blob: 7fd6bc9173ba94a649e20ff81c4a32bb17d99efa [file] [log] [blame]
/*
* Copyright © 2007-2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
// Coordinate class implementation
#include "addrcommon.h"
#include "coord.h"
namespace Addr
{
namespace V2
{
Coordinate::Coordinate()
{
dim = 'x';
ord = 0;
}
Coordinate::Coordinate(INT_8 c, INT_32 n)
{
set(c, n);
}
VOID Coordinate::set(INT_8 c, INT_32 n)
{
dim = c;
ord = static_cast<INT_8>(n);
}
UINT_32 Coordinate::ison(UINT_32 x, UINT_32 y, UINT_32 z, UINT_32 s, UINT_32 m) const
{
UINT_32 bit = static_cast<UINT_32>(1ull << static_cast<UINT_32>(ord));
UINT_32 out = 0;
switch (dim)
{
case 'm': out = m & bit; break;
case 's': out = s & bit; break;
case 'x': out = x & bit; break;
case 'y': out = y & bit; break;
case 'z': out = z & bit; break;
}
return (out != 0) ? 1 : 0;
}
INT_8 Coordinate::getdim()
{
return dim;
}
INT_8 Coordinate::getord()
{
return ord;
}
BOOL_32 Coordinate::operator==(const Coordinate& b)
{
return (dim == b.dim) && (ord == b.ord);
}
BOOL_32 Coordinate::operator<(const Coordinate& b)
{
BOOL_32 ret;
if (dim == b.dim)
{
ret = ord < b.ord;
}
else
{
if (dim == 's' || b.dim == 'm')
{
ret = TRUE;
}
else if (b.dim == 's' || dim == 'm')
{
ret = FALSE;
}
else if (ord == b.ord)
{
ret = dim < b.dim;
}
else
{
ret = ord < b.ord;
}
}
return ret;
}
BOOL_32 Coordinate::operator>(const Coordinate& b)
{
BOOL_32 lt = *this < b;
BOOL_32 eq = *this == b;
return !lt && !eq;
}
BOOL_32 Coordinate::operator<=(const Coordinate& b)
{
return (*this < b) || (*this == b);
}
BOOL_32 Coordinate::operator>=(const Coordinate& b)
{
return !(*this < b);
}
BOOL_32 Coordinate::operator!=(const Coordinate& b)
{
return !(*this == b);
}
Coordinate& Coordinate::operator++(INT_32)
{
ord++;
return *this;
}
// CoordTerm
CoordTerm::CoordTerm()
{
num_coords = 0;
}
VOID CoordTerm::Clear()
{
num_coords = 0;
}
VOID CoordTerm::add(Coordinate& co)
{
// This function adds a coordinate INT_32o the list
// It will prevent the same coordinate from appearing,
// and will keep the list ordered from smallest to largest
UINT_32 i;
for (i = 0; i < num_coords; i++)
{
if (m_coord[i] == co)
{
break;
}
if (m_coord[i] > co)
{
for (UINT_32 j = num_coords; j > i; j--)
{
m_coord[j] = m_coord[j - 1];
}
m_coord[i] = co;
num_coords++;
break;
}
}
if (i == num_coords)
{
m_coord[num_coords] = co;
num_coords++;
}
}
VOID CoordTerm::add(CoordTerm& cl)
{
for (UINT_32 i = 0; i < cl.num_coords; i++)
{
add(cl.m_coord[i]);
}
}
BOOL_32 CoordTerm::remove(Coordinate& co)
{
BOOL_32 remove = FALSE;
for (UINT_32 i = 0; i < num_coords; i++)
{
if (m_coord[i] == co)
{
remove = TRUE;
num_coords--;
}
if (remove)
{
m_coord[i] = m_coord[i + 1];
}
}
return remove;
}
BOOL_32 CoordTerm::Exists(Coordinate& co)
{
BOOL_32 exists = FALSE;
for (UINT_32 i = 0; i < num_coords; i++)
{
if (m_coord[i] == co)
{
exists = TRUE;
break;
}
}
return exists;
}
VOID CoordTerm::copyto(CoordTerm& cl)
{
cl.num_coords = num_coords;
for (UINT_32 i = 0; i < num_coords; i++)
{
cl.m_coord[i] = m_coord[i];
}
}
UINT_32 CoordTerm::getsize()
{
return num_coords;
}
UINT_32 CoordTerm::getxor(UINT_32 x, UINT_32 y, UINT_32 z, UINT_32 s, UINT_32 m) const
{
UINT_32 out = 0;
for (UINT_32 i = 0; i < num_coords; i++)
{
out = out ^ m_coord[i].ison(x, y, z, s, m);
}
return out;
}
VOID CoordTerm::getsmallest(Coordinate& co)
{
co = m_coord[0];
}
UINT_32 CoordTerm::Filter(INT_8 f, Coordinate& co, UINT_32 start, INT_8 axis)
{
for (UINT_32 i = start; i < num_coords;)
{
if (((f == '<' && m_coord[i] < co) ||
(f == '>' && m_coord[i] > co) ||
(f == '=' && m_coord[i] == co)) &&
(axis == '\0' || axis == m_coord[i].getdim()))
{
for (UINT_32 j = i; j < num_coords - 1; j++)
{
m_coord[j] = m_coord[j + 1];
}
num_coords--;
}
else
{
i++;
}
}
return num_coords;
}
Coordinate& CoordTerm::operator[](UINT_32 i)
{
return m_coord[i];
}
BOOL_32 CoordTerm::operator==(const CoordTerm& b)
{
BOOL_32 ret = TRUE;
if (num_coords != b.num_coords)
{
ret = FALSE;
}
else
{
for (UINT_32 i = 0; i < num_coords; i++)
{
// Note: the lists will always be in order, so we can compare the two lists at time
if (m_coord[i] != b.m_coord[i])
{
ret = FALSE;
break;
}
}
}
return ret;
}
BOOL_32 CoordTerm::operator!=(const CoordTerm& b)
{
return !(*this == b);
}
BOOL_32 CoordTerm::exceedRange(UINT_32 xRange, UINT_32 yRange, UINT_32 zRange, UINT_32 sRange)
{
BOOL_32 exceed = FALSE;
for (UINT_32 i = 0; (i < num_coords) && (exceed == FALSE); i++)
{
UINT_32 subject;
switch (m_coord[i].getdim())
{
case 'x':
subject = xRange;
break;
case 'y':
subject = yRange;
break;
case 'z':
subject = zRange;
break;
case 's':
subject = sRange;
break;
case 'm':
subject = 0;
break;
default:
// Invalid input!
ADDR_ASSERT_ALWAYS();
subject = 0;
break;
}
exceed = ((1u << m_coord[i].getord()) <= subject);
}
return exceed;
}
// coordeq
CoordEq::CoordEq()
{
m_numBits = 0;
}
VOID CoordEq::remove(Coordinate& co)
{
for (UINT_32 i = 0; i < m_numBits; i++)
{
m_eq[i].remove(co);
}
}
BOOL_32 CoordEq::Exists(Coordinate& co)
{
BOOL_32 exists = FALSE;
for (UINT_32 i = 0; i < m_numBits; i++)
{
if (m_eq[i].Exists(co))
{
exists = TRUE;
}
}
return exists;
}
VOID CoordEq::resize(UINT_32 n)
{
if (n > m_numBits)
{
for (UINT_32 i = m_numBits; i < n; i++)
{
m_eq[i].Clear();
}
}
m_numBits = n;
}
UINT_32 CoordEq::getsize()
{
return m_numBits;
}
UINT_64 CoordEq::solve(UINT_32 x, UINT_32 y, UINT_32 z, UINT_32 s, UINT_32 m) const
{
UINT_64 out = 0;
for (UINT_32 i = 0; i < m_numBits; i++)
{
if (m_eq[i].getxor(x, y, z, s, m) != 0)
{
out |= (1ULL << i);
}
}
return out;
}
VOID CoordEq::solveAddr(
UINT_64 addr, UINT_32 sliceInM,
UINT_32& x, UINT_32& y, UINT_32& z, UINT_32& s, UINT_32& m) const
{
UINT_32 xBitsValid = 0;
UINT_32 yBitsValid = 0;
UINT_32 zBitsValid = 0;
UINT_32 sBitsValid = 0;
UINT_32 mBitsValid = 0;
CoordEq temp = *this;
x = y = z = s = m = 0;
UINT_32 bitsLeft = 0;
for (UINT_32 i = 0; i < temp.m_numBits; i++)
{
UINT_32 termSize = temp.m_eq[i].getsize();
if (termSize == 1)
{
INT_8 bit = (addr >> i) & 1;
INT_8 dim = temp.m_eq[i][0].getdim();
INT_8 ord = temp.m_eq[i][0].getord();
ADDR_ASSERT((ord < 32) || (bit == 0));
switch (dim)
{
case 'x':
xBitsValid |= (1 << ord);
x |= (bit << ord);
break;
case 'y':
yBitsValid |= (1 << ord);
y |= (bit << ord);
break;
case 'z':
zBitsValid |= (1 << ord);
z |= (bit << ord);
break;
case 's':
sBitsValid |= (1 << ord);
s |= (bit << ord);
break;
case 'm':
mBitsValid |= (1 << ord);
m |= (bit << ord);
break;
default:
break;
}
temp.m_eq[i].Clear();
}
else if (termSize > 1)
{
bitsLeft++;
}
}
if (bitsLeft > 0)
{
if (sliceInM != 0)
{
z = m / sliceInM;
zBitsValid = 0xffffffff;
}
do
{
bitsLeft = 0;
for (UINT_32 i = 0; i < temp.m_numBits; i++)
{
UINT_32 termSize = temp.m_eq[i].getsize();
if (termSize == 1)
{
INT_8 bit = (addr >> i) & 1;
INT_8 dim = temp.m_eq[i][0].getdim();
INT_8 ord = temp.m_eq[i][0].getord();
ADDR_ASSERT((ord < 32) || (bit == 0));
switch (dim)
{
case 'x':
xBitsValid |= (1 << ord);
x |= (bit << ord);
break;
case 'y':
yBitsValid |= (1 << ord);
y |= (bit << ord);
break;
case 'z':
zBitsValid |= (1 << ord);
z |= (bit << ord);
break;
case 's':
ADDR_ASSERT_ALWAYS();
break;
case 'm':
ADDR_ASSERT_ALWAYS();
break;
default:
break;
}
temp.m_eq[i].Clear();
}
else if (termSize > 1)
{
CoordTerm tmpTerm = temp.m_eq[i];
for (UINT_32 j = 0; j < termSize; j++)
{
INT_8 dim = temp.m_eq[i][j].getdim();
INT_8 ord = temp.m_eq[i][j].getord();
switch (dim)
{
case 'x':
if (xBitsValid & (1 << ord))
{
UINT_32 v = (((x >> ord) & 1) << i);
addr ^= static_cast<UINT_64>(v);
tmpTerm.remove(temp.m_eq[i][j]);
}
break;
case 'y':
if (yBitsValid & (1 << ord))
{
UINT_32 v = (((y >> ord) & 1) << i);
addr ^= static_cast<UINT_64>(v);
tmpTerm.remove(temp.m_eq[i][j]);
}
break;
case 'z':
if (zBitsValid & (1 << ord))
{
UINT_32 v = (((z >> ord) & 1) << i);
addr ^= static_cast<UINT_64>(v);
tmpTerm.remove(temp.m_eq[i][j]);
}
break;
case 's':
ADDR_ASSERT_ALWAYS();
break;
case 'm':
ADDR_ASSERT_ALWAYS();
break;
default:
break;
}
}
temp.m_eq[i] = tmpTerm;
bitsLeft++;
}
}
} while (bitsLeft > 0);
}
}
VOID CoordEq::copy(CoordEq& o, UINT_32 start, UINT_32 num)
{
o.m_numBits = (num == 0xFFFFFFFF) ? m_numBits : num;
for (UINT_32 i = 0; i < o.m_numBits; i++)
{
m_eq[start + i].copyto(o.m_eq[i]);
}
}
VOID CoordEq::reverse(UINT_32 start, UINT_32 num)
{
UINT_32 n = (num == 0xFFFFFFFF) ? m_numBits : num;
for (UINT_32 i = 0; i < n / 2; i++)
{
CoordTerm temp;
m_eq[start + i].copyto(temp);
m_eq[start + n - 1 - i].copyto(m_eq[start + i]);
temp.copyto(m_eq[start + n - 1 - i]);
}
}
VOID CoordEq::xorin(CoordEq& x, UINT_32 start)
{
UINT_32 n = ((m_numBits - start) < x.m_numBits) ? (m_numBits - start) : x.m_numBits;
for (UINT_32 i = 0; i < n; i++)
{
m_eq[start + i].add(x.m_eq[i]);
}
}
UINT_32 CoordEq::Filter(INT_8 f, Coordinate& co, UINT_32 start, INT_8 axis)
{
for (UINT_32 i = start; i < m_numBits;)
{
UINT_32 m = m_eq[i].Filter(f, co, 0, axis);
if (m == 0)
{
for (UINT_32 j = i; j < m_numBits - 1; j++)
{
m_eq[j] = m_eq[j + 1];
}
m_numBits--;
}
else
{
i++;
}
}
return m_numBits;
}
VOID CoordEq::shift(INT_32 amount, INT_32 start)
{
if (amount != 0)
{
INT_32 numBits = static_cast<INT_32>(m_numBits);
amount = -amount;
INT_32 inc = (amount < 0) ? -1 : 1;
INT_32 i = (amount < 0) ? numBits - 1 : start;
INT_32 end = (amount < 0) ? start - 1 : numBits;
for (; (inc > 0) ? i < end : i > end; i += inc)
{
if ((i + amount < start) || (i + amount >= numBits))
{
m_eq[i].Clear();
}
else
{
m_eq[i + amount].copyto(m_eq[i]);
}
}
}
}
CoordTerm& CoordEq::operator[](UINT_32 i)
{
return m_eq[i];
}
VOID CoordEq::mort2d(Coordinate& c0, Coordinate& c1, UINT_32 start, UINT_32 end)
{
if (end == 0)
{
ADDR_ASSERT(m_numBits > 0);
end = m_numBits - 1;
}
for (UINT_32 i = start; i <= end; i++)
{
UINT_32 select = (i - start) % 2;
Coordinate& c = (select == 0) ? c0 : c1;
m_eq[i].add(c);
c++;
}
}
VOID CoordEq::mort3d(Coordinate& c0, Coordinate& c1, Coordinate& c2, UINT_32 start, UINT_32 end)
{
if (end == 0)
{
ADDR_ASSERT(m_numBits > 0);
end = m_numBits - 1;
}
for (UINT_32 i = start; i <= end; i++)
{
UINT_32 select = (i - start) % 3;
Coordinate& c = (select == 0) ? c0 : ((select == 1) ? c1 : c2);
m_eq[i].add(c);
c++;
}
}
BOOL_32 CoordEq::operator==(const CoordEq& b)
{
BOOL_32 ret = TRUE;
if (m_numBits != b.m_numBits)
{
ret = FALSE;
}
else
{
for (UINT_32 i = 0; i < m_numBits; i++)
{
if (m_eq[i] != b.m_eq[i])
{
ret = FALSE;
break;
}
}
}
return ret;
}
BOOL_32 CoordEq::operator!=(const CoordEq& b)
{
return !(*this == b);
}
} // V2
} // Addr