blob: ec4fc4a6d4bf03fa248edda20496a421ecdbb95d [file] [log] [blame]
/*
* Copyright © 2016 Red Hat
* based on intel anv code:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_meta.h"
#include <fcntl.h>
#include <limits.h>
#include <pwd.h>
#include <sys/stat.h>
void
radv_meta_save(struct radv_meta_saved_state *state,
struct radv_cmd_buffer *cmd_buffer, uint32_t flags)
{
VkPipelineBindPoint bind_point =
flags & RADV_META_SAVE_GRAPHICS_PIPELINE ?
VK_PIPELINE_BIND_POINT_GRAPHICS :
VK_PIPELINE_BIND_POINT_COMPUTE;
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
assert(flags & (RADV_META_SAVE_GRAPHICS_PIPELINE |
RADV_META_SAVE_COMPUTE_PIPELINE));
state->flags = flags;
if (state->flags & RADV_META_SAVE_GRAPHICS_PIPELINE) {
assert(!(state->flags & RADV_META_SAVE_COMPUTE_PIPELINE));
state->old_pipeline = cmd_buffer->state.pipeline;
/* Save all viewports. */
state->viewport.count = cmd_buffer->state.dynamic.viewport.count;
typed_memcpy(state->viewport.viewports,
cmd_buffer->state.dynamic.viewport.viewports,
MAX_VIEWPORTS);
/* Save all scissors. */
state->scissor.count = cmd_buffer->state.dynamic.scissor.count;
typed_memcpy(state->scissor.scissors,
cmd_buffer->state.dynamic.scissor.scissors,
MAX_SCISSORS);
/* The most common meta operations all want to have the
* viewport reset and any scissors disabled. The rest of the
* dynamic state should have no effect.
*/
cmd_buffer->state.dynamic.viewport.count = 0;
cmd_buffer->state.dynamic.scissor.count = 0;
cmd_buffer->state.dirty |= 1 << VK_DYNAMIC_STATE_VIEWPORT |
1 << VK_DYNAMIC_STATE_SCISSOR;
}
if (state->flags & RADV_META_SAVE_COMPUTE_PIPELINE) {
assert(!(state->flags & RADV_META_SAVE_GRAPHICS_PIPELINE));
state->old_pipeline = cmd_buffer->state.compute_pipeline;
}
if (state->flags & RADV_META_SAVE_DESCRIPTORS) {
state->old_descriptor_set0 = descriptors_state->sets[0];
if (!state->old_descriptor_set0)
state->flags &= ~RADV_META_SAVE_DESCRIPTORS;
}
if (state->flags & RADV_META_SAVE_CONSTANTS) {
memcpy(state->push_constants, cmd_buffer->push_constants,
MAX_PUSH_CONSTANTS_SIZE);
}
if (state->flags & RADV_META_SAVE_PASS) {
state->pass = cmd_buffer->state.pass;
state->subpass = cmd_buffer->state.subpass;
state->framebuffer = cmd_buffer->state.framebuffer;
state->attachments = cmd_buffer->state.attachments;
state->render_area = cmd_buffer->state.render_area;
}
}
void
radv_meta_restore(const struct radv_meta_saved_state *state,
struct radv_cmd_buffer *cmd_buffer)
{
VkPipelineBindPoint bind_point =
state->flags & RADV_META_SAVE_GRAPHICS_PIPELINE ?
VK_PIPELINE_BIND_POINT_GRAPHICS :
VK_PIPELINE_BIND_POINT_COMPUTE;
if (state->flags & RADV_META_SAVE_GRAPHICS_PIPELINE) {
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS,
radv_pipeline_to_handle(state->old_pipeline));
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE;
/* Restore all viewports. */
cmd_buffer->state.dynamic.viewport.count = state->viewport.count;
typed_memcpy(cmd_buffer->state.dynamic.viewport.viewports,
state->viewport.viewports,
MAX_VIEWPORTS);
/* Restore all scissors. */
cmd_buffer->state.dynamic.scissor.count = state->scissor.count;
typed_memcpy(cmd_buffer->state.dynamic.scissor.scissors,
state->scissor.scissors,
MAX_SCISSORS);
cmd_buffer->state.dirty |= 1 << VK_DYNAMIC_STATE_VIEWPORT |
1 << VK_DYNAMIC_STATE_SCISSOR;
}
if (state->flags & RADV_META_SAVE_COMPUTE_PIPELINE) {
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE,
radv_pipeline_to_handle(state->old_pipeline));
}
if (state->flags & RADV_META_SAVE_DESCRIPTORS) {
radv_set_descriptor_set(cmd_buffer, bind_point,
state->old_descriptor_set0, 0);
}
if (state->flags & RADV_META_SAVE_CONSTANTS) {
memcpy(cmd_buffer->push_constants, state->push_constants,
MAX_PUSH_CONSTANTS_SIZE);
cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
if (state->flags & RADV_META_SAVE_GRAPHICS_PIPELINE) {
cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_ALL_GRAPHICS;
}
}
if (state->flags & RADV_META_SAVE_PASS) {
cmd_buffer->state.pass = state->pass;
cmd_buffer->state.subpass = state->subpass;
cmd_buffer->state.framebuffer = state->framebuffer;
cmd_buffer->state.attachments = state->attachments;
cmd_buffer->state.render_area = state->render_area;
if (state->subpass)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
}
}
VkImageViewType
radv_meta_get_view_type(const struct radv_image *image)
{
switch (image->type) {
case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
default:
unreachable("bad VkImageViewType");
}
}
/**
* When creating a destination VkImageView, this function provides the needed
* VkImageViewCreateInfo::subresourceRange::baseArrayLayer.
*/
uint32_t
radv_meta_get_iview_layer(const struct radv_image *dest_image,
const VkImageSubresourceLayers *dest_subresource,
const VkOffset3D *dest_offset)
{
switch (dest_image->type) {
case VK_IMAGE_TYPE_1D:
case VK_IMAGE_TYPE_2D:
return dest_subresource->baseArrayLayer;
case VK_IMAGE_TYPE_3D:
/* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
* but meta does it anyway. When doing so, we translate the
* destination's z offset into an array offset.
*/
return dest_offset->z;
default:
assert(!"bad VkImageType");
return 0;
}
}
static void *
meta_alloc(void* _device, size_t size, size_t alignment,
VkSystemAllocationScope allocationScope)
{
struct radv_device *device = _device;
return device->alloc.pfnAllocation(device->alloc.pUserData, size, alignment,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
}
static void *
meta_realloc(void* _device, void *original, size_t size, size_t alignment,
VkSystemAllocationScope allocationScope)
{
struct radv_device *device = _device;
return device->alloc.pfnReallocation(device->alloc.pUserData, original,
size, alignment,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
}
static void
meta_free(void* _device, void *data)
{
struct radv_device *device = _device;
return device->alloc.pfnFree(device->alloc.pUserData, data);
}
static bool
radv_builtin_cache_path(char *path)
{
char *xdg_cache_home = getenv("XDG_CACHE_HOME");
const char *suffix = "/radv_builtin_shaders";
const char *suffix2 = "/.cache/radv_builtin_shaders";
struct passwd pwd, *result;
char path2[PATH_MAX + 1]; /* PATH_MAX is not a real max,but suffices here. */
int ret;
if (xdg_cache_home) {
ret = snprintf(path, PATH_MAX + 1, "%s%s%zd",
xdg_cache_home, suffix, sizeof(void *) * 8);
return ret > 0 && ret < PATH_MAX + 1;
}
getpwuid_r(getuid(), &pwd, path2, PATH_MAX - strlen(suffix2), &result);
if (!result)
return false;
strcpy(path, pwd.pw_dir);
strcat(path, "/.cache");
mkdir(path, 0755);
ret = snprintf(path, PATH_MAX + 1, "%s%s%zd",
pwd.pw_dir, suffix2, sizeof(void *) * 8);
return ret > 0 && ret < PATH_MAX + 1;
}
static bool
radv_load_meta_pipeline(struct radv_device *device)
{
char path[PATH_MAX + 1];
struct stat st;
void *data = NULL;
bool ret = false;
if (!radv_builtin_cache_path(path))
return false;
int fd = open(path, O_RDONLY);
if (fd < 0)
return false;
if (fstat(fd, &st))
goto fail;
data = malloc(st.st_size);
if (!data)
goto fail;
if(read(fd, data, st.st_size) == -1)
goto fail;
ret = radv_pipeline_cache_load(&device->meta_state.cache, data, st.st_size);
fail:
free(data);
close(fd);
return ret;
}
static void
radv_store_meta_pipeline(struct radv_device *device)
{
char path[PATH_MAX + 1], path2[PATH_MAX + 7];
size_t size;
void *data = NULL;
if (!device->meta_state.cache.modified)
return;
if (radv_GetPipelineCacheData(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&size, NULL))
return;
if (!radv_builtin_cache_path(path))
return;
strcpy(path2, path);
strcat(path2, "XXXXXX");
int fd = mkstemp(path2);//open(path, O_WRONLY | O_CREAT, 0600);
if (fd < 0)
return;
data = malloc(size);
if (!data)
goto fail;
if (radv_GetPipelineCacheData(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&size, data))
goto fail;
if(write(fd, data, size) == -1)
goto fail;
rename(path2, path);
fail:
free(data);
close(fd);
unlink(path2);
}
VkResult
radv_device_init_meta(struct radv_device *device)
{
VkResult result;
memset(&device->meta_state, 0, sizeof(device->meta_state));
device->meta_state.alloc = (VkAllocationCallbacks) {
.pUserData = device,
.pfnAllocation = meta_alloc,
.pfnReallocation = meta_realloc,
.pfnFree = meta_free,
};
device->meta_state.cache.alloc = device->meta_state.alloc;
radv_pipeline_cache_init(&device->meta_state.cache, device);
bool loaded_cache = radv_load_meta_pipeline(device);
bool on_demand = !loaded_cache;
mtx_init(&device->meta_state.mtx, mtx_plain);
result = radv_device_init_meta_clear_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_clear;
result = radv_device_init_meta_resolve_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_resolve;
result = radv_device_init_meta_blit_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_blit;
result = radv_device_init_meta_blit2d_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_blit2d;
result = radv_device_init_meta_bufimage_state(device);
if (result != VK_SUCCESS)
goto fail_bufimage;
result = radv_device_init_meta_depth_decomp_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_depth_decomp;
result = radv_device_init_meta_buffer_state(device);
if (result != VK_SUCCESS)
goto fail_buffer;
result = radv_device_init_meta_query_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_query;
result = radv_device_init_meta_fast_clear_flush_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_fast_clear;
result = radv_device_init_meta_resolve_compute_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_resolve_compute;
result = radv_device_init_meta_resolve_fragment_state(device, on_demand);
if (result != VK_SUCCESS)
goto fail_resolve_fragment;
result = radv_device_init_meta_fmask_expand_state(device);
if (result != VK_SUCCESS)
goto fail_fmask_expand;
return VK_SUCCESS;
fail_fmask_expand:
radv_device_finish_meta_resolve_fragment_state(device);
fail_resolve_fragment:
radv_device_finish_meta_resolve_compute_state(device);
fail_resolve_compute:
radv_device_finish_meta_fast_clear_flush_state(device);
fail_fast_clear:
radv_device_finish_meta_query_state(device);
fail_query:
radv_device_finish_meta_buffer_state(device);
fail_buffer:
radv_device_finish_meta_depth_decomp_state(device);
fail_depth_decomp:
radv_device_finish_meta_bufimage_state(device);
fail_bufimage:
radv_device_finish_meta_blit2d_state(device);
fail_blit2d:
radv_device_finish_meta_blit_state(device);
fail_blit:
radv_device_finish_meta_resolve_state(device);
fail_resolve:
radv_device_finish_meta_clear_state(device);
fail_clear:
mtx_destroy(&device->meta_state.mtx);
radv_pipeline_cache_finish(&device->meta_state.cache);
return result;
}
void
radv_device_finish_meta(struct radv_device *device)
{
radv_device_finish_meta_clear_state(device);
radv_device_finish_meta_resolve_state(device);
radv_device_finish_meta_blit_state(device);
radv_device_finish_meta_blit2d_state(device);
radv_device_finish_meta_bufimage_state(device);
radv_device_finish_meta_depth_decomp_state(device);
radv_device_finish_meta_query_state(device);
radv_device_finish_meta_buffer_state(device);
radv_device_finish_meta_fast_clear_flush_state(device);
radv_device_finish_meta_resolve_compute_state(device);
radv_device_finish_meta_resolve_fragment_state(device);
radv_device_finish_meta_fmask_expand_state(device);
radv_store_meta_pipeline(device);
radv_pipeline_cache_finish(&device->meta_state.cache);
mtx_destroy(&device->meta_state.mtx);
}
nir_ssa_def *radv_meta_gen_rect_vertices_comp2(nir_builder *vs_b, nir_ssa_def *comp2)
{
nir_intrinsic_instr *vertex_id = nir_intrinsic_instr_create(vs_b->shader, nir_intrinsic_load_vertex_id_zero_base);
nir_ssa_dest_init(&vertex_id->instr, &vertex_id->dest, 1, 32, "vertexid");
nir_builder_instr_insert(vs_b, &vertex_id->instr);
/* vertex 0 - -1.0, -1.0 */
/* vertex 1 - -1.0, 1.0 */
/* vertex 2 - 1.0, -1.0 */
/* so channel 0 is vertex_id != 2 ? -1.0 : 1.0
channel 1 is vertex id != 1 ? -1.0 : 1.0 */
nir_ssa_def *c0cmp = nir_ine(vs_b, &vertex_id->dest.ssa,
nir_imm_int(vs_b, 2));
nir_ssa_def *c1cmp = nir_ine(vs_b, &vertex_id->dest.ssa,
nir_imm_int(vs_b, 1));
nir_ssa_def *comp[4];
comp[0] = nir_bcsel(vs_b, c0cmp,
nir_imm_float(vs_b, -1.0),
nir_imm_float(vs_b, 1.0));
comp[1] = nir_bcsel(vs_b, c1cmp,
nir_imm_float(vs_b, -1.0),
nir_imm_float(vs_b, 1.0));
comp[2] = comp2;
comp[3] = nir_imm_float(vs_b, 1.0);
nir_ssa_def *outvec = nir_vec(vs_b, comp, 4);
return outvec;
}
nir_ssa_def *radv_meta_gen_rect_vertices(nir_builder *vs_b)
{
return radv_meta_gen_rect_vertices_comp2(vs_b, nir_imm_float(vs_b, 0.0));
}
/* vertex shader that generates vertices */
nir_shader *
radv_meta_build_nir_vs_generate_vertices(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b;
nir_variable *v_position;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_vs_gen_verts");
nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b);
v_position = nir_variable_create(b.shader, nir_var_shader_out, vec4,
"gl_Position");
v_position->data.location = VARYING_SLOT_POS;
nir_store_var(&b, v_position, outvec, 0xf);
return b.shader;
}
nir_shader *
radv_meta_build_nir_fs_noop(void)
{
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_asprintf(b.shader,
"meta_noop_fs");
return b.shader;
}
void radv_meta_build_resolve_shader_core(nir_builder *b,
bool is_integer,
int samples,
nir_variable *input_img,
nir_variable *color,
nir_ssa_def *img_coord)
{
/* do a txf_ms on each sample */
nir_ssa_def *tmp;
nir_if *outer_if = NULL;
nir_ssa_def *input_img_deref = &nir_build_deref_var(b, input_img)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b->shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->op = nir_texop_txf_ms;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(img_coord);
tex->src[1].src_type = nir_tex_src_ms_index;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = nir_type_float;
tex->is_array = false;
tex->coord_components = 2;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(b, &tex->instr);
tmp = &tex->dest.ssa;
if (!is_integer && samples > 1) {
nir_tex_instr *tex_all_same = nir_tex_instr_create(b->shader, 2);
tex_all_same->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex_all_same->op = nir_texop_samples_identical;
tex_all_same->src[0].src_type = nir_tex_src_coord;
tex_all_same->src[0].src = nir_src_for_ssa(img_coord);
tex_all_same->src[1].src_type = nir_tex_src_texture_deref;
tex_all_same->src[1].src = nir_src_for_ssa(input_img_deref);
tex_all_same->dest_type = nir_type_float;
tex_all_same->is_array = false;
tex_all_same->coord_components = 2;
nir_ssa_dest_init(&tex_all_same->instr, &tex_all_same->dest, 1, 32, "tex");
nir_builder_instr_insert(b, &tex_all_same->instr);
nir_ssa_def *all_same = nir_ieq(b, &tex_all_same->dest.ssa, nir_imm_int(b, 0));
nir_if *if_stmt = nir_if_create(b->shader);
if_stmt->condition = nir_src_for_ssa(all_same);
nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
b->cursor = nir_after_cf_list(&if_stmt->then_list);
for (int i = 1; i < samples; i++) {
nir_tex_instr *tex_add = nir_tex_instr_create(b->shader, 3);
tex_add->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex_add->op = nir_texop_txf_ms;
tex_add->src[0].src_type = nir_tex_src_coord;
tex_add->src[0].src = nir_src_for_ssa(img_coord);
tex_add->src[1].src_type = nir_tex_src_ms_index;
tex_add->src[1].src = nir_src_for_ssa(nir_imm_int(b, i));
tex_add->src[2].src_type = nir_tex_src_texture_deref;
tex_add->src[2].src = nir_src_for_ssa(input_img_deref);
tex_add->dest_type = nir_type_float;
tex_add->is_array = false;
tex_add->coord_components = 2;
nir_ssa_dest_init(&tex_add->instr, &tex_add->dest, 4, 32, "tex");
nir_builder_instr_insert(b, &tex_add->instr);
tmp = nir_fadd(b, tmp, &tex_add->dest.ssa);
}
tmp = nir_fdiv(b, tmp, nir_imm_float(b, samples));
nir_store_var(b, color, tmp, 0xf);
b->cursor = nir_after_cf_list(&if_stmt->else_list);
outer_if = if_stmt;
}
nir_store_var(b, color, &tex->dest.ssa, 0xf);
if (outer_if)
b->cursor = nir_after_cf_node(&outer_if->cf_node);
}