blob: 727def56f658e7ae966b1d8b467f3dd7aec92d1b [file] [log] [blame]
/*
* Copyright 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_shader_internal.h"
#include "si_pipe.h"
#include "sid.h"
#include "tgsi/tgsi_build.h"
#include "tgsi/tgsi_util.h"
#include "ac_llvm_util.h"
static void tex_fetch_ptrs(struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data,
LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
LLVMValueRef *fmask_ptr);
/**
* Given a v8i32 resource descriptor for a buffer, extract the size of the
* buffer in number of elements and return it as an i32.
*/
static LLVMValueRef get_buffer_size(
struct lp_build_tgsi_context *bld_base,
LLVMValueRef descriptor)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef size =
LLVMBuildExtractElement(builder, descriptor,
LLVMConstInt(ctx->i32, 2, 0), "");
if (ctx->screen->info.chip_class == VI) {
/* On VI, the descriptor contains the size in bytes,
* but TXQ must return the size in elements.
* The stride is always non-zero for resources using TXQ.
*/
LLVMValueRef stride =
LLVMBuildExtractElement(builder, descriptor,
ctx->i32_1, "");
stride = LLVMBuildLShr(builder, stride,
LLVMConstInt(ctx->i32, 16, 0), "");
stride = LLVMBuildAnd(builder, stride,
LLVMConstInt(ctx->i32, 0x3FFF, 0), "");
size = LLVMBuildUDiv(builder, size, stride, "");
}
return size;
}
static LLVMValueRef
shader_buffer_fetch_rsrc(struct si_shader_context *ctx,
const struct tgsi_full_src_register *reg,
bool ubo)
{
LLVMValueRef index;
if (!reg->Register.Indirect) {
index = LLVMConstInt(ctx->i32, reg->Register.Index, false);
} else {
index = si_get_indirect_index(ctx, &reg->Indirect,
1, reg->Register.Index);
}
if (ubo)
return ctx->abi.load_ubo(&ctx->abi, index);
else
return ctx->abi.load_ssbo(&ctx->abi, index, false);
}
static enum ac_image_dim
ac_texture_dim_from_tgsi_target(struct si_screen *screen, enum tgsi_texture_type target)
{
switch (target) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
if (screen->info.chip_class >= GFX9)
return ac_image_2d;
return ac_image_1d;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
return ac_image_2d;
case TGSI_TEXTURE_3D:
return ac_image_3d;
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
return ac_image_cube;
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
if (screen->info.chip_class >= GFX9)
return ac_image_2darray;
return ac_image_1darray;
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
return ac_image_2darray;
case TGSI_TEXTURE_2D_MSAA:
return ac_image_2dmsaa;
case TGSI_TEXTURE_2D_ARRAY_MSAA:
return ac_image_2darraymsaa;
default:
unreachable("unhandled texture type");
}
}
static enum ac_image_dim
ac_image_dim_from_tgsi_target(struct si_screen *screen, enum tgsi_texture_type target)
{
enum ac_image_dim dim = ac_texture_dim_from_tgsi_target(screen, target);
/* Match the resource type set in the descriptor. */
if (dim == ac_image_cube ||
(screen->info.chip_class <= VI && dim == ac_image_3d))
dim = ac_image_2darray;
else if (target == TGSI_TEXTURE_2D && screen->info.chip_class >= GFX9) {
/* When a single layer of a 3D texture is bound, the shader
* will refer to a 2D target, but the descriptor has a 3D type.
* Since the HW ignores BASE_ARRAY in this case, we need to
* send 3 coordinates. This doesn't hurt when the underlying
* texture is non-3D.
*/
dim = ac_image_3d;
}
return dim;
}
/**
* Given a 256-bit resource descriptor, force the DCC enable bit to off.
*
* At least on Tonga, executing image stores on images with DCC enabled and
* non-trivial can eventually lead to lockups. This can occur when an
* application binds an image as read-only but then uses a shader that writes
* to it. The OpenGL spec allows almost arbitrarily bad behavior (including
* program termination) in this case, but it doesn't cost much to be a bit
* nicer: disabling DCC in the shader still leads to undefined results but
* avoids the lockup.
*/
static LLVMValueRef force_dcc_off(struct si_shader_context *ctx,
LLVMValueRef rsrc)
{
if (ctx->screen->info.chip_class <= CIK) {
return rsrc;
} else {
LLVMValueRef i32_6 = LLVMConstInt(ctx->i32, 6, 0);
LLVMValueRef i32_C = LLVMConstInt(ctx->i32, C_008F28_COMPRESSION_EN, 0);
LLVMValueRef tmp;
tmp = LLVMBuildExtractElement(ctx->ac.builder, rsrc, i32_6, "");
tmp = LLVMBuildAnd(ctx->ac.builder, tmp, i32_C, "");
return LLVMBuildInsertElement(ctx->ac.builder, rsrc, tmp, i32_6, "");
}
}
LLVMValueRef si_load_image_desc(struct si_shader_context *ctx,
LLVMValueRef list, LLVMValueRef index,
enum ac_descriptor_type desc_type, bool dcc_off,
bool bindless)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef rsrc;
if (desc_type == AC_DESC_BUFFER) {
index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 2, 0),
ctx->i32_1);
list = LLVMBuildPointerCast(builder, list,
ac_array_in_const32_addr_space(ctx->v4i32), "");
} else {
assert(desc_type == AC_DESC_IMAGE);
}
if (bindless)
rsrc = ac_build_load_to_sgpr_uint_wraparound(&ctx->ac, list, index);
else
rsrc = ac_build_load_to_sgpr(&ctx->ac, list, index);
if (desc_type == AC_DESC_IMAGE && dcc_off)
rsrc = force_dcc_off(ctx, rsrc);
return rsrc;
}
/**
* Load the resource descriptor for \p image.
*/
static void
image_fetch_rsrc(
struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_src_register *image,
bool is_store, unsigned target,
LLVMValueRef *rsrc)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
ctx->param_samplers_and_images);
LLVMValueRef index;
bool dcc_off = is_store;
if (!image->Register.Indirect) {
const struct tgsi_shader_info *info = bld_base->info;
unsigned images_writemask = info->images_store |
info->images_atomic;
index = LLVMConstInt(ctx->i32,
si_get_image_slot(image->Register.Index), 0);
if (images_writemask & (1 << image->Register.Index))
dcc_off = true;
} else {
/* From the GL_ARB_shader_image_load_store extension spec:
*
* If a shader performs an image load, store, or atomic
* operation using an image variable declared as an array,
* and if the index used to select an individual element is
* negative or greater than or equal to the size of the
* array, the results of the operation are undefined but may
* not lead to termination.
*/
index = si_get_bounded_indirect_index(ctx, &image->Indirect,
image->Register.Index,
ctx->num_images);
index = LLVMBuildSub(ctx->ac.builder,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES - 1, 0),
index, "");
}
bool bindless = false;
if (image->Register.File != TGSI_FILE_IMAGE) {
/* Bindless descriptors are accessible from a different pair of
* user SGPR indices.
*/
rsrc_ptr = LLVMGetParam(ctx->main_fn,
ctx->param_bindless_samplers_and_images);
index = lp_build_emit_fetch_src(bld_base, image,
TGSI_TYPE_UNSIGNED, 0);
/* For simplicity, bindless image descriptors use fixed
* 16-dword slots for now.
*/
index = LLVMBuildMul(ctx->ac.builder, index,
LLVMConstInt(ctx->i32, 2, 0), "");
bindless = true;
}
*rsrc = si_load_image_desc(ctx, rsrc_ptr, index,
target == TGSI_TEXTURE_BUFFER ? AC_DESC_BUFFER : AC_DESC_IMAGE,
dcc_off, bindless);
}
static void image_fetch_coords(
struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_instruction *inst,
unsigned src, LLVMValueRef desc,
LLVMValueRef *coords)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
unsigned target = inst->Memory.Texture;
unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
LLVMValueRef tmp;
int chan;
if (target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
/* Need the sample index as well. */
num_coords++;
}
for (chan = 0; chan < num_coords; ++chan) {
tmp = lp_build_emit_fetch(bld_base, inst, src, chan);
tmp = ac_to_integer(&ctx->ac, tmp);
coords[chan] = tmp;
}
if (ctx->screen->info.chip_class >= GFX9) {
/* 1D textures are allocated and used as 2D on GFX9. */
if (target == TGSI_TEXTURE_1D) {
coords[1] = ctx->i32_0;
} else if (target == TGSI_TEXTURE_1D_ARRAY) {
coords[2] = coords[1];
coords[1] = ctx->i32_0;
} else if (target == TGSI_TEXTURE_2D) {
/* The hw can't bind a slice of a 3D image as a 2D
* image, because it ignores BASE_ARRAY if the target
* is 3D. The workaround is to read BASE_ARRAY and set
* it as the 3rd address operand for all 2D images.
*/
LLVMValueRef first_layer, const5, mask;
const5 = LLVMConstInt(ctx->i32, 5, 0);
mask = LLVMConstInt(ctx->i32, S_008F24_BASE_ARRAY(~0), 0);
first_layer = LLVMBuildExtractElement(builder, desc, const5, "");
first_layer = LLVMBuildAnd(builder, first_layer, mask, "");
coords[2] = first_layer;
}
}
}
static unsigned get_cache_policy(struct si_shader_context *ctx,
const struct tgsi_full_instruction *inst,
bool atomic, bool may_store_unaligned,
bool writeonly_memory)
{
unsigned cache_policy = 0;
if (!atomic &&
/* SI has a TC L1 bug causing corruption of 8bit/16bit stores.
* All store opcodes not aligned to a dword are affected.
* The only way to get unaligned stores in radeonsi is through
* shader images. */
((may_store_unaligned && ctx->screen->info.chip_class == SI) ||
/* If this is write-only, don't keep data in L1 to prevent
* evicting L1 cache lines that may be needed by other
* instructions. */
writeonly_memory ||
inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE)))
cache_policy |= ac_glc;
if (inst->Memory.Qualifier & TGSI_MEMORY_STREAM_CACHE_POLICY)
cache_policy |= ac_slc;
return cache_policy;
}
static LLVMValueRef get_memory_ptr(struct si_shader_context *ctx,
const struct tgsi_full_instruction *inst,
LLVMTypeRef type, int arg)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef offset, ptr;
int addr_space;
offset = lp_build_emit_fetch(&ctx->bld_base, inst, arg, 0);
offset = ac_to_integer(&ctx->ac, offset);
ptr = ctx->ac.lds;
ptr = LLVMBuildGEP(builder, ptr, &offset, 1, "");
addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(type, addr_space), "");
return ptr;
}
static void load_emit_memory(
struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
unsigned writemask = inst->Dst[0].Register.WriteMask;
LLVMValueRef channels[4], ptr, derived_ptr, index;
int chan;
ptr = get_memory_ptr(ctx, inst, ctx->f32, 1);
for (chan = 0; chan < 4; ++chan) {
if (!(writemask & (1 << chan))) {
channels[chan] = LLVMGetUndef(ctx->f32);
continue;
}
index = LLVMConstInt(ctx->i32, chan, 0);
derived_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, "");
channels[chan] = LLVMBuildLoad(ctx->ac.builder, derived_ptr, "");
}
emit_data->output[emit_data->chan] = ac_build_gather_values(&ctx->ac, channels, 4);
}
/**
* Return true if the memory accessed by a LOAD or STORE instruction is
* read-only or write-only, respectively.
*
* \param shader_buffers_reverse_access_mask
* For LOAD, set this to (store | atomic) slot usage in the shader.
* For STORE, set this to (load | atomic) slot usage in the shader.
* \param images_reverse_access_mask Same as above, but for images.
* \param bindless_buffer_reverse_access_mask Same as above, but for bindless image buffers.
* \param bindless_image_reverse_access_mask Same as above, but for bindless images.
*/
static bool is_oneway_access_only(const struct tgsi_full_instruction *inst,
const struct tgsi_shader_info *info,
unsigned shader_buffers_reverse_access_mask,
unsigned images_reverse_access_mask,
bool bindless_buffer_reverse_access_mask,
bool bindless_image_reverse_access_mask)
{
enum tgsi_file_type resource_file;
unsigned resource_index;
bool resource_indirect;
if (inst->Instruction.Opcode == TGSI_OPCODE_STORE) {
resource_file = inst->Dst[0].Register.File;
resource_index = inst->Dst[0].Register.Index;
resource_indirect = inst->Dst[0].Register.Indirect;
} else {
resource_file = inst->Src[0].Register.File;
resource_index = inst->Src[0].Register.Index;
resource_indirect = inst->Src[0].Register.Indirect;
}
assert(resource_file == TGSI_FILE_BUFFER ||
resource_file == TGSI_FILE_IMAGE ||
/* bindless image */
resource_file == TGSI_FILE_INPUT ||
resource_file == TGSI_FILE_OUTPUT ||
resource_file == TGSI_FILE_CONSTANT ||
resource_file == TGSI_FILE_TEMPORARY ||
resource_file == TGSI_FILE_IMMEDIATE);
assert(resource_file != TGSI_FILE_BUFFER ||
inst->Memory.Texture == TGSI_TEXTURE_BUFFER);
bool bindless = resource_file != TGSI_FILE_BUFFER &&
resource_file != TGSI_FILE_IMAGE;
/* RESTRICT means NOALIAS.
* If there are no writes, we can assume the accessed memory is read-only.
* If there are no reads, we can assume the accessed memory is write-only.
*/
if (inst->Memory.Qualifier & TGSI_MEMORY_RESTRICT && !bindless) {
unsigned reverse_access_mask;
if (resource_file == TGSI_FILE_BUFFER) {
reverse_access_mask = shader_buffers_reverse_access_mask;
} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
reverse_access_mask = info->images_buffers &
images_reverse_access_mask;
} else {
reverse_access_mask = ~info->images_buffers &
images_reverse_access_mask;
}
if (resource_indirect) {
if (!reverse_access_mask)
return true;
} else {
if (!(reverse_access_mask &
(1u << resource_index)))
return true;
}
}
/* If there are no buffer writes (for both shader buffers & image
* buffers), it implies that buffer memory is read-only.
* If there are no buffer reads (for both shader buffers & image
* buffers), it implies that buffer memory is write-only.
*
* Same for the case when there are no writes/reads for non-buffer
* images.
*/
if (resource_file == TGSI_FILE_BUFFER ||
inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
if (!shader_buffers_reverse_access_mask &&
!(info->images_buffers & images_reverse_access_mask) &&
!bindless_buffer_reverse_access_mask)
return true;
} else {
if (!(~info->images_buffers & images_reverse_access_mask) &&
!bindless_image_reverse_access_mask)
return true;
}
return false;
}
static void load_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction * inst = emit_data->inst;
const struct tgsi_shader_info *info = &ctx->shader->selector->info;
bool can_speculate = false;
LLVMValueRef vindex = ctx->i32_0;
LLVMValueRef voffset = ctx->i32_0;
struct ac_image_args args = {};
if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
load_emit_memory(ctx, emit_data);
return;
}
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
inst->Src[0].Register.File == TGSI_FILE_CONSTBUF) {
bool ubo = inst->Src[0].Register.File == TGSI_FILE_CONSTBUF;
args.resource = shader_buffer_fetch_rsrc(ctx, &inst->Src[0], ubo);
voffset = ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 1, 0));
} else {
unsigned target = inst->Memory.Texture;
image_fetch_rsrc(bld_base, &inst->Src[0], false, target, &args.resource);
image_fetch_coords(bld_base, inst, 1, args.resource, args.coords);
vindex = args.coords[0]; /* for buffers only */
}
if (inst->Src[0].Register.File == TGSI_FILE_CONSTBUF) {
emit_data->output[emit_data->chan] =
ac_build_buffer_load(&ctx->ac, args.resource,
util_last_bit(inst->Dst[0].Register.WriteMask),
NULL, voffset, NULL, 0, 0, 0, true, true);
return;
}
if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
ac_build_waitcnt(&ctx->ac, VM_CNT);
can_speculate = !(inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE) &&
is_oneway_access_only(inst, info,
info->shader_buffers_store |
info->shader_buffers_atomic,
info->images_store |
info->images_atomic,
info->uses_bindless_buffer_store |
info->uses_bindless_buffer_atomic,
info->uses_bindless_image_store |
info->uses_bindless_image_atomic);
args.cache_policy = get_cache_policy(ctx, inst, false, false, false);
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
/* Don't use SMEM for shader buffer loads, because LLVM doesn't
* select SMEM for SI.load.const with a non-constant offset, and
* constant offsets practically don't exist with shader buffers.
*
* Also, SI.load.const doesn't use inst_offset when it's lowered
* to VMEM, so we just end up with more VALU instructions in the end
* and no benefit.
*
* TODO: Remove this line once LLVM can select SMEM with a non-constant
* offset, and can derive inst_offset when VMEM is selected.
* After that, si_memory_barrier should invalidate sL1 for shader
* buffers.
*/
emit_data->output[emit_data->chan] =
ac_build_buffer_load(&ctx->ac, args.resource,
util_last_bit(inst->Dst[0].Register.WriteMask),
NULL, voffset, NULL, 0,
!!(args.cache_policy & ac_glc),
!!(args.cache_policy & ac_slc),
can_speculate, false);
return;
}
if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
unsigned num_channels = util_last_bit(inst->Dst[0].Register.WriteMask);
LLVMValueRef result =
ac_build_buffer_load_format(&ctx->ac,
args.resource,
vindex,
ctx->i32_0,
num_channels,
!!(args.cache_policy & ac_glc),
can_speculate);
emit_data->output[emit_data->chan] =
ac_build_expand_to_vec4(&ctx->ac, result, num_channels);
} else {
args.opcode = ac_image_load;
args.dim = ac_image_dim_from_tgsi_target(ctx->screen, inst->Memory.Texture);
args.attributes = ac_get_load_intr_attribs(can_speculate);
args.dmask = 0xf;
emit_data->output[emit_data->chan] =
ac_build_image_opcode(&ctx->ac, &args);
}
}
static void store_emit_buffer(struct si_shader_context *ctx,
LLVMValueRef resource,
unsigned writemask,
LLVMValueRef value,
LLVMValueRef voffset,
unsigned cache_policy,
bool writeonly_memory)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef base_data = value;
LLVMValueRef base_offset = voffset;
while (writemask) {
int start, count;
const char *intrinsic_name;
LLVMValueRef data, voff;
u_bit_scan_consecutive_range(&writemask, &start, &count);
/* Due to an LLVM limitation, split 3-element writes
* into a 2-element and a 1-element write. */
if (count == 3) {
writemask |= 1 << (start + 2);
count = 2;
}
if (count == 4) {
data = base_data;
intrinsic_name = "llvm.amdgcn.buffer.store.v4f32";
} else if (count == 2) {
LLVMValueRef values[2] = {
LLVMBuildExtractElement(builder, base_data,
LLVMConstInt(ctx->i32, start, 0), ""),
LLVMBuildExtractElement(builder, base_data,
LLVMConstInt(ctx->i32, start + 1, 0), ""),
};
data = ac_build_gather_values(&ctx->ac, values, 2);
intrinsic_name = "llvm.amdgcn.buffer.store.v2f32";
} else {
assert(count == 1);
data = LLVMBuildExtractElement(
builder, base_data,
LLVMConstInt(ctx->i32, start, 0), "");
intrinsic_name = "llvm.amdgcn.buffer.store.f32";
}
voff = base_offset;
if (start != 0) {
voff = LLVMBuildAdd(
builder, voff,
LLVMConstInt(ctx->i32, start * 4, 0), "");
}
LLVMValueRef args[] = {
data,
resource,
ctx->i32_0, /* vindex */
voff,
LLVMConstInt(ctx->i1, !!(cache_policy & ac_glc), 0),
LLVMConstInt(ctx->i1, !!(cache_policy & ac_slc), 0),
};
ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->voidt, args, 6,
ac_get_store_intr_attribs(writeonly_memory));
}
}
static void store_emit_memory(
struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
LLVMBuilderRef builder = ctx->ac.builder;
unsigned writemask = inst->Dst[0].Register.WriteMask;
LLVMValueRef ptr, derived_ptr, data, index;
int chan;
ptr = get_memory_ptr(ctx, inst, ctx->f32, 0);
for (chan = 0; chan < 4; ++chan) {
if (!(writemask & (1 << chan))) {
continue;
}
data = lp_build_emit_fetch(&ctx->bld_base, inst, 1, chan);
index = LLVMConstInt(ctx->i32, chan, 0);
derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
LLVMBuildStore(builder, data, derived_ptr);
}
}
static void store_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction * inst = emit_data->inst;
const struct tgsi_shader_info *info = &ctx->shader->selector->info;
struct tgsi_full_src_register resource_reg =
tgsi_full_src_register_from_dst(&inst->Dst[0]);
unsigned target = inst->Memory.Texture;
if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY) {
store_emit_memory(ctx, emit_data);
return;
}
bool writeonly_memory = is_oneway_access_only(inst, info,
info->shader_buffers_load |
info->shader_buffers_atomic,
info->images_load |
info->images_atomic,
info->uses_bindless_buffer_load |
info->uses_bindless_buffer_atomic,
info->uses_bindless_image_load |
info->uses_bindless_image_atomic);
LLVMValueRef chans[4];
LLVMValueRef vindex = ctx->i32_0;
LLVMValueRef voffset = ctx->i32_0;
struct ac_image_args args = {};
for (unsigned chan = 0; chan < 4; ++chan)
chans[chan] = lp_build_emit_fetch(bld_base, inst, 1, chan);
if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
args.resource = shader_buffer_fetch_rsrc(ctx, &resource_reg, false);
voffset = ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 0, 0));
} else {
image_fetch_rsrc(bld_base, &resource_reg, true, target, &args.resource);
image_fetch_coords(bld_base, inst, 0, args.resource, args.coords);
vindex = args.coords[0]; /* for buffers only */
}
if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
ac_build_waitcnt(&ctx->ac, VM_CNT);
bool is_image = inst->Dst[0].Register.File != TGSI_FILE_BUFFER;
args.cache_policy = get_cache_policy(ctx, inst,
false, /* atomic */
is_image, /* may_store_unaligned */
writeonly_memory);
if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
store_emit_buffer(ctx, args.resource, inst->Dst[0].Register.WriteMask,
ac_build_gather_values(&ctx->ac, chans, 4),
voffset, args.cache_policy, writeonly_memory);
return;
}
if (target == TGSI_TEXTURE_BUFFER) {
unsigned num_channels = util_last_bit(inst->Dst[0].Register.WriteMask);
num_channels = util_next_power_of_two(num_channels);
LLVMValueRef buf_args[6] = {
ac_build_gather_values(&ctx->ac, chans, 4),
args.resource,
vindex,
ctx->i32_0, /* voffset */
};
if (HAVE_LLVM >= 0x0800) {
buf_args[4] = ctx->i32_0; /* soffset */
buf_args[5] = LLVMConstInt(ctx->i1, args.cache_policy, 0);
} else {
buf_args[4] = LLVMConstInt(ctx->i1, !!(args.cache_policy & ac_glc), 0);
buf_args[5] = LLVMConstInt(ctx->i1, !!(args.cache_policy & ac_slc), 0);
}
const char *types[] = { "f32", "v2f32", "v4f32" };
char name[128];
snprintf(name, sizeof(name), "%s.%s",
HAVE_LLVM >= 0x0800 ? "llvm.amdgcn.struct.buffer.store.format" :
"llvm.amdgcn.buffer.store.format",
types[CLAMP(num_channels, 1, 3) - 1]);
emit_data->output[emit_data->chan] = ac_build_intrinsic(
&ctx->ac,
name,
ctx->voidt, buf_args, 6,
ac_get_store_intr_attribs(writeonly_memory));
} else {
args.opcode = ac_image_store;
args.data[0] = ac_build_gather_values(&ctx->ac, chans, 4);
args.dim = ac_image_dim_from_tgsi_target(ctx->screen, inst->Memory.Texture);
args.attributes = ac_get_store_intr_attribs(writeonly_memory);
args.dmask = 0xf;
emit_data->output[emit_data->chan] =
ac_build_image_opcode(&ctx->ac, &args);
}
}
static void atomic_emit_memory(struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data) {
LLVMBuilderRef builder = ctx->ac.builder;
const struct tgsi_full_instruction * inst = emit_data->inst;
LLVMValueRef ptr, result, arg;
ptr = get_memory_ptr(ctx, inst, ctx->i32, 1);
arg = lp_build_emit_fetch(&ctx->bld_base, inst, 2, 0);
arg = ac_to_integer(&ctx->ac, arg);
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
LLVMValueRef new_data;
new_data = lp_build_emit_fetch(&ctx->bld_base,
inst, 3, 0);
new_data = ac_to_integer(&ctx->ac, new_data);
result = LLVMBuildAtomicCmpXchg(builder, ptr, arg, new_data,
LLVMAtomicOrderingSequentiallyConsistent,
LLVMAtomicOrderingSequentiallyConsistent,
false);
result = LLVMBuildExtractValue(builder, result, 0, "");
} else {
LLVMAtomicRMWBinOp op;
switch(inst->Instruction.Opcode) {
case TGSI_OPCODE_ATOMUADD:
op = LLVMAtomicRMWBinOpAdd;
break;
case TGSI_OPCODE_ATOMXCHG:
op = LLVMAtomicRMWBinOpXchg;
break;
case TGSI_OPCODE_ATOMAND:
op = LLVMAtomicRMWBinOpAnd;
break;
case TGSI_OPCODE_ATOMOR:
op = LLVMAtomicRMWBinOpOr;
break;
case TGSI_OPCODE_ATOMXOR:
op = LLVMAtomicRMWBinOpXor;
break;
case TGSI_OPCODE_ATOMUMIN:
op = LLVMAtomicRMWBinOpUMin;
break;
case TGSI_OPCODE_ATOMUMAX:
op = LLVMAtomicRMWBinOpUMax;
break;
case TGSI_OPCODE_ATOMIMIN:
op = LLVMAtomicRMWBinOpMin;
break;
case TGSI_OPCODE_ATOMIMAX:
op = LLVMAtomicRMWBinOpMax;
break;
default:
unreachable("unknown atomic opcode");
}
result = LLVMBuildAtomicRMW(builder, op, ptr, arg,
LLVMAtomicOrderingSequentiallyConsistent,
false);
}
emit_data->output[emit_data->chan] =
LLVMBuildBitCast(builder, result, ctx->f32, "");
}
static void atomic_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction * inst = emit_data->inst;
struct ac_image_args args = {};
unsigned num_data = 0;
LLVMValueRef vindex = ctx->i32_0;
LLVMValueRef voffset = ctx->i32_0;
if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
atomic_emit_memory(ctx, emit_data);
return;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
/* llvm.amdgcn.image/buffer.atomic.cmpswap reflect the hardware order
* of arguments, which is reversed relative to TGSI (and GLSL)
*/
args.data[num_data++] =
ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 3, 0));
}
args.data[num_data++] =
ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 2, 0));
args.cache_policy = get_cache_policy(ctx, inst, true, false, false);
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
args.resource = shader_buffer_fetch_rsrc(ctx, &inst->Src[0], false);
voffset = ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 1, 0));
} else {
image_fetch_rsrc(bld_base, &inst->Src[0], true,
inst->Memory.Texture, &args.resource);
image_fetch_coords(bld_base, inst, 1, args.resource, args.coords);
vindex = args.coords[0]; /* for buffers only */
}
if (HAVE_LLVM >= 0x0800 &&
inst->Src[0].Register.File != TGSI_FILE_BUFFER &&
inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
LLVMValueRef buf_args[7];
unsigned num_args = 0;
buf_args[num_args++] = args.data[0];
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
buf_args[num_args++] = args.data[1];
buf_args[num_args++] = args.resource;
buf_args[num_args++] = vindex;
buf_args[num_args++] = voffset;
buf_args[num_args++] = ctx->i32_0; /* soffset */
buf_args[num_args++] = LLVMConstInt(ctx->i32, args.cache_policy & ac_slc, 0);
char intrinsic_name[64];
snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.struct.buffer.atomic.%s", action->intr_name);
emit_data->output[emit_data->chan] =
ac_to_float(&ctx->ac,
ac_build_intrinsic(&ctx->ac, intrinsic_name,
ctx->i32, buf_args, num_args, 0));
return;
}
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
(HAVE_LLVM < 0x0800 &&
inst->Memory.Texture == TGSI_TEXTURE_BUFFER)) {
LLVMValueRef buf_args[7];
unsigned num_args = 0;
buf_args[num_args++] = args.data[0];
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
buf_args[num_args++] = args.data[1];
buf_args[num_args++] = args.resource;
buf_args[num_args++] = vindex;
buf_args[num_args++] = voffset;
buf_args[num_args++] = args.cache_policy & ac_slc ? ctx->i1true : ctx->i1false;
char intrinsic_name[40];
snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.buffer.atomic.%s", action->intr_name);
emit_data->output[emit_data->chan] =
ac_to_float(&ctx->ac,
ac_build_intrinsic(&ctx->ac, intrinsic_name,
ctx->i32, buf_args, num_args, 0));
} else {
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
args.opcode = ac_image_atomic_cmpswap;
} else {
args.opcode = ac_image_atomic;
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ATOMXCHG: args.atomic = ac_atomic_swap; break;
case TGSI_OPCODE_ATOMUADD: args.atomic = ac_atomic_add; break;
case TGSI_OPCODE_ATOMAND: args.atomic = ac_atomic_and; break;
case TGSI_OPCODE_ATOMOR: args.atomic = ac_atomic_or; break;
case TGSI_OPCODE_ATOMXOR: args.atomic = ac_atomic_xor; break;
case TGSI_OPCODE_ATOMUMIN: args.atomic = ac_atomic_umin; break;
case TGSI_OPCODE_ATOMUMAX: args.atomic = ac_atomic_umax; break;
case TGSI_OPCODE_ATOMIMIN: args.atomic = ac_atomic_smin; break;
case TGSI_OPCODE_ATOMIMAX: args.atomic = ac_atomic_smax; break;
default: unreachable("unhandled image atomic");
}
}
args.dim = ac_image_dim_from_tgsi_target(ctx->screen, inst->Memory.Texture);
emit_data->output[emit_data->chan] =
ac_to_float(&ctx->ac, ac_build_image_opcode(&ctx->ac, &args));
}
}
static LLVMValueRef fix_resinfo(struct si_shader_context *ctx,
unsigned target, LLVMValueRef out)
{
LLVMBuilderRef builder = ctx->ac.builder;
/* 1D textures are allocated and used as 2D on GFX9. */
if (ctx->screen->info.chip_class >= GFX9 &&
(target == TGSI_TEXTURE_1D_ARRAY ||
target == TGSI_TEXTURE_SHADOW1D_ARRAY)) {
LLVMValueRef layers =
LLVMBuildExtractElement(builder, out,
LLVMConstInt(ctx->i32, 2, 0), "");
out = LLVMBuildInsertElement(builder, out, layers,
ctx->i32_1, "");
}
/* Divide the number of layers by 6 to get the number of cubes. */
if (target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
LLVMValueRef imm2 = LLVMConstInt(ctx->i32, 2, 0);
LLVMValueRef z = LLVMBuildExtractElement(builder, out, imm2, "");
z = LLVMBuildSDiv(builder, z, LLVMConstInt(ctx->i32, 6, 0), "");
out = LLVMBuildInsertElement(builder, out, z, imm2, "");
}
return out;
}
static void resq_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
const struct tgsi_full_instruction *inst = emit_data->inst;
const struct tgsi_full_src_register *reg =
&inst->Src[inst->Instruction.Opcode == TGSI_OPCODE_TXQ ? 1 : 0];
if (reg->Register.File == TGSI_FILE_BUFFER) {
LLVMValueRef rsrc = shader_buffer_fetch_rsrc(ctx, reg, false);
emit_data->output[emit_data->chan] =
LLVMBuildExtractElement(builder, rsrc,
LLVMConstInt(ctx->i32, 2, 0), "");
return;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ &&
inst->Texture.Texture == TGSI_TEXTURE_BUFFER) {
LLVMValueRef rsrc;
tex_fetch_ptrs(bld_base, emit_data, &rsrc, NULL, NULL);
/* Read the size from the buffer descriptor directly. */
emit_data->output[emit_data->chan] =
get_buffer_size(bld_base, rsrc);
return;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_RESQ &&
inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
LLVMValueRef rsrc;
image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture, &rsrc);
emit_data->output[emit_data->chan] =
get_buffer_size(bld_base, rsrc);
return;
}
unsigned target;
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
target = inst->Texture.Texture;
} else {
if (inst->Memory.Texture == TGSI_TEXTURE_3D)
target = TGSI_TEXTURE_2D_ARRAY;
else
target = inst->Memory.Texture;
}
struct ac_image_args args = {};
args.opcode = ac_image_get_resinfo;
args.dim = ac_texture_dim_from_tgsi_target(ctx->screen, target);
args.dmask = 0xf;
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
tex_fetch_ptrs(bld_base, emit_data, &args.resource, NULL, NULL);
args.lod = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
} else {
image_fetch_rsrc(bld_base, reg, false, target, &args.resource);
args.lod = ctx->i32_0;
}
emit_data->output[emit_data->chan] =
fix_resinfo(ctx, target, ac_build_image_opcode(&ctx->ac, &args));
}
/**
* Load an image view, fmask view. or sampler state descriptor.
*/
LLVMValueRef si_load_sampler_desc(struct si_shader_context *ctx,
LLVMValueRef list, LLVMValueRef index,
enum ac_descriptor_type type)
{
LLVMBuilderRef builder = ctx->ac.builder;
switch (type) {
case AC_DESC_IMAGE:
/* The image is at [0:7]. */
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
break;
case AC_DESC_BUFFER:
/* The buffer is in [4:7]. */
index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 4, 0),
ctx->i32_1);
list = LLVMBuildPointerCast(builder, list,
ac_array_in_const32_addr_space(ctx->v4i32), "");
break;
case AC_DESC_FMASK:
/* The FMASK is at [8:15]. */
index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 2, 0),
ctx->i32_1);
break;
case AC_DESC_SAMPLER:
/* The sampler state is at [12:15]. */
index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 4, 0),
LLVMConstInt(ctx->i32, 3, 0));
list = LLVMBuildPointerCast(builder, list,
ac_array_in_const32_addr_space(ctx->v4i32), "");
break;
}
return ac_build_load_to_sgpr(&ctx->ac, list, index);
}
/* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
*
* SI-CI:
* If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
* filtering manually. The driver sets img7 to a mask clearing
* MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
* s_and_b32 samp0, samp0, img7
*
* VI:
* The ANISO_OVERRIDE sampler field enables this fix in TA.
*/
static LLVMValueRef sici_fix_sampler_aniso(struct si_shader_context *ctx,
LLVMValueRef res, LLVMValueRef samp)
{
LLVMValueRef img7, samp0;
if (ctx->screen->info.chip_class >= VI)
return samp;
img7 = LLVMBuildExtractElement(ctx->ac.builder, res,
LLVMConstInt(ctx->i32, 7, 0), "");
samp0 = LLVMBuildExtractElement(ctx->ac.builder, samp,
ctx->i32_0, "");
samp0 = LLVMBuildAnd(ctx->ac.builder, samp0, img7, "");
return LLVMBuildInsertElement(ctx->ac.builder, samp, samp0,
ctx->i32_0, "");
}
static void tex_fetch_ptrs(struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data,
LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
LLVMValueRef *fmask_ptr)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMValueRef list = LLVMGetParam(ctx->main_fn, ctx->param_samplers_and_images);
const struct tgsi_full_instruction *inst = emit_data->inst;
const struct tgsi_full_src_register *reg;
unsigned target = inst->Texture.Texture;
unsigned sampler_src;
LLVMValueRef index;
sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
reg = &emit_data->inst->Src[sampler_src];
if (reg->Register.Indirect) {
index = si_get_bounded_indirect_index(ctx,
&reg->Indirect,
reg->Register.Index,
ctx->num_samplers);
index = LLVMBuildAdd(ctx->ac.builder, index,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES / 2, 0), "");
} else {
index = LLVMConstInt(ctx->i32,
si_get_sampler_slot(reg->Register.Index), 0);
}
if (reg->Register.File != TGSI_FILE_SAMPLER) {
/* Bindless descriptors are accessible from a different pair of
* user SGPR indices.
*/
list = LLVMGetParam(ctx->main_fn,
ctx->param_bindless_samplers_and_images);
index = lp_build_emit_fetch_src(bld_base, reg,
TGSI_TYPE_UNSIGNED, 0);
/* Since bindless handle arithmetic can contain an unsigned integer
* wraparound and si_load_sampler_desc assumes there isn't any,
* use GEP without "inbounds" (inside ac_build_pointer_add)
* to prevent incorrect code generation and hangs.
*/
index = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
list = ac_build_pointer_add(&ctx->ac, list, index);
index = ctx->i32_0;
}
if (target == TGSI_TEXTURE_BUFFER)
*res_ptr = si_load_sampler_desc(ctx, list, index, AC_DESC_BUFFER);
else
*res_ptr = si_load_sampler_desc(ctx, list, index, AC_DESC_IMAGE);
if (samp_ptr)
*samp_ptr = NULL;
if (fmask_ptr)
*fmask_ptr = NULL;
if (target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
if (fmask_ptr)
*fmask_ptr = si_load_sampler_desc(ctx, list, index,
AC_DESC_FMASK);
} else if (target != TGSI_TEXTURE_BUFFER) {
if (samp_ptr) {
*samp_ptr = si_load_sampler_desc(ctx, list, index,
AC_DESC_SAMPLER);
*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
}
}
}
/* Gather4 should follow the same rules as bilinear filtering, but the hardware
* incorrectly forces nearest filtering if the texture format is integer.
* The only effect it has on Gather4, which always returns 4 texels for
* bilinear filtering, is that the final coordinates are off by 0.5 of
* the texel size.
*
* The workaround is to subtract 0.5 from the unnormalized coordinates,
* or (0.5 / size) from the normalized coordinates.
*
* However, cube textures with 8_8_8_8 data formats require a different
* workaround of overriding the num format to USCALED/SSCALED. This would lose
* precision in 32-bit data formats, so it needs to be applied dynamically at
* runtime. In this case, return an i1 value that indicates whether the
* descriptor was overridden (and hence a fixup of the sampler result is needed).
*/
static LLVMValueRef
si_lower_gather4_integer(struct si_shader_context *ctx,
struct ac_image_args *args,
unsigned target,
enum tgsi_return_type return_type)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef wa_8888 = NULL;
LLVMValueRef half_texel[2];
assert(return_type == TGSI_RETURN_TYPE_SINT ||
return_type == TGSI_RETURN_TYPE_UINT);
if (target == TGSI_TEXTURE_CUBE ||
target == TGSI_TEXTURE_CUBE_ARRAY) {
LLVMValueRef formats;
LLVMValueRef data_format;
LLVMValueRef wa_formats;
formats = LLVMBuildExtractElement(builder, args->resource, ctx->i32_1, "");
data_format = LLVMBuildLShr(builder, formats,
LLVMConstInt(ctx->i32, 20, false), "");
data_format = LLVMBuildAnd(builder, data_format,
LLVMConstInt(ctx->i32, (1u << 6) - 1, false), "");
wa_8888 = LLVMBuildICmp(
builder, LLVMIntEQ, data_format,
LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false),
"");
uint32_t wa_num_format =
return_type == TGSI_RETURN_TYPE_UINT ?
S_008F14_NUM_FORMAT_GFX6(V_008F14_IMG_NUM_FORMAT_USCALED) :
S_008F14_NUM_FORMAT_GFX6(V_008F14_IMG_NUM_FORMAT_SSCALED);
wa_formats = LLVMBuildAnd(builder, formats,
LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT_GFX6, false),
"");
wa_formats = LLVMBuildOr(builder, wa_formats,
LLVMConstInt(ctx->i32, wa_num_format, false), "");
formats = LLVMBuildSelect(builder, wa_8888, wa_formats, formats, "");
args->resource = LLVMBuildInsertElement(
builder, args->resource, formats, ctx->i32_1, "");
}
if (target == TGSI_TEXTURE_RECT ||
target == TGSI_TEXTURE_SHADOWRECT) {
assert(!wa_8888);
half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
} else {
struct ac_image_args resinfo = {};
struct lp_build_if_state if_ctx;
if (wa_8888) {
/* Skip the texture size query entirely if we don't need it. */
lp_build_if(&if_ctx, &ctx->gallivm, LLVMBuildNot(builder, wa_8888, ""));
}
/* Query the texture size. */
resinfo.opcode = ac_image_get_resinfo;
resinfo.dim = ac_texture_dim_from_tgsi_target(ctx->screen, target);
resinfo.resource = args->resource;
resinfo.sampler = args->sampler;
resinfo.lod = ctx->ac.i32_0;
resinfo.dmask = 0xf;
LLVMValueRef texsize =
fix_resinfo(ctx, target,
ac_build_image_opcode(&ctx->ac, &resinfo));
/* Compute -0.5 / size. */
for (unsigned c = 0; c < 2; c++) {
half_texel[c] =
LLVMBuildExtractElement(builder, texsize,
LLVMConstInt(ctx->i32, c, 0), "");
half_texel[c] = LLVMBuildUIToFP(builder, half_texel[c], ctx->f32, "");
half_texel[c] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, half_texel[c]);
half_texel[c] = LLVMBuildFMul(builder, half_texel[c],
LLVMConstReal(ctx->f32, -0.5), "");
}
if (wa_8888) {
lp_build_endif(&if_ctx);
LLVMBasicBlockRef bb[2] = { if_ctx.true_block, if_ctx.entry_block };
for (unsigned c = 0; c < 2; c++) {
LLVMValueRef values[2] = { half_texel[c], ctx->ac.f32_0 };
half_texel[c] = ac_build_phi(&ctx->ac, ctx->f32, 2,
values, bb);
}
}
}
for (unsigned c = 0; c < 2; c++) {
LLVMValueRef tmp;
tmp = ac_to_float(&ctx->ac, args->coords[c]);
tmp = LLVMBuildFAdd(builder, tmp, half_texel[c], "");
args->coords[c] = ac_to_integer(&ctx->ac, tmp);
}
return wa_8888;
}
/* The second half of the cube texture 8_8_8_8 integer workaround: adjust the
* result after the gather operation.
*/
static LLVMValueRef
si_fix_gather4_integer_result(struct si_shader_context *ctx,
LLVMValueRef result,
enum tgsi_return_type return_type,
LLVMValueRef wa)
{
LLVMBuilderRef builder = ctx->ac.builder;
assert(return_type == TGSI_RETURN_TYPE_SINT ||
return_type == TGSI_RETURN_TYPE_UINT);
for (unsigned chan = 0; chan < 4; ++chan) {
LLVMValueRef chanv = LLVMConstInt(ctx->i32, chan, false);
LLVMValueRef value;
LLVMValueRef wa_value;
value = LLVMBuildExtractElement(builder, result, chanv, "");
if (return_type == TGSI_RETURN_TYPE_UINT)
wa_value = LLVMBuildFPToUI(builder, value, ctx->i32, "");
else
wa_value = LLVMBuildFPToSI(builder, value, ctx->i32, "");
wa_value = ac_to_float(&ctx->ac, wa_value);
value = LLVMBuildSelect(builder, wa, wa_value, value, "");
result = LLVMBuildInsertElement(builder, result, value, chanv, "");
}
return result;
}
static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction *inst = emit_data->inst;
unsigned opcode = inst->Instruction.Opcode;
unsigned target = inst->Texture.Texture;
struct ac_image_args args = {};
int ref_pos = tgsi_util_get_shadow_ref_src_index(target);
unsigned chan;
bool has_offset = inst->Texture.NumOffsets > 0;
LLVMValueRef fmask_ptr = NULL;
tex_fetch_ptrs(bld_base, emit_data, &args.resource, &args.sampler, &fmask_ptr);
if (target == TGSI_TEXTURE_BUFFER) {
LLVMValueRef vindex = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
unsigned num_channels =
util_last_bit(inst->Dst[0].Register.WriteMask);
LLVMValueRef result =
ac_build_buffer_load_format(&ctx->ac,
args.resource,
vindex,
ctx->i32_0,
num_channels, false, true);
emit_data->output[emit_data->chan] =
ac_build_expand_to_vec4(&ctx->ac, result, num_channels);
return;
}
/* Fetch and project texture coordinates */
args.coords[3] = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_W);
for (chan = 0; chan < 3; chan++) {
args.coords[chan] = lp_build_emit_fetch(bld_base, inst, 0, chan);
if (opcode == TGSI_OPCODE_TXP)
args.coords[chan] = ac_build_fdiv(&ctx->ac,
args.coords[chan], args.coords[3]);
}
if (opcode == TGSI_OPCODE_TXP)
args.coords[3] = ctx->ac.f32_1;
/* Pack offsets. */
if (has_offset &&
opcode != TGSI_OPCODE_TXF &&
opcode != TGSI_OPCODE_TXF_LZ) {
/* The offsets are six-bit signed integers packed like this:
* X=[5:0], Y=[13:8], and Z=[21:16].
*/
LLVMValueRef offset[3], pack;
assert(inst->Texture.NumOffsets == 1);
for (chan = 0; chan < 3; chan++) {
offset[chan] = lp_build_emit_fetch_texoffset(bld_base, inst, 0, chan);
offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->i32, 0x3f, 0), "");
if (chan)
offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->i32, chan*8, 0), "");
}
pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
args.offset = pack;
}
/* Pack LOD bias value */
if (opcode == TGSI_OPCODE_TXB)
args.bias = args.coords[3];
if (opcode == TGSI_OPCODE_TXB2)
args.bias = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
/* Pack depth comparison value */
if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
LLVMValueRef z;
if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
z = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
} else {
assert(ref_pos >= 0);
z = args.coords[ref_pos];
}
/* Section 8.23.1 (Depth Texture Comparison Mode) of the
* OpenGL 4.5 spec says:
*
* "If the texture’s internal format indicates a fixed-point
* depth texture, then D_t and D_ref are clamped to the
* range [0, 1]; otherwise no clamping is performed."
*
* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
* so the depth comparison value isn't clamped for Z16 and
* Z24 anymore. Do it manually here.
*/
if (ctx->screen->info.chip_class >= VI) {
LLVMValueRef upgraded;
LLVMValueRef clamped;
upgraded = LLVMBuildExtractElement(ctx->ac.builder, args.sampler,
LLVMConstInt(ctx->i32, 3, false), "");
upgraded = LLVMBuildLShr(ctx->ac.builder, upgraded,
LLVMConstInt(ctx->i32, 29, false), "");
upgraded = LLVMBuildTrunc(ctx->ac.builder, upgraded, ctx->i1, "");
clamped = ac_build_clamp(&ctx->ac, z);
z = LLVMBuildSelect(ctx->ac.builder, upgraded, clamped, z, "");
}
args.compare = z;
}
/* Pack user derivatives */
if (opcode == TGSI_OPCODE_TXD) {
int param, num_src_deriv_channels, num_dst_deriv_channels;
switch (target) {
case TGSI_TEXTURE_3D:
num_src_deriv_channels = 3;
num_dst_deriv_channels = 3;
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
num_src_deriv_channels = 2;
num_dst_deriv_channels = 2;
break;
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
/* Cube derivatives will be converted to 2D. */
num_src_deriv_channels = 3;
num_dst_deriv_channels = 3;
break;
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
num_src_deriv_channels = 1;
/* 1D textures are allocated and used as 2D on GFX9. */
if (ctx->screen->info.chip_class >= GFX9) {
num_dst_deriv_channels = 2;
} else {
num_dst_deriv_channels = 1;
}
break;
default:
unreachable("invalid target");
}
for (param = 0; param < 2; param++) {
for (chan = 0; chan < num_src_deriv_channels; chan++)
args.derivs[param * num_dst_deriv_channels + chan] =
lp_build_emit_fetch(bld_base, inst, param+1, chan);
/* Fill in the rest with zeros. */
for (chan = num_src_deriv_channels;
chan < num_dst_deriv_channels; chan++)
args.derivs[param * num_dst_deriv_channels + chan] =
ctx->ac.f32_0;
}
}
if (target == TGSI_TEXTURE_CUBE ||
target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
ac_prepare_cube_coords(&ctx->ac,
opcode == TGSI_OPCODE_TXD,
target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY,
opcode == TGSI_OPCODE_LODQ,
args.coords, args.derivs);
} else if (tgsi_is_array_sampler(target) &&
opcode != TGSI_OPCODE_TXF &&
opcode != TGSI_OPCODE_TXF_LZ &&
ctx->screen->info.chip_class <= VI) {
unsigned array_coord = target == TGSI_TEXTURE_1D_ARRAY ? 1 : 2;
args.coords[array_coord] = ac_build_round(&ctx->ac, args.coords[array_coord]);
}
/* 1D textures are allocated and used as 2D on GFX9. */
if (ctx->screen->info.chip_class >= GFX9) {
LLVMValueRef filler;
/* Use 0.5, so that we don't sample the border color. */
if (opcode == TGSI_OPCODE_TXF ||
opcode == TGSI_OPCODE_TXF_LZ)
filler = ctx->i32_0;
else
filler = LLVMConstReal(ctx->f32, 0.5);
if (target == TGSI_TEXTURE_1D ||
target == TGSI_TEXTURE_SHADOW1D) {
args.coords[1] = filler;
} else if (target == TGSI_TEXTURE_1D_ARRAY ||
target == TGSI_TEXTURE_SHADOW1D_ARRAY) {
args.coords[2] = args.coords[1];
args.coords[1] = filler;
}
}
/* Pack LOD or sample index */
if (opcode == TGSI_OPCODE_TXL)
args.lod = args.coords[3];
else if (opcode == TGSI_OPCODE_TXL2)
args.lod = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
else if (opcode == TGSI_OPCODE_TXF) {
if (target == TGSI_TEXTURE_2D_MSAA) {
/* No LOD, but move sample index into the right place. */
args.coords[2] = args.coords[3];
} else if (target != TGSI_TEXTURE_2D_ARRAY_MSAA) {
args.lod = args.coords[3];
}
}
if (target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
ac_apply_fmask_to_sample(&ctx->ac, fmask_ptr, args.coords,
target == TGSI_TEXTURE_2D_ARRAY_MSAA);
}
if (opcode == TGSI_OPCODE_TXF ||
opcode == TGSI_OPCODE_TXF_LZ) {
/* add tex offsets */
if (inst->Texture.NumOffsets) {
const struct tgsi_texture_offset *off = inst->TexOffsets;
assert(inst->Texture.NumOffsets == 1);
switch (target) {
case TGSI_TEXTURE_3D:
args.coords[2] =
LLVMBuildAdd(ctx->ac.builder, args.coords[2],
ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleZ], "");
/* fall through */
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
args.coords[1] =
LLVMBuildAdd(ctx->ac.builder, args.coords[1],
ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleY], "");
/* fall through */
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
args.coords[0] =
LLVMBuildAdd(ctx->ac.builder, args.coords[0],
ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleX], "");
break;
/* texture offsets do not apply to other texture targets */
}
}
}
if (opcode == TGSI_OPCODE_TG4) {
unsigned gather_comp = 0;
/* DMASK was repurposed for GATHER4. 4 components are always
* returned and DMASK works like a swizzle - it selects
* the component to fetch. The only valid DMASK values are
* 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
* (red,red,red,red) etc.) The ISA document doesn't mention
* this.
*/
/* Get the component index from src1.x for Gather4. */
if (!tgsi_is_shadow_target(target)) {
LLVMValueRef comp_imm;
struct tgsi_src_register src1 = inst->Src[1].Register;
assert(src1.File == TGSI_FILE_IMMEDIATE);
comp_imm = ctx->imms[src1.Index * TGSI_NUM_CHANNELS + src1.SwizzleX];
gather_comp = LLVMConstIntGetZExtValue(comp_imm);
gather_comp = CLAMP(gather_comp, 0, 3);
}
args.dmask = 1 << gather_comp;
} else {
args.dmask = 0xf;
}
args.dim = ac_texture_dim_from_tgsi_target(ctx->screen, target);
args.unorm = target == TGSI_TEXTURE_RECT ||
target == TGSI_TEXTURE_SHADOWRECT;
args.opcode = ac_image_sample;
switch (opcode) {
case TGSI_OPCODE_TXF:
case TGSI_OPCODE_TXF_LZ:
args.opcode = opcode == TGSI_OPCODE_TXF_LZ ||
target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
ac_image_load : ac_image_load_mip;
break;
case TGSI_OPCODE_LODQ:
args.opcode = ac_image_get_lod;
break;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXP:
if (ctx->type != PIPE_SHADER_FRAGMENT)
args.level_zero = true;
break;
case TGSI_OPCODE_TEX_LZ:
args.level_zero = true;
break;
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXB2:
assert(ctx->type == PIPE_SHADER_FRAGMENT);
break;
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXL2:
break;
case TGSI_OPCODE_TXD:
break;
case TGSI_OPCODE_TG4:
args.opcode = ac_image_gather4;
args.level_zero = true;
break;
default:
assert(0);
return;
}
/* The hardware needs special lowering for Gather4 with integer formats. */
LLVMValueRef gather4_int_result_workaround = NULL;
if (ctx->screen->info.chip_class <= VI &&
opcode == TGSI_OPCODE_TG4) {
assert(inst->Texture.ReturnType != TGSI_RETURN_TYPE_UNKNOWN);
if (inst->Texture.ReturnType == TGSI_RETURN_TYPE_SINT ||
inst->Texture.ReturnType == TGSI_RETURN_TYPE_UINT) {
gather4_int_result_workaround =
si_lower_gather4_integer(ctx, &args, target,
inst->Texture.ReturnType);
}
}
args.attributes = AC_FUNC_ATTR_READNONE;
LLVMValueRef result = ac_build_image_opcode(&ctx->ac, &args);
if (gather4_int_result_workaround) {
result = si_fix_gather4_integer_result(ctx, result,
inst->Texture.ReturnType,
gather4_int_result_workaround);
}
emit_data->output[emit_data->chan] = result;
}
static void si_llvm_emit_txqs(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMValueRef res, samples;
LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
/* Read the samples from the descriptor directly. */
res = LLVMBuildBitCast(ctx->ac.builder, res_ptr, ctx->v8i32, "");
samples = LLVMBuildExtractElement(ctx->ac.builder, res,
LLVMConstInt(ctx->i32, 3, 0), "");
samples = LLVMBuildLShr(ctx->ac.builder, samples,
LLVMConstInt(ctx->i32, 16, 0), "");
samples = LLVMBuildAnd(ctx->ac.builder, samples,
LLVMConstInt(ctx->i32, 0xf, 0), "");
samples = LLVMBuildShl(ctx->ac.builder, ctx->i32_1,
samples, "");
emit_data->output[emit_data->chan] = samples;
}
static void si_llvm_emit_fbfetch(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct ac_image_args args = {};
LLVMValueRef ptr, image, fmask;
/* Ignore src0, because KHR_blend_func_extended disallows multiple render
* targets.
*/
/* Load the image descriptor. */
STATIC_ASSERT(SI_PS_IMAGE_COLORBUF0 % 2 == 0);
ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
ptr = LLVMBuildPointerCast(ctx->ac.builder, ptr,
ac_array_in_const32_addr_space(ctx->v8i32), "");
image = ac_build_load_to_sgpr(&ctx->ac, ptr,
LLVMConstInt(ctx->i32, SI_PS_IMAGE_COLORBUF0 / 2, 0));
unsigned chan = 0;
args.coords[chan++] = si_unpack_param(ctx, SI_PARAM_POS_FIXED_PT, 0, 16);
if (!ctx->shader->key.mono.u.ps.fbfetch_is_1D)
args.coords[chan++] = si_unpack_param(ctx, SI_PARAM_POS_FIXED_PT, 16, 16);
/* Get the current render target layer index. */
if (ctx->shader->key.mono.u.ps.fbfetch_layered)
args.coords[chan++] = si_unpack_param(ctx, SI_PARAM_ANCILLARY, 16, 11);
if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
args.coords[chan++] = si_get_sample_id(ctx);
if (ctx->shader->key.mono.u.ps.fbfetch_msaa) {
fmask = ac_build_load_to_sgpr(&ctx->ac, ptr,
LLVMConstInt(ctx->i32, SI_PS_IMAGE_COLORBUF0_FMASK / 2, 0));
ac_apply_fmask_to_sample(&ctx->ac, fmask, args.coords,
ctx->shader->key.mono.u.ps.fbfetch_layered);
}
args.opcode = ac_image_load;
args.resource = image;
args.dmask = 0xf;
if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
ac_image_2darraymsaa : ac_image_2dmsaa;
else if (ctx->shader->key.mono.u.ps.fbfetch_is_1D)
args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
ac_image_1darray : ac_image_1d;
else
args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
ac_image_2darray : ac_image_2d;
emit_data->output[emit_data->chan] =
ac_build_image_opcode(&ctx->ac, &args);
}
/**
* Setup actions for TGSI memory opcode, including texture opcodes.
*/
void si_shader_context_init_mem(struct si_shader_context *ctx)
{
struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
bld_base->op_actions[TGSI_OPCODE_TEX].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TEX_LZ].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TEX2].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXB].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXB2].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXD].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXF].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXF_LZ].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXL].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXL2].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXP].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXQ].emit = resq_emit;
bld_base->op_actions[TGSI_OPCODE_TG4].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_LODQ].emit = build_tex_intrinsic;
bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
bld_base->op_actions[TGSI_OPCODE_FBFETCH].emit = si_llvm_emit_fbfetch;
bld_base->op_actions[TGSI_OPCODE_LOAD].emit = load_emit;
bld_base->op_actions[TGSI_OPCODE_STORE].emit = store_emit;
bld_base->op_actions[TGSI_OPCODE_RESQ].emit = resq_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMUADD].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMUADD].intr_name = "add";
bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].intr_name = "swap";
bld_base->op_actions[TGSI_OPCODE_ATOMCAS].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMCAS].intr_name = "cmpswap";
bld_base->op_actions[TGSI_OPCODE_ATOMAND].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMAND].intr_name = "and";
bld_base->op_actions[TGSI_OPCODE_ATOMOR].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMOR].intr_name = "or";
bld_base->op_actions[TGSI_OPCODE_ATOMXOR].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMXOR].intr_name = "xor";
bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].intr_name = "umin";
bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].intr_name = "umax";
bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].intr_name = "smin";
bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].intr_name = "smax";
}