_B;
/* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
* INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
* invalidate is set, since we'll be writing the whole rectangle from our
* temporary buffer back out.
*/
if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
if (devinfo->gen >= 6) {
brw_blorp_copy_miptrees(brw, mt, level, slice,
map->linear_mt, 0, 0,
map->x, map->y, 0, 0, map->w, map->h);
} else {
if (!intel_miptree_copy(brw,
mt, level, slice, map->x, map->y,
map->linear_mt, 0, 0, 0, 0,
map->w, map->h)) {
fprintf(stderr, "Failed to blit\n");
goto fail;
}
}
}
map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
level, slice, map->ptr, map->stride);
map->unmap = intel_miptree_unmap_blit;
return;
fail:
intel_miptree_release(&map->linear_mt);
map->ptr = NULL;
map->stride = 0;
}
/**
* "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
*/
#if defined(USE_SSE41)
static void
intel_miptree_unmap_movntdqa(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
_mesa_align_free(map->buffer);
map->buffer = NULL;
map->ptr = NULL;
}
static void
intel_miptree_map_movntdqa(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
assert(map->mode & GL_MAP_READ_BIT);
assert(!(map->mode & GL_MAP_WRITE_BIT));
intel_miptree_access_raw(brw, mt, level, slice, false);
DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
level, slice, map->ptr, map->stride);
/* Map the original image */
uint32_t image_x;
uint32_t image_y;
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
image_x += map->x;
image_y += map->y;
void *src = intel_miptree_map_raw(brw, mt, map->mode);
if (!src)
return;
src += mt->offset;
src += image_y * mt->surf.row_pitch_B;
src += image_x * mt->cpp;
/* Due to the pixel offsets for the particular image being mapped, our
* src pointer may not be 16-byte aligned. However, if the pitch is
* divisible by 16, then the amount by which it's misaligned will remain
* consistent from row to row.
*/
assert((mt->surf.row_pitch_B % 16) == 0);
const int misalignment = ((uintptr_t) src) & 15;
/* Create an untiled temporary buffer for the mapping. */
const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
map->stride = ALIGN(misalignment + width_bytes, 16);
map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
/* Offset the destination so it has the same misalignment as src. */
map->ptr = map->buffer + misalignment;
assert((((uintptr_t) map->ptr) & 15) == misalignment);
for (uint32_t y = 0; y < map->h; y++) {
void *dst_ptr = map->ptr + y * map->stride;
void *src_ptr = src + y * mt->surf.row_pitch_B;
_mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
}
intel_miptree_unmap_raw(mt);
map->unmap = intel_miptree_unmap_movntdqa;
}
#endif
static void
intel_miptree_unmap_s8(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
if (map->mode & GL_MAP_WRITE_BIT) {
unsigned int image_x, image_y;
uint8_t *untiled_s8_map = map->ptr;
uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch_B,
image_x + x + map->x,
image_y + y + map->y,
brw->has_swizzling);
tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
}
}
intel_miptree_unmap_raw(mt);
}
free(map->buffer);
}
static void
intel_miptree_map_s8(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
map->stride = map->w;
map->buffer = map->ptr = malloc(map->stride * map->h);
if (!map->buffer)
return;
intel_miptree_access_raw(brw, mt, level, slice,
map->mode & GL_MAP_WRITE_BIT);
/* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
* INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
* invalidate is set, since we'll be writing the whole rectangle from our
* temporary buffer back out.
*/
if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
uint8_t *untiled_s8_map = map->ptr;
uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
unsigned int image_x, image_y;
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch_B,
x + image_x + map->x,
y + image_y + map->y,
brw->has_swizzling);
untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
}
}
intel_miptree_unmap_raw(mt);
DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
} else {
DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, map->ptr, map->stride);
}
map->unmap = intel_miptree_unmap_s8;
}
static void
intel_miptree_unmap_etc(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
uint32_t image_x;
uint32_t image_y;
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
image_x += map->x;
image_y += map->y;
uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
+ image_y * mt->surf.row_pitch_B
+ image_x * mt->cpp;
if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
_mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch_B,
map->ptr, map->stride,
map->w, map->h);
else
_mesa_unpack_etc2_format(dst, mt->surf.row_pitch_B,
map->ptr, map->stride,
map->w, map->h, mt->etc_format, true);
intel_miptree_unmap_raw(mt);
free(map->buffer);
}
static void
intel_miptree_map_etc(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
assert(mt->etc_format != MESA_FORMAT_NONE);
if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
}
assert(map->mode & GL_MAP_WRITE_BIT);
assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
intel_miptree_access_raw(brw, mt, level, slice, true);
map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
map->w, map->h, 1));
map->ptr = map->buffer;
map->unmap = intel_miptree_unmap_etc;
}
/**
* Mapping functions for packed depth/stencil miptrees backed by real separate
* miptrees for depth and stencil.
*
* On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
* separate from the depth buffer. Yet at the GL API level, we have to expose
* packed depth/stencil textures and FBO attachments, and Mesa core expects to
* be able to map that memory for texture storage and glReadPixels-type
* operations. We give Mesa core that access by mallocing a temporary and
* copying the data between the actual backing store and the temporary.
*/
static void
intel_miptree_unmap_depthstencil(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
struct intel_mipmap_tree *z_mt = mt;
struct intel_mipmap_tree *s_mt = mt->stencil_mt;
bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
if (map->mode & GL_MAP_WRITE_BIT) {
uint32_t *packed_map = map->ptr;
uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
unsigned int s_image_x, s_image_y;
unsigned int z_image_x, z_image_y;
intel_miptree_get_image_offset(s_mt, level, slice,
&s_image_x, &s_image_y);
intel_miptree_get_image_offset(z_mt, level, slice,
&z_image_x, &z_image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch_B,
x + s_image_x + map->x,
y + s_image_y + map->y,
brw->has_swizzling);
ptrdiff_t z_offset = ((y + z_image_y + map->y) *
(z_mt->surf.row_pitch_B / 4) +
(x + z_image_x + map->x));
if (map_z32f_x24s8) {
z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
} else {
uint32_t packed = packed_map[y * map->w + x];
s_map[s_offset] = packed >> 24;
z_map[z_offset] = packed;
}
}
}
intel_miptree_unmap_raw(s_mt);
intel_miptree_unmap_raw(z_mt);
DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
__func__,
map->x, map->y, map->w, map->h,
z_mt, _mesa_get_format_name(z_mt->format),
map->x + z_image_x, map->y + z_image_y,
s_mt, map->x + s_image_x, map->y + s_image_y,
map->ptr, map->stride);
}
free(map->buffer);
}
static void
intel_miptree_map_depthstencil(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
struct intel_mipmap_tree *z_mt = mt;
struct intel_mipmap_tree *s_mt = mt->stencil_mt;
bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
int packed_bpp = map_z32f_x24s8 ? 8 : 4;
map->stride = map->w * packed_bpp;
map->buffer = map->ptr = malloc(map->stride * map->h);
if (!map->buffer)
return;
intel_miptree_access_raw(brw, z_mt, level, slice,
map->mode & GL_MAP_WRITE_BIT);
intel_miptree_access_raw(brw, s_mt, level, slice,
map->mode & GL_MAP_WRITE_BIT);
/* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
* INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
* invalidate is set, since we'll be writing the whole rectangle from our
* temporary buffer back out.
*/
if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
uint32_t *packed_map = map->ptr;
uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
unsigned int s_image_x, s_image_y;
unsigned int z_image_x, z_image_y;
intel_miptree_get_image_offset(s_mt, level, slice,
&s_image_x, &s_image_y);
intel_miptree_get_image_offset(z_mt, level, slice,
&z_image_x, &z_image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
int map_x = map->x + x, map_y = map->y + y;
ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch_B,
map_x + s_image_x,
map_y + s_image_y,
brw->has_swizzling);
ptrdiff_t z_offset = ((map_y + z_image_y) *
(z_mt->surf.row_pitch_B / 4) +
(map_x + z_image_x));
uint8_t s = s_map[s_offset];
uint32_t z = z_map[z_offset];
if (map_z32f_x24s8) {
packed_map[(y * map->w + x) * 2 + 0] = z;
packed_map[(y * map->w + x) * 2 + 1] = s;
} else {
packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
}
}
}
intel_miptree_unmap_raw(s_mt);
intel_miptree_unmap_raw(z_mt);
DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
__func__,
map->x, map->y, map->w, map->h,
z_mt, map->x + z_image_x, map->y + z_image_y,
s_mt, map->x + s_image_x, map->y + s_image_y,
map->ptr, map->stride);
} else {
DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, map->ptr, map->stride);
}
map->unmap = intel_miptree_unmap_depthstencil;
}
/**
* Create and attach a map to the miptree at (level, slice). Return the
* attached map.
*/
static struct intel_miptree_map*
intel_miptree_attach_map(struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice,
unsigned int x,
unsigned int y,
unsigned int w,
unsigned int h,
GLbitfield mode)
{
struct intel_miptree_map *map = calloc(1, sizeof(*map));
if (!map)
return NULL;
assert(mt->level[level].slice[slice].map == NULL);
mt->level[level].slice[slice].map = map;
map->mode = mode;
map->x = x;
map->y = y;
map->w = w;
map->h = h;
return map;
}
/**
* Release the map at (level, slice).
*/
static void
intel_miptree_release_map(struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice)
{
struct intel_miptree_map **map;
map = &mt->level[level].slice[slice].map;
free(*map);
*map = NULL;
}
static bool
can_blit_slice(struct intel_mipmap_tree *mt,
const struct intel_miptree_map *map)
{
/* See intel_miptree_blit() for details on the 32k pitch limit. */
const unsigned src_blt_pitch = intel_miptree_blt_pitch(mt);
const unsigned dst_blt_pitch = ALIGN(map->w * mt->cpp, 64);
return src_blt_pitch < 32768 && dst_blt_pitch < 32768;
}
static bool
use_intel_mipree_map_blit(struct brw_context *brw,
struct intel_mipmap_tree *mt,
const struct intel_miptree_map *map)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
if (devinfo->has_llc &&
/* It's probably not worth swapping to the blit ring because of
* all the overhead involved.
*/
!(map->mode & GL_MAP_WRITE_BIT) &&
!mt->compressed &&
(mt->surf.tiling == ISL_TILING_X ||
/* Prior to Sandybridge, the blitter can't handle Y tiling */
(devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
/* Fast copy blit on skl+ supports all tiling formats. */
devinfo->gen >= 9) &&
can_blit_slice(mt, map))
return true;
if (mt->surf.tiling != ISL_TILING_LINEAR &&
mt->bo->size >= brw->max_gtt_map_object_size) {
assert(can_blit_slice(mt, map));
return true;
}
return false;
}
/**
* Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
* exceed 32 bits but to diminish the likelihood subtle bugs in pointer
* arithmetic overflow.
*
* If you call this function and use \a out_stride, then you're doing pointer
* arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
* bugs. The caller must still take care to avoid 32-bit overflow errors in
* all arithmetic expressions that contain buffer offsets and pixel sizes,
* which usually have type uint32_t or GLuint.
*/
void
intel_miptree_map(struct brw_context *brw,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice,
unsigned int x,
unsigned int y,
unsigned int w,
unsigned int h,
GLbitfield mode,
void **out_ptr,
ptrdiff_t *out_stride)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
struct intel_miptree_map *map;
assert(mt->surf.samples == 1);
map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
if (!map){
*out_ptr = NULL;
*out_stride = 0;
return;
}
if (mt->format == MESA_FORMAT_S_UINT8) {
intel_miptree_map_s8(brw, mt, map, level, slice);
} else if (mt->etc_format != MESA_FORMAT_NONE &&
!(mode & BRW_MAP_DIRECT_BIT)) {
intel_miptree_map_etc(brw, mt, map, level, slice);
} else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
intel_miptree_map_depthstencil(brw, mt, map, level, slice);
} else if (use_intel_mipree_map_blit(brw, mt, map)) {
intel_miptree_map_blit(brw, mt, map, level, slice);
} else if (mt->surf.tiling != ISL_TILING_LINEAR && devinfo->gen > 4) {
intel_miptree_map_tiled_memcpy(brw, mt, map, level, slice);
#if defined(USE_SSE41)
} else if (!(mode & GL_MAP_WRITE_BIT) &&
!mt->compressed && cpu_has_sse4_1 &&
(mt->surf.row_pitch_B % 16 == 0)) {
intel_miptree_map_movntdqa(brw, mt, map, level, slice);
#endif
} else {
if (mt->surf.tiling != ISL_TILING_LINEAR)
perf_debug("intel_miptree_map: mapping via gtt");
intel_miptree_map_map(brw, mt, map, level, slice);
}
*out_ptr = map->ptr;
*out_stride = map->stride;
if (map->ptr == NULL)
intel_miptree_release_map(mt, level, slice);
}
void
intel_miptree_unmap(struct brw_context *brw,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice)
{
struct intel_miptree_map *map = mt->level[level].slice[slice].map;
assert(mt->surf.samples == 1);
if (!map)
return;
DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
mt, _mesa_get_format_name(mt->format), level, slice);
if (map->unmap)
map->unmap(brw, mt, map, level, slice);
intel_miptree_release_map(mt, level, slice);
}
enum isl_surf_dim
get_isl_surf_dim(GLenum target)
{
switch (target) {
case GL_TEXTURE_1D:
case GL_TEXTURE_1D_ARRAY:
return ISL_SURF_DIM_1D;
case GL_TEXTURE_2D:
case GL_TEXTURE_2D_ARRAY:
case GL_TEXTURE_RECTANGLE:
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_CUBE_MAP_ARRAY:
case GL_TEXTURE_2D_MULTISAMPLE:
case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
case GL_TEXTURE_EXTERNAL_OES:
return ISL_SURF_DIM_2D;
case GL_TEXTURE_3D:
return ISL_SURF_DIM_3D;
}
unreachable("Invalid texture target");
}
enum isl_dim_layout
get_isl_dim_layout(const struct gen_device_info *devinfo,
enum isl_tiling tiling, GLenum target)
{
switch (target) {
case GL_TEXTURE_1D:
case GL_TEXTURE_1D_ARRAY:
return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
case GL_TEXTURE_2D:
case GL_TEXTURE_2D_ARRAY:
case GL_TEXTURE_RECTANGLE:
case GL_TEXTURE_2D_MULTISAMPLE:
case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
case GL_TEXTURE_EXTERNAL_OES:
return ISL_DIM_LAYOUT_GEN4_2D;
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_CUBE_MAP_ARRAY:
return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
ISL_DIM_LAYOUT_GEN4_2D);
case GL_TEXTURE_3D:
return (devinfo->gen >= 9 ?
ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
}
unreachable("Invalid texture target");
}
bool
intel_miptree_set_clear_color(struct brw_context *brw,
struct intel_mipmap_tree *mt,
union isl_color_value clear_color)
{
if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
mt->fast_clear_color = clear_color;
if (mt->aux_buf->clear_color_bo) {
/* We can't update the clear color while the hardware is still using
* the previous one for a resolve or sampling from it. Make sure that
* there are no pending commands at this point.
*/
brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
for (int i = 0; i < 4; i++) {
brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
mt->aux_buf->clear_color_offset + i * 4,
mt->fast_clear_color.u32[i]);
}
brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
return true;
}
return false;
}
union isl_color_value
intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
const struct intel_mipmap_tree *mt,
enum isl_format view_format, bool sampling,
struct brw_bo **clear_color_bo,
uint64_t *clear_color_offset)
{
assert(mt->aux_buf);
if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
/* The gen10 sampler doesn't gamma-correct the clear color. In this case,
* we switch to using the inline clear color and do the sRGB color
* conversion process defined in the OpenGL spec. The red, green, and
* blue channels take part in gamma correction, while the alpha channel
* is unchanged.
*/
union isl_color_value srgb_decoded_value = mt->fast_clear_color;
for (unsigned i = 0; i < 3; i++) {
srgb_decoded_value.f32[i] =
util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
}
*clear_color_bo = 0;
*clear_color_offset = 0;
return srgb_decoded_value;
} else {
*clear_color_bo = mt->aux_buf->clear_color_bo;
*clear_color_offset = mt->aux_buf->clear_color_offset;
return mt->fast_clear_color;
}
}