blob: af86ad386f6d81d1518af58f83b29f50ffa3e1d9 [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/* This file implements randomized SDMA texture blit tests. */
#include "r600_pipe_common.h"
#include "util/u_surface.h"
#include "util/rand_xor.h"
static uint64_t seed_xorshift128plus[2];
#define RAND_NUM_SIZE 8
/* The GPU blits are emulated on the CPU using these CPU textures. */
struct cpu_texture {
uint8_t *ptr;
uint64_t size;
uint64_t layer_stride;
unsigned stride;
};
static void alloc_cpu_texture(struct cpu_texture *tex,
struct pipe_resource *templ, int bpp)
{
tex->stride = align(templ->width0 * bpp, RAND_NUM_SIZE);
tex->layer_stride = (uint64_t)tex->stride * templ->height0;
tex->size = tex->layer_stride * templ->array_size;
tex->ptr = malloc(tex->size);
assert(tex->ptr);
}
static void set_random_pixels(struct pipe_context *ctx,
struct pipe_resource *tex,
struct cpu_texture *cpu)
{
struct pipe_transfer *t;
uint8_t *map;
unsigned x,y,z;
map = pipe_transfer_map_3d(ctx, tex, 0, PIPE_TRANSFER_WRITE,
0, 0, 0, tex->width0, tex->height0,
tex->array_size, &t);
assert(map);
for (z = 0; z < tex->array_size; z++) {
for (y = 0; y < tex->height0; y++) {
uint64_t *ptr = (uint64_t*)
(map + t->layer_stride*z + t->stride*y);
uint64_t *ptr_cpu = (uint64_t*)
(cpu->ptr + cpu->layer_stride*z + cpu->stride*y);
unsigned size = cpu->stride / RAND_NUM_SIZE;
assert(t->stride % RAND_NUM_SIZE == 0);
assert(cpu->stride % RAND_NUM_SIZE == 0);
for (x = 0; x < size; x++) {
*ptr++ = *ptr_cpu++ =
rand_xorshift128plus(seed_xorshift128plus);
}
}
}
pipe_transfer_unmap(ctx, t);
}
static bool compare_textures(struct pipe_context *ctx,
struct pipe_resource *tex,
struct cpu_texture *cpu, int bpp)
{
struct pipe_transfer *t;
uint8_t *map;
int y,z;
bool pass = true;
map = pipe_transfer_map_3d(ctx, tex, 0, PIPE_TRANSFER_READ,
0, 0, 0, tex->width0, tex->height0,
tex->array_size, &t);
assert(map);
for (z = 0; z < tex->array_size; z++) {
for (y = 0; y < tex->height0; y++) {
uint8_t *ptr = map + t->layer_stride*z + t->stride*y;
uint8_t *cpu_ptr = cpu->ptr +
cpu->layer_stride*z + cpu->stride*y;
if (memcmp(ptr, cpu_ptr, tex->width0 * bpp)) {
pass = false;
goto done;
}
}
}
done:
pipe_transfer_unmap(ctx, t);
return pass;
}
static enum pipe_format get_format_from_bpp(int bpp)
{
switch (bpp) {
case 1:
return PIPE_FORMAT_R8_UINT;
case 2:
return PIPE_FORMAT_R16_UINT;
case 4:
return PIPE_FORMAT_R32_UINT;
case 8:
return PIPE_FORMAT_R32G32_UINT;
case 16:
return PIPE_FORMAT_R32G32B32A32_UINT;
default:
assert(0);
return PIPE_FORMAT_NONE;
}
}
static const char *array_mode_to_string(struct r600_common_screen *rscreen,
struct radeon_surf *surf)
{
if (rscreen->chip_class >= GFX9) {
/* TODO */
return " UNKNOWN";
} else {
switch (surf->u.legacy.level[0].mode) {
case RADEON_SURF_MODE_LINEAR_ALIGNED:
return "LINEAR_ALIGNED";
case RADEON_SURF_MODE_1D:
return "1D_TILED_THIN1";
case RADEON_SURF_MODE_2D:
return "2D_TILED_THIN1";
default:
assert(0);
return " UNKNOWN";
}
}
}
static unsigned generate_max_tex_side(unsigned max_tex_side)
{
switch (rand() % 4) {
case 0:
/* Try to hit large sizes in 1/4 of the cases. */
return max_tex_side;
case 1:
/* Try to hit 1D tiling in 1/4 of the cases. */
return 128;
default:
/* Try to hit common sizes in 2/4 of the cases. */
return 2048;
}
}
void r600_test_dma(struct r600_common_screen *rscreen)
{
struct pipe_screen *screen = &rscreen->b;
struct pipe_context *ctx = screen->context_create(screen, NULL, 0);
struct r600_common_context *rctx = (struct r600_common_context*)ctx;
uint64_t max_alloc_size;
unsigned i, iterations, num_partial_copies, max_levels, max_tex_side;
unsigned num_pass = 0, num_fail = 0;
max_levels = screen->get_param(screen, PIPE_CAP_MAX_TEXTURE_2D_LEVELS);
max_tex_side = 1 << (max_levels - 1);
/* Max 128 MB allowed for both textures. */
max_alloc_size = 128 * 1024 * 1024;
/* the seed for random test parameters */
srand(0x9b47d95b);
/* the seed for random pixel data */
s_rand_xorshift128plus(seed_xorshift128plus, false);
iterations = 1000000000; /* just kill it when you are bored */
num_partial_copies = 30;
/* These parameters are randomly generated per test:
* - whether to do one whole-surface copy or N partial copies per test
* - which tiling modes to use (LINEAR_ALIGNED, 1D, 2D)
* - which texture dimensions to use
* - whether to use VRAM (all tiling modes) and GTT (staging, linear
* only) allocations
* - random initial pixels in src
* - generate random subrectangle copies for partial blits
*/
for (i = 0; i < iterations; i++) {
struct pipe_resource tsrc = {}, tdst = {}, *src, *dst;
struct r600_texture *rdst;
struct r600_texture *rsrc;
struct cpu_texture src_cpu, dst_cpu;
unsigned bpp, max_width, max_height, max_depth, j, num;
unsigned gfx_blits = 0, dma_blits = 0, max_tex_side_gen;
unsigned max_tex_layers;
bool pass;
bool do_partial_copies = rand() & 1;
/* generate a random test case */
tsrc.target = tdst.target = PIPE_TEXTURE_2D_ARRAY;
tsrc.depth0 = tdst.depth0 = 1;
bpp = 1 << (rand() % 5);
tsrc.format = tdst.format = get_format_from_bpp(bpp);
max_tex_side_gen = generate_max_tex_side(max_tex_side);
max_tex_layers = rand() % 4 ? 1 : 5;
tsrc.width0 = (rand() % max_tex_side_gen) + 1;
tsrc.height0 = (rand() % max_tex_side_gen) + 1;
tsrc.array_size = (rand() % max_tex_layers) + 1;
/* Have a 1/4 chance of getting power-of-two dimensions. */
if (rand() % 4 == 0) {
tsrc.width0 = util_next_power_of_two(tsrc.width0);
tsrc.height0 = util_next_power_of_two(tsrc.height0);
}
if (!do_partial_copies) {
/* whole-surface copies only, same dimensions */
tdst = tsrc;
} else {
max_tex_side_gen = generate_max_tex_side(max_tex_side);
max_tex_layers = rand() % 4 ? 1 : 5;
/* many partial copies, dimensions can be different */
tdst.width0 = (rand() % max_tex_side_gen) + 1;
tdst.height0 = (rand() % max_tex_side_gen) + 1;
tdst.array_size = (rand() % max_tex_layers) + 1;
/* Have a 1/4 chance of getting power-of-two dimensions. */
if (rand() % 4 == 0) {
tdst.width0 = util_next_power_of_two(tdst.width0);
tdst.height0 = util_next_power_of_two(tdst.height0);
}
}
/* check texture sizes */
if ((uint64_t)tsrc.width0 * tsrc.height0 * tsrc.array_size * bpp +
(uint64_t)tdst.width0 * tdst.height0 * tdst.array_size * bpp >
max_alloc_size) {
/* too large, try again */
i--;
continue;
}
/* VRAM + the tiling mode depends on dimensions (3/4 of cases),
* or GTT + linear only (1/4 of cases)
*/
tsrc.usage = rand() % 4 ? PIPE_USAGE_DEFAULT : PIPE_USAGE_STAGING;
tdst.usage = rand() % 4 ? PIPE_USAGE_DEFAULT : PIPE_USAGE_STAGING;
/* Allocate textures (both the GPU and CPU copies).
* The CPU will emulate what the GPU should be doing.
*/
src = screen->resource_create(screen, &tsrc);
dst = screen->resource_create(screen, &tdst);
assert(src);
assert(dst);
rdst = (struct r600_texture*)dst;
rsrc = (struct r600_texture*)src;
alloc_cpu_texture(&src_cpu, &tsrc, bpp);
alloc_cpu_texture(&dst_cpu, &tdst, bpp);
printf("%4u: dst = (%5u x %5u x %u, %s), "
" src = (%5u x %5u x %u, %s), bpp = %2u, ",
i, tdst.width0, tdst.height0, tdst.array_size,
array_mode_to_string(rscreen, &rdst->surface),
tsrc.width0, tsrc.height0, tsrc.array_size,
array_mode_to_string(rscreen, &rsrc->surface), bpp);
fflush(stdout);
/* set src pixels */
set_random_pixels(ctx, src, &src_cpu);
/* clear dst pixels */
rctx->clear_buffer(ctx, dst, 0, rdst->surface.surf_size, 0, true);
memset(dst_cpu.ptr, 0, dst_cpu.layer_stride * tdst.array_size);
/* preparation */
max_width = MIN2(tsrc.width0, tdst.width0);
max_height = MIN2(tsrc.height0, tdst.height0);
max_depth = MIN2(tsrc.array_size, tdst.array_size);
num = do_partial_copies ? num_partial_copies : 1;
for (j = 0; j < num; j++) {
int width, height, depth;
int srcx, srcy, srcz, dstx, dsty, dstz;
struct pipe_box box;
unsigned old_num_draw_calls = rctx->num_draw_calls;
unsigned old_num_dma_calls = rctx->num_dma_calls;
if (!do_partial_copies) {
/* copy whole src to dst */
width = max_width;
height = max_height;
depth = max_depth;
srcx = srcy = srcz = dstx = dsty = dstz = 0;
} else {
/* random sub-rectangle copies from src to dst */
depth = (rand() % max_depth) + 1;
srcz = rand() % (tsrc.array_size - depth + 1);
dstz = rand() % (tdst.array_size - depth + 1);
/* special code path to hit the tiled partial copies */
if (!rsrc->surface.is_linear &&
!rdst->surface.is_linear &&
rand() & 1) {
if (max_width < 8 || max_height < 8)
continue;
width = ((rand() % (max_width / 8)) + 1) * 8;
height = ((rand() % (max_height / 8)) + 1) * 8;
srcx = rand() % (tsrc.width0 - width + 1) & ~0x7;
srcy = rand() % (tsrc.height0 - height + 1) & ~0x7;
dstx = rand() % (tdst.width0 - width + 1) & ~0x7;
dsty = rand() % (tdst.height0 - height + 1) & ~0x7;
} else {
/* just make sure that it doesn't divide by zero */
assert(max_width > 0 && max_height > 0);
width = (rand() % max_width) + 1;
height = (rand() % max_height) + 1;
srcx = rand() % (tsrc.width0 - width + 1);
srcy = rand() % (tsrc.height0 - height + 1);
dstx = rand() % (tdst.width0 - width + 1);
dsty = rand() % (tdst.height0 - height + 1);
}
/* special code path to hit out-of-bounds reads in L2T */
if (rsrc->surface.is_linear &&
!rdst->surface.is_linear &&
rand() % 4 == 0) {
srcx = 0;
srcy = 0;
srcz = 0;
}
}
/* GPU copy */
u_box_3d(srcx, srcy, srcz, width, height, depth, &box);
rctx->dma_copy(ctx, dst, 0, dstx, dsty, dstz, src, 0, &box);
/* See which engine was used. */
gfx_blits += rctx->num_draw_calls > old_num_draw_calls;
dma_blits += rctx->num_dma_calls > old_num_dma_calls;
/* CPU copy */
util_copy_box(dst_cpu.ptr, tdst.format, dst_cpu.stride,
dst_cpu.layer_stride,
dstx, dsty, dstz, width, height, depth,
src_cpu.ptr, src_cpu.stride,
src_cpu.layer_stride,
srcx, srcy, srcz);
}
pass = compare_textures(ctx, dst, &dst_cpu, bpp);
if (pass)
num_pass++;
else
num_fail++;
printf("BLITs: GFX = %2u, DMA = %2u, %s [%u/%u]\n",
gfx_blits, dma_blits, pass ? "pass" : "fail",
num_pass, num_pass+num_fail);
/* cleanup */
pipe_resource_reference(&src, NULL);
pipe_resource_reference(&dst, NULL);
free(src_cpu.ptr);
free(dst_cpu.ptr);
}
ctx->destroy(ctx);
exit(0);
}