blob: ac85ec68cb58082ff389307aba7b7b1c547a4c9e [file] [log] [blame]
/*
* Copyright 2012 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_exp_param.h"
#include "ac_rtld.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_serialize.h"
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "tgsi/tgsi_from_mesa.h"
#include "tgsi/tgsi_strings.h"
#include "util/u_memory.h"
static const char scratch_rsrc_dword0_symbol[] = "SCRATCH_RSRC_DWORD0";
static const char scratch_rsrc_dword1_symbol[] = "SCRATCH_RSRC_DWORD1";
static void si_dump_shader_key(const struct si_shader *shader, FILE *f);
/** Whether the shader runs as a combination of multiple API shaders */
bool si_is_multi_part_shader(struct si_shader *shader)
{
if (shader->selector->screen->info.chip_class <= GFX8)
return false;
return shader->key.as_ls || shader->key.as_es ||
shader->selector->info.stage == MESA_SHADER_TESS_CTRL ||
shader->selector->info.stage == MESA_SHADER_GEOMETRY;
}
/** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
bool si_is_merged_shader(struct si_shader *shader)
{
return shader->key.as_ngg || si_is_multi_part_shader(shader);
}
/**
* Returns a unique index for a per-patch semantic name and index. The index
* must be less than 32, so that a 32-bit bitmask of used inputs or outputs
* can be calculated.
*/
unsigned si_shader_io_get_unique_index_patch(unsigned semantic)
{
switch (semantic) {
case VARYING_SLOT_TESS_LEVEL_OUTER:
return 0;
case VARYING_SLOT_TESS_LEVEL_INNER:
return 1;
default:
if (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_PATCH0 + 30)
return 2 + (semantic - VARYING_SLOT_PATCH0);
assert(!"invalid semantic");
return 0;
}
}
/**
* Returns a unique index for a semantic name and index. The index must be
* less than 64, so that a 64-bit bitmask of used inputs or outputs can be
* calculated.
*/
unsigned si_shader_io_get_unique_index(unsigned semantic, bool is_varying)
{
switch (semantic) {
case VARYING_SLOT_POS:
return 0;
default:
/* Since some shader stages use the the highest used IO index
* to determine the size to allocate for inputs/outputs
* (in LDS, tess and GS rings). GENERIC should be placed right
* after POSITION to make that size as small as possible.
*/
if (semantic >= VARYING_SLOT_VAR0 &&
semantic < VARYING_SLOT_VAR0 + SI_MAX_IO_GENERIC)
return 1 + (semantic - VARYING_SLOT_VAR0);
assert(!"invalid generic index");
return 0;
case VARYING_SLOT_FOGC:
return SI_MAX_IO_GENERIC + 1;
case VARYING_SLOT_COL0:
return SI_MAX_IO_GENERIC + 2;
case VARYING_SLOT_COL1:
return SI_MAX_IO_GENERIC + 3;
case VARYING_SLOT_BFC0:
/* If it's a varying, COLOR and BCOLOR alias. */
if (is_varying)
return SI_MAX_IO_GENERIC + 2;
else
return SI_MAX_IO_GENERIC + 4;
case VARYING_SLOT_BFC1:
if (is_varying)
return SI_MAX_IO_GENERIC + 3;
else
return SI_MAX_IO_GENERIC + 5;
case VARYING_SLOT_TEX0:
case VARYING_SLOT_TEX1:
case VARYING_SLOT_TEX2:
case VARYING_SLOT_TEX3:
case VARYING_SLOT_TEX4:
case VARYING_SLOT_TEX5:
case VARYING_SLOT_TEX6:
case VARYING_SLOT_TEX7:
return SI_MAX_IO_GENERIC + 6 + (semantic - VARYING_SLOT_TEX0);
/* These are rarely used between LS and HS or ES and GS. */
case VARYING_SLOT_CLIP_DIST0:
return SI_MAX_IO_GENERIC + 6 + 8;
case VARYING_SLOT_CLIP_DIST1:
return SI_MAX_IO_GENERIC + 6 + 8 + 1;
case VARYING_SLOT_CLIP_VERTEX:
return SI_MAX_IO_GENERIC + 6 + 8 + 2;
case VARYING_SLOT_PSIZ:
return SI_MAX_IO_GENERIC + 6 + 8 + 3;
/* These can't be written by LS, HS, and ES. */
case VARYING_SLOT_LAYER:
return SI_MAX_IO_GENERIC + 6 + 8 + 4;
case VARYING_SLOT_VIEWPORT:
return SI_MAX_IO_GENERIC + 6 + 8 + 5;
case VARYING_SLOT_PRIMITIVE_ID:
STATIC_ASSERT(SI_MAX_IO_GENERIC + 6 + 8 + 6 <= 63);
return SI_MAX_IO_GENERIC + 6 + 8 + 6;
}
}
static void si_dump_streamout(struct pipe_stream_output_info *so)
{
unsigned i;
if (so->num_outputs)
fprintf(stderr, "STREAMOUT\n");
for (i = 0; i < so->num_outputs; i++) {
unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component;
fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n", i, so->output[i].output_buffer,
so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "",
mask & 4 ? "z" : "", mask & 8 ? "w" : "");
}
}
static void declare_streamout_params(struct si_shader_context *ctx,
struct pipe_stream_output_info *so)
{
if (ctx->screen->use_ngg_streamout) {
if (ctx->stage == MESA_SHADER_TESS_EVAL)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
return;
}
/* Streamout SGPRs. */
if (so->num_outputs) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_config);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_write_index);
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
}
/* A streamout buffer offset is loaded if the stride is non-zero. */
for (int i = 0; i < 4; i++) {
if (!so->stride[i])
continue;
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_offset[i]);
}
}
unsigned si_get_max_workgroup_size(const struct si_shader *shader)
{
switch (shader->selector->info.stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_EVAL:
return shader->key.as_ngg ? 128 : 0;
case MESA_SHADER_TESS_CTRL:
/* Return this so that LLVM doesn't remove s_barrier
* instructions on chips where we use s_barrier. */
return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 0;
case MESA_SHADER_GEOMETRY:
return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 0;
case MESA_SHADER_COMPUTE:
break; /* see below */
default:
return 0;
}
/* Compile a variable block size using the maximum variable size. */
if (shader->selector->info.base.cs.local_size_variable)
return SI_MAX_VARIABLE_THREADS_PER_BLOCK;
uint16_t *local_size = shader->selector->info.base.cs.local_size;
unsigned max_work_group_size = (uint32_t)local_size[0] *
(uint32_t)local_size[1] *
(uint32_t)local_size[2];
assert(max_work_group_size);
return max_work_group_size;
}
static void declare_const_and_shader_buffers(struct si_shader_context *ctx, bool assign_params)
{
enum ac_arg_type const_shader_buf_type;
if (ctx->shader->selector->info.base.num_ubos == 1 &&
ctx->shader->selector->info.base.num_ssbos == 0)
const_shader_buf_type = AC_ARG_CONST_FLOAT_PTR;
else
const_shader_buf_type = AC_ARG_CONST_DESC_PTR;
ac_add_arg(
&ctx->args, AC_ARG_SGPR, 1, const_shader_buf_type,
assign_params ? &ctx->const_and_shader_buffers : &ctx->other_const_and_shader_buffers);
}
static void declare_samplers_and_images(struct si_shader_context *ctx, bool assign_params)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
assign_params ? &ctx->samplers_and_images : &ctx->other_samplers_and_images);
}
static void declare_per_stage_desc_pointers(struct si_shader_context *ctx, bool assign_params)
{
declare_const_and_shader_buffers(ctx, assign_params);
declare_samplers_and_images(ctx, assign_params);
}
static void declare_global_desc_pointers(struct si_shader_context *ctx)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->rw_buffers);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
&ctx->bindless_samplers_and_images);
}
static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
if (!ctx->shader->is_gs_copy_shader) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id);
}
}
static void declare_vb_descriptor_input_sgprs(struct si_shader_context *ctx)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->vertex_buffers);
unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
if (num_vbos_in_user_sgprs) {
unsigned user_sgprs = ctx->args.num_sgprs_used;
if (si_is_merged_shader(ctx->shader))
user_sgprs -= 8;
assert(user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
/* Declare unused SGPRs to align VB descriptors to 4 SGPRs (hw requirement). */
for (unsigned i = user_sgprs; i < SI_SGPR_VS_VB_DESCRIPTOR_FIRST; i++)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
assert(num_vbos_in_user_sgprs <= ARRAY_SIZE(ctx->vb_descriptors));
for (unsigned i = 0; i < num_vbos_in_user_sgprs; i++)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->vb_descriptors[i]);
}
}
static void declare_vs_input_vgprs(struct si_shader_context *ctx, unsigned *num_prolog_vgprs)
{
struct si_shader *shader = ctx->shader;
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vertex_id);
if (shader->key.as_ls) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->rel_auto_id);
if (ctx->screen->info.chip_class >= GFX10) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
} else {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
}
} else if (ctx->screen->info.chip_class >= GFX10) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
&ctx->vs_prim_id); /* user vgpr or PrimID (legacy) */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
} else {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vs_prim_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
}
if (!shader->is_gs_copy_shader) {
/* Vertex load indices. */
if (shader->selector->info.num_inputs) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vertex_index0);
for (unsigned i = 1; i < shader->selector->info.num_inputs; i++)
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL);
}
*num_prolog_vgprs += shader->selector->info.num_inputs;
}
}
static void declare_vs_blit_inputs(struct si_shader_context *ctx, unsigned vs_blit_property)
{
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_blit_inputs); /* i16 x1, y1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* i16 x1, y1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* depth */
if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color0 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color2 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color3 */
} else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y1 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x2 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y2 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.z */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.w */
}
}
static void declare_tes_input_vgprs(struct si_shader_context *ctx)
{
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->tes_u);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->tes_v);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->tes_rel_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_patch_id);
}
enum
{
/* Convenient merged shader definitions. */
SI_SHADER_MERGED_VERTEX_TESSCTRL = MESA_ALL_SHADER_STAGES,
SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
};
void si_add_arg_checked(struct ac_shader_args *args, enum ac_arg_regfile file, unsigned registers,
enum ac_arg_type type, struct ac_arg *arg, unsigned idx)
{
assert(args->arg_count == idx);
ac_add_arg(args, file, registers, type, arg);
}
void si_create_function(struct si_shader_context *ctx, bool ngg_cull_shader)
{
struct si_shader *shader = ctx->shader;
LLVMTypeRef returns[AC_MAX_ARGS];
unsigned i, num_return_sgprs;
unsigned num_returns = 0;
unsigned num_prolog_vgprs = 0;
unsigned stage = ctx->stage;
memset(&ctx->args, 0, sizeof(ctx->args));
/* Set MERGED shaders. */
if (ctx->screen->info.chip_class >= GFX9) {
if (shader->key.as_ls || stage == MESA_SHADER_TESS_CTRL)
stage = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
else if (shader->key.as_es || shader->key.as_ngg || stage == MESA_SHADER_GEOMETRY)
stage = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
}
switch (stage) {
case MESA_SHADER_VERTEX:
declare_global_desc_pointers(ctx);
if (shader->selector->info.base.vs.blit_sgprs_amd) {
declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
/* VGPRs */
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
break;
}
declare_per_stage_desc_pointers(ctx, true);
declare_vs_specific_input_sgprs(ctx);
if (!shader->is_gs_copy_shader)
declare_vb_descriptor_input_sgprs(ctx);
if (shader->key.as_es) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->es2gs_offset);
} else if (shader->key.as_ls) {
/* no extra parameters */
} else {
/* The locations of the other parameters are assigned dynamically. */
declare_streamout_params(ctx, &shader->selector->so);
}
/* VGPRs */
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
/* Return values */
if (shader->key.opt.vs_as_prim_discard_cs) {
for (i = 0; i < 4; i++)
returns[num_returns++] = ctx->ac.f32; /* VGPRs */
}
break;
case MESA_SHADER_TESS_CTRL: /* GFX6-GFX8 */
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset);
/* VGPRs */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
/* param_tcs_offchip_offset and param_tcs_factor_offset are
* placed after the user SGPRs.
*/
for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
returns[num_returns++] = ctx->ac.i32; /* SGPRs */
for (i = 0; i < 11; i++)
returns[num_returns++] = ctx->ac.f32; /* VGPRs */
break;
case SI_SHADER_MERGED_VERTEX_TESSCTRL:
/* Merged stages have 8 system SGPRs at the beginning. */
/* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_TESS_CTRL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_wave_info);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_scratch_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_VERTEX);
declare_vs_specific_input_sgprs(ctx);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
declare_vb_descriptor_input_sgprs(ctx);
/* VGPRs (first TCS, then VS) */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
if (ctx->stage == MESA_SHADER_VERTEX) {
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
/* LS return values are inputs to the TCS main shader part. */
for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
returns[num_returns++] = ctx->ac.i32; /* SGPRs */
for (i = 0; i < 2; i++)
returns[num_returns++] = ctx->ac.f32; /* VGPRs */
} else {
/* TCS return values are inputs to the TCS epilog.
*
* param_tcs_offchip_offset, param_tcs_factor_offset,
* param_tcs_offchip_layout, and param_rw_buffers
* should be passed to the epilog.
*/
for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
returns[num_returns++] = ctx->ac.i32; /* SGPRs */
for (i = 0; i < 11; i++)
returns[num_returns++] = ctx->ac.f32; /* VGPRs */
}
break;
case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
/* Merged stages have 8 system SGPRs at the beginning. */
/* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_GEOMETRY);
if (ctx->shader->key.as_ngg)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_tg_info);
else
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs2vs_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_wave_info);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_scratch_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
&ctx->small_prim_cull_info); /* SPI_SHADER_PGM_LO_GS << 8 */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
NULL); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
declare_global_desc_pointers(ctx);
if (ctx->stage != MESA_SHADER_VERTEX || !shader->selector->info.base.vs.blit_sgprs_amd) {
declare_per_stage_desc_pointers(
ctx, (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL));
}
if (ctx->stage == MESA_SHADER_VERTEX) {
if (shader->selector->info.base.vs.blit_sgprs_amd)
declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
else
declare_vs_specific_input_sgprs(ctx);
} else {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
/* Declare as many input SGPRs as the VS has. */
}
if (ctx->stage == MESA_SHADER_VERTEX)
declare_vb_descriptor_input_sgprs(ctx);
/* VGPRs (first GS, then VS/TES) */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx01_offset);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx23_offset);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx45_offset);
if (ctx->stage == MESA_SHADER_VERTEX) {
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
declare_tes_input_vgprs(ctx);
}
if ((ctx->shader->key.as_es || ngg_cull_shader) &&
(ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL)) {
unsigned num_user_sgprs, num_vgprs;
if (ctx->stage == MESA_SHADER_VERTEX) {
/* For the NGG cull shader, add 1 SGPR to hold
* the vertex buffer pointer.
*/
num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR + ngg_cull_shader;
if (ngg_cull_shader && shader->selector->num_vbos_in_user_sgprs) {
assert(num_user_sgprs <= 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
num_user_sgprs =
SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
}
} else {
num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
}
/* The NGG cull shader has to return all 9 VGPRs.
*
* The normal merged ESGS shader only has to return the 5 VGPRs
* for the GS stage.
*/
num_vgprs = ngg_cull_shader ? 9 : 5;
/* ES return values are inputs to GS. */
for (i = 0; i < 8 + num_user_sgprs; i++)
returns[num_returns++] = ctx->ac.i32; /* SGPRs */
for (i = 0; i < num_vgprs; i++)
returns[num_returns++] = ctx->ac.f32; /* VGPRs */
}
break;
case MESA_SHADER_TESS_EVAL:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
if (shader->key.as_es) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->es2gs_offset);
} else {
declare_streamout_params(ctx, &shader->selector->so);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
}
/* VGPRs */
declare_tes_input_vgprs(ctx);
break;
case MESA_SHADER_GEOMETRY:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs2vs_offset);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_wave_id);
/* VGPRs */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[0]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[1]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[2]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[3]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[4]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[5]);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
break;
case MESA_SHADER_FRAGMENT:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL, SI_PARAM_ALPHA_REF);
si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.prim_mask,
SI_PARAM_PRIM_MASK);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_sample,
SI_PARAM_PERSP_SAMPLE);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_center,
SI_PARAM_PERSP_CENTER);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_centroid,
SI_PARAM_PERSP_CENTROID);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, NULL, SI_PARAM_PERSP_PULL_MODEL);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_sample,
SI_PARAM_LINEAR_SAMPLE);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_center,
SI_PARAM_LINEAR_CENTER);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_centroid,
SI_PARAM_LINEAR_CENTROID);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_FLOAT, NULL, SI_PARAM_LINE_STIPPLE_TEX);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[0],
SI_PARAM_POS_X_FLOAT);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[1],
SI_PARAM_POS_Y_FLOAT);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[2],
SI_PARAM_POS_Z_FLOAT);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[3],
SI_PARAM_POS_W_FLOAT);
shader->info.face_vgpr_index = ctx->args.num_vgprs_used;
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.front_face,
SI_PARAM_FRONT_FACE);
shader->info.ancillary_vgpr_index = ctx->args.num_vgprs_used;
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.ancillary,
SI_PARAM_ANCILLARY);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.sample_coverage,
SI_PARAM_SAMPLE_COVERAGE);
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->pos_fixed_pt,
SI_PARAM_POS_FIXED_PT);
/* Color inputs from the prolog. */
if (shader->selector->info.colors_read) {
unsigned num_color_elements = util_bitcount(shader->selector->info.colors_read);
for (i = 0; i < num_color_elements; i++)
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
num_prolog_vgprs += num_color_elements;
}
/* Outputs for the epilog. */
num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
num_returns = num_return_sgprs + util_bitcount(shader->selector->info.colors_written) * 4 +
shader->selector->info.writes_z + shader->selector->info.writes_stencil +
shader->selector->info.writes_samplemask + 1 /* SampleMaskIn */;
num_returns = MAX2(num_returns, num_return_sgprs + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
for (i = 0; i < num_return_sgprs; i++)
returns[i] = ctx->ac.i32;
for (; i < num_returns; i++)
returns[i] = ctx->ac.f32;
break;
case MESA_SHADER_COMPUTE:
declare_global_desc_pointers(ctx);
declare_per_stage_desc_pointers(ctx, true);
if (shader->selector->info.uses_grid_size)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->args.num_work_groups);
if (shader->selector->info.uses_variable_block_size)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->block_size);
unsigned cs_user_data_dwords =
shader->selector->info.base.cs.user_data_components_amd;
if (cs_user_data_dwords) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, cs_user_data_dwords, AC_ARG_INT, &ctx->cs_user_data);
}
/* Some descriptors can be in user SGPRs. */
/* Shader buffers in user SGPRs. */
for (unsigned i = 0; i < shader->selector->cs_num_shaderbufs_in_user_sgprs; i++) {
while (ctx->args.num_sgprs_used % 4 != 0)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->cs_shaderbuf[i]);
}
/* Images in user SGPRs. */
for (unsigned i = 0; i < shader->selector->cs_num_images_in_user_sgprs; i++) {
unsigned num_sgprs = shader->selector->info.base.image_buffers & (1 << i) ? 4 : 8;
while (ctx->args.num_sgprs_used % num_sgprs != 0)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
ac_add_arg(&ctx->args, AC_ARG_SGPR, num_sgprs, AC_ARG_INT, &ctx->cs_image[i]);
}
/* Hardware SGPRs. */
for (i = 0; i < 3; i++) {
if (shader->selector->info.uses_block_id[i]) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.workgroup_ids[i]);
}
}
if (shader->selector->info.uses_subgroup_info)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tg_size);
/* Hardware VGPRs. */
ac_add_arg(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, &ctx->args.local_invocation_ids);
break;
default:
assert(0 && "unimplemented shader");
return;
}
si_llvm_create_func(ctx, ngg_cull_shader ? "ngg_cull_main" : "main", returns, num_returns,
si_get_max_workgroup_size(shader));
/* Reserve register locations for VGPR inputs the PS prolog may need. */
if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
ac_llvm_add_target_dep_function_attr(
ctx->main_fn, "InitialPSInputAddr",
S_0286D0_PERSP_SAMPLE_ENA(1) | S_0286D0_PERSP_CENTER_ENA(1) |
S_0286D0_PERSP_CENTROID_ENA(1) | S_0286D0_LINEAR_SAMPLE_ENA(1) |
S_0286D0_LINEAR_CENTER_ENA(1) | S_0286D0_LINEAR_CENTROID_ENA(1) |
S_0286D0_FRONT_FACE_ENA(1) | S_0286D0_ANCILLARY_ENA(1) | S_0286D0_POS_FIXED_PT_ENA(1));
}
shader->info.num_input_sgprs = ctx->args.num_sgprs_used;
shader->info.num_input_vgprs = ctx->args.num_vgprs_used;
assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
shader->info.num_input_vgprs -= num_prolog_vgprs;
if (shader->key.as_ls || ctx->stage == MESA_SHADER_TESS_CTRL) {
if (USE_LDS_SYMBOLS && LLVM_VERSION_MAJOR >= 9) {
/* The LSHS size is not known until draw time, so we append it
* at the end of whatever LDS use there may be in the rest of
* the shader (currently none, unless LLVM decides to do its
* own LDS-based lowering).
*/
ctx->ac.lds = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
"__lds_end", AC_ADDR_SPACE_LDS);
LLVMSetAlignment(ctx->ac.lds, 256);
} else {
ac_declare_lds_as_pointer(&ctx->ac);
}
}
/* Unlike radv, we override these arguments in the prolog, so to the
* API shader they appear as normal arguments.
*/
if (ctx->stage == MESA_SHADER_VERTEX) {
ctx->abi.vertex_id = ac_get_arg(&ctx->ac, ctx->args.vertex_id);
ctx->abi.instance_id = ac_get_arg(&ctx->ac, ctx->args.instance_id);
} else if (ctx->stage == MESA_SHADER_FRAGMENT) {
ctx->abi.persp_centroid = ac_get_arg(&ctx->ac, ctx->args.persp_centroid);
ctx->abi.linear_centroid = ac_get_arg(&ctx->ac, ctx->args.linear_centroid);
}
}
/* For the UMR disassembler. */
#define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
#define DEBUGGER_NUM_MARKERS 5
static bool si_shader_binary_open(struct si_screen *screen, struct si_shader *shader,
struct ac_rtld_binary *rtld)
{
const struct si_shader_selector *sel = shader->selector;
const char *part_elfs[5];
size_t part_sizes[5];
unsigned num_parts = 0;
#define add_part(shader_or_part) \
if (shader_or_part) { \
part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
num_parts++; \
}
add_part(shader->prolog);
add_part(shader->previous_stage);
add_part(shader->prolog2);
add_part(shader);
add_part(shader->epilog);
#undef add_part
struct ac_rtld_symbol lds_symbols[2];
unsigned num_lds_symbols = 0;
if (sel && screen->info.chip_class >= GFX9 && !shader->is_gs_copy_shader &&
(sel->info.stage == MESA_SHADER_GEOMETRY || shader->key.as_ngg)) {
/* We add this symbol even on LLVM <= 8 to ensure that
* shader->config.lds_size is set correctly below.
*/
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
sym->name = "esgs_ring";
sym->size = shader->gs_info.esgs_ring_size * 4;
sym->align = 64 * 1024;
}
if (shader->key.as_ngg && sel->info.stage == MESA_SHADER_GEOMETRY) {
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
sym->name = "ngg_emit";
sym->size = shader->ngg.ngg_emit_size * 4;
sym->align = 4;
}
bool ok = ac_rtld_open(
rtld, (struct ac_rtld_open_info){.info = &screen->info,
.options =
{
.halt_at_entry = screen->options.halt_shaders,
},
.shader_type = sel->info.stage,
.wave_size = si_get_shader_wave_size(shader),
.num_parts = num_parts,
.elf_ptrs = part_elfs,
.elf_sizes = part_sizes,
.num_shared_lds_symbols = num_lds_symbols,
.shared_lds_symbols = lds_symbols});
if (rtld->lds_size > 0) {
unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
shader->config.lds_size = align(rtld->lds_size, alloc_granularity) / alloc_granularity;
}
return ok;
}
static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
{
struct ac_rtld_binary rtld;
si_shader_binary_open(screen, shader, &rtld);
return rtld.exec_size;
}
static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
{
uint64_t *scratch_va = data;
if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
*value = (uint32_t)*scratch_va;
return true;
}
if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
/* Enable scratch coalescing. */
*value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1);
return true;
}
return false;
}
bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
uint64_t scratch_va)
{
struct ac_rtld_binary binary;
if (!si_shader_binary_open(sscreen, shader, &binary))
return false;
si_resource_reference(&shader->bo, NULL);
shader->bo = si_aligned_buffer_create(
&sscreen->b,
(sscreen->info.cpdma_prefetch_writes_memory ?
0 : SI_RESOURCE_FLAG_READ_ONLY) | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
PIPE_USAGE_IMMUTABLE, align(binary.rx_size, SI_CPDMA_ALIGNMENT), 256);
if (!shader->bo)
return false;
/* Upload. */
struct ac_rtld_upload_info u = {};
u.binary = &binary;
u.get_external_symbol = si_get_external_symbol;
u.cb_data = &scratch_va;
u.rx_va = shader->bo->gpu_address;
u.rx_ptr = sscreen->ws->buffer_map(
shader->bo->buf, NULL,
PIPE_MAP_READ_WRITE | PIPE_MAP_UNSYNCHRONIZED | RADEON_MAP_TEMPORARY);
if (!u.rx_ptr)
return false;
bool ok = ac_rtld_upload(&u);
sscreen->ws->buffer_unmap(shader->bo->buf);
ac_rtld_close(&binary);
return ok;
}
static void si_shader_dump_disassembly(struct si_screen *screen,
const struct si_shader_binary *binary,
gl_shader_stage stage, unsigned wave_size,
struct pipe_debug_callback *debug, const char *name,
FILE *file)
{
struct ac_rtld_binary rtld_binary;
if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
.info = &screen->info,
.shader_type = stage,
.wave_size = wave_size,
.num_parts = 1,
.elf_ptrs = &binary->elf_buffer,
.elf_sizes = &binary->elf_size}))
return;
const char *disasm;
size_t nbytes;
if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
goto out;
if (nbytes > INT_MAX)
goto out;
if (debug && debug->debug_message) {
/* Very long debug messages are cut off, so send the
* disassembly one line at a time. This causes more
* overhead, but on the plus side it simplifies
* parsing of resulting logs.
*/
pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly Begin");
uint64_t line = 0;
while (line < nbytes) {
int count = nbytes - line;
const char *nl = memchr(disasm + line, '\n', nbytes - line);
if (nl)
count = nl - (disasm + line);
if (count) {
pipe_debug_message(debug, SHADER_INFO, "%.*s", count, disasm + line);
}
line += count + 1;
}
pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly End");
}
if (file) {
fprintf(file, "Shader %s disassembly:\n", name);
fprintf(file, "%*s", (int)nbytes, disasm);
}
out:
ac_rtld_close(&rtld_binary);
}
static void si_calculate_max_simd_waves(struct si_shader *shader)
{
struct si_screen *sscreen = shader->selector->screen;
struct ac_shader_config *conf = &shader->config;
unsigned num_inputs = shader->selector->info.num_inputs;
unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
unsigned lds_per_wave = 0;
unsigned max_simd_waves;
max_simd_waves = sscreen->info.max_wave64_per_simd;
/* Compute LDS usage for PS. */
switch (shader->selector->info.stage) {
case MESA_SHADER_FRAGMENT:
/* The minimum usage per wave is (num_inputs * 48). The maximum
* usage is (num_inputs * 48 * 16).
* We can get anything in between and it varies between waves.
*
* The 48 bytes per input for a single primitive is equal to
* 4 bytes/component * 4 components/input * 3 points.
*
* Other stages don't know the size at compile time or don't
* allocate LDS per wave, but instead they do it per thread group.
*/
lds_per_wave = conf->lds_size * lds_increment + align(num_inputs * 48, lds_increment);
break;
case MESA_SHADER_COMPUTE:
if (shader->selector) {
unsigned max_workgroup_size = si_get_max_workgroup_size(shader);
lds_per_wave = (conf->lds_size * lds_increment) /
DIV_ROUND_UP(max_workgroup_size, sscreen->compute_wave_size);
}
break;
default:;
}
/* Compute the per-SIMD wave counts. */
if (conf->num_sgprs) {
max_simd_waves =
MIN2(max_simd_waves, sscreen->info.num_physical_sgprs_per_simd / conf->num_sgprs);
}
if (conf->num_vgprs) {
/* Always print wave limits as Wave64, so that we can compare
* Wave32 and Wave64 with shader-db fairly. */
unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd;
max_simd_waves = MIN2(max_simd_waves, max_vgprs / conf->num_vgprs);
}
unsigned max_lds_per_simd = sscreen->info.lds_size_per_workgroup / 4;
if (lds_per_wave)
max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave);
shader->info.max_simd_waves = max_simd_waves;
}
void si_shader_dump_stats_for_shader_db(struct si_screen *screen, struct si_shader *shader,
struct pipe_debug_callback *debug)
{
const struct ac_shader_config *conf = &shader->config;
if (screen->options.debug_disassembly)
si_shader_dump_disassembly(screen, &shader->binary, shader->selector->info.stage,
si_get_shader_wave_size(shader), debug, "main", NULL);
pipe_debug_message(debug, SHADER_INFO,
"Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
"LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
"Spilled VGPRs: %d PrivMem VGPRs: %d",
conf->num_sgprs, conf->num_vgprs, si_get_shader_binary_size(screen, shader),
conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves,
conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs);
}
static void si_shader_dump_stats(struct si_screen *sscreen, struct si_shader *shader, FILE *file,
bool check_debug_option)
{
const struct ac_shader_config *conf = &shader->config;
if (!check_debug_option || si_can_dump_shader(sscreen, shader->selector->info.stage)) {
if (shader->selector->info.stage == MESA_SHADER_FRAGMENT) {
fprintf(file,
"*** SHADER CONFIG ***\n"
"SPI_PS_INPUT_ADDR = 0x%04x\n"
"SPI_PS_INPUT_ENA = 0x%04x\n",
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
}
fprintf(file,
"*** SHADER STATS ***\n"
"SGPRS: %d\n"
"VGPRS: %d\n"
"Spilled SGPRs: %d\n"
"Spilled VGPRs: %d\n"
"Private memory VGPRs: %d\n"
"Code Size: %d bytes\n"
"LDS: %d blocks\n"
"Scratch: %d bytes per wave\n"
"Max Waves: %d\n"
"********************\n\n\n",
conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs,
shader->info.private_mem_vgprs, si_get_shader_binary_size(sscreen, shader),
conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves);
}
}
const char *si_get_shader_name(const struct si_shader *shader)
{
switch (shader->selector->info.stage) {
case MESA_SHADER_VERTEX:
if (shader->key.as_es)
return "Vertex Shader as ES";
else if (shader->key.as_ls)
return "Vertex Shader as LS";
else if (shader->key.opt.vs_as_prim_discard_cs)
return "Vertex Shader as Primitive Discard CS";
else if (shader->key.as_ngg)
return "Vertex Shader as ESGS";
else
return "Vertex Shader as VS";
case MESA_SHADER_TESS_CTRL:
return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL:
if (shader->key.as_es)
return "Tessellation Evaluation Shader as ES";
else if (shader->key.as_ngg)
return "Tessellation Evaluation Shader as ESGS";
else
return "Tessellation Evaluation Shader as VS";
case MESA_SHADER_GEOMETRY:
if (shader->is_gs_copy_shader)
return "GS Copy Shader as VS";
else
return "Geometry Shader";
case MESA_SHADER_FRAGMENT:
return "Pixel Shader";
case MESA_SHADER_COMPUTE:
return "Compute Shader";
default:
return "Unknown Shader";
}
}
void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
struct pipe_debug_callback *debug, FILE *file, bool check_debug_option)
{
gl_shader_stage stage = shader->selector->info.stage;
if (!check_debug_option || si_can_dump_shader(sscreen, stage))
si_dump_shader_key(shader, file);
if (!check_debug_option && shader->binary.llvm_ir_string) {
if (shader->previous_stage && shader->previous_stage->binary.llvm_ir_string) {
fprintf(file, "\n%s - previous stage - LLVM IR:\n\n", si_get_shader_name(shader));
fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
}
fprintf(file, "\n%s - main shader part - LLVM IR:\n\n", si_get_shader_name(shader));
fprintf(file, "%s\n", shader->binary.llvm_ir_string);
}
if (!check_debug_option ||
(si_can_dump_shader(sscreen, stage) && !(sscreen->debug_flags & DBG(NO_ASM)))) {
unsigned wave_size = si_get_shader_wave_size(shader);
fprintf(file, "\n%s:\n", si_get_shader_name(shader));
if (shader->prolog)
si_shader_dump_disassembly(sscreen, &shader->prolog->binary, stage, wave_size, debug,
"prolog", file);
if (shader->previous_stage)
si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary, stage,
wave_size, debug, "previous stage", file);
if (shader->prolog2)
si_shader_dump_disassembly(sscreen, &shader->prolog2->binary, stage, wave_size,
debug, "prolog2", file);
si_shader_dump_disassembly(sscreen, &shader->binary, stage, wave_size, debug, "main",
file);
if (shader->epilog)
si_shader_dump_disassembly(sscreen, &shader->epilog->binary, stage, wave_size, debug,
"epilog", file);
fprintf(file, "\n");
}
si_shader_dump_stats(sscreen, shader, file, check_debug_option);
}
static void si_dump_shader_key_vs(const struct si_shader_key *key,
const struct si_vs_prolog_bits *prolog, const char *prefix,
FILE *f)
{
fprintf(f, " %s.instance_divisor_is_one = %u\n", prefix, prolog->instance_divisor_is_one);
fprintf(f, " %s.instance_divisor_is_fetched = %u\n", prefix,
prolog->instance_divisor_is_fetched);
fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n", prefix,
prolog->unpack_instance_id_from_vertex_id);
fprintf(f, " %s.ls_vgpr_fix = %u\n", prefix, prolog->ls_vgpr_fix);
fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
fprintf(f, " mono.vs.fix_fetch = {");
for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
if (i)
fprintf(f, ", ");
if (!fix.bits)
fprintf(f, "0");
else
fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size, fix.u.num_channels_m1,
fix.u.format);
}
fprintf(f, "}\n");
}
static void si_dump_shader_key(const struct si_shader *shader, FILE *f)
{
const struct si_shader_key *key = &shader->key;
gl_shader_stage stage = shader->selector->info.stage;
fprintf(f, "SHADER KEY\n");
switch (stage) {
case MESA_SHADER_VERTEX:
si_dump_shader_key_vs(key, &key->part.vs.prolog, "part.vs.prolog", f);
fprintf(f, " as_es = %u\n", key->as_es);
fprintf(f, " as_ls = %u\n", key->as_ls);
fprintf(f, " as_ngg = %u\n", key->as_ngg);
fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id);
fprintf(f, " opt.vs_as_prim_discard_cs = %u\n", key->opt.vs_as_prim_discard_cs);
fprintf(f, " opt.cs_prim_type = %s\n", tgsi_primitive_names[key->opt.cs_prim_type]);
fprintf(f, " opt.cs_indexed = %u\n", key->opt.cs_indexed);
fprintf(f, " opt.cs_instancing = %u\n", key->opt.cs_instancing);
fprintf(f, " opt.cs_primitive_restart = %u\n", key->opt.cs_primitive_restart);
fprintf(f, " opt.cs_provoking_vertex_first = %u\n", key->opt.cs_provoking_vertex_first);
fprintf(f, " opt.cs_need_correct_orientation = %u\n", key->opt.cs_need_correct_orientation);
fprintf(f, " opt.cs_cull_front = %u\n", key->opt.cs_cull_front);
fprintf(f, " opt.cs_cull_back = %u\n", key->opt.cs_cull_back);
fprintf(f, " opt.cs_cull_z = %u\n", key->opt.cs_cull_z);
fprintf(f, " opt.cs_halfz_clip_space = %u\n", key->opt.cs_halfz_clip_space);
break;
case MESA_SHADER_TESS_CTRL:
if (shader->selector->screen->info.chip_class >= GFX9) {
si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog, "part.tcs.ls_prolog", f);
}
fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%" PRIx64 "\n",
key->mono.u.ff_tcs_inputs_to_copy);
break;
case MESA_SHADER_TESS_EVAL:
fprintf(f, " as_es = %u\n", key->as_es);
fprintf(f, " as_ngg = %u\n", key->as_ngg);
fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id);
break;
case MESA_SHADER_GEOMETRY:
if (shader->is_gs_copy_shader)
break;
if (shader->selector->screen->info.chip_class >= GFX9 &&
key->part.gs.es->info.stage == MESA_SHADER_VERTEX) {
si_dump_shader_key_vs(key, &key->part.gs.vs_prolog, "part.gs.vs_prolog", f);
}
fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n",
key->part.gs.prolog.tri_strip_adj_fix);
fprintf(f, " part.gs.prolog.gfx9_prev_is_vs = %u\n", key->part.gs.prolog.gfx9_prev_is_vs);
fprintf(f, " as_ngg = %u\n", key->as_ngg);
break;
case MESA_SHADER_COMPUTE:
break;
case MESA_SHADER_FRAGMENT:
fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n",
key->part.ps.prolog.force_persp_sample_interp);
fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n",
key->part.ps.prolog.force_linear_sample_interp);
fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n",
key->part.ps.prolog.force_persp_center_interp);
fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n",
key->part.ps.prolog.force_linear_center_interp);
fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n",
key->part.ps.prolog.bc_optimize_for_persp);
fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n",
key->part.ps.prolog.bc_optimize_for_linear);
fprintf(f, " part.ps.prolog.samplemask_log_ps_iter = %u\n",
key->part.ps.prolog.samplemask_log_ps_iter);
fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n",
key->part.ps.epilog.spi_shader_col_format);
fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n",
key->part.ps.epilog.poly_line_smoothing);
fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
fprintf(f, " mono.u.ps.interpolate_at_sample_force_center = %u\n",
key->mono.u.ps.interpolate_at_sample_force_center);
fprintf(f, " mono.u.ps.fbfetch_msaa = %u\n", key->mono.u.ps.fbfetch_msaa);
fprintf(f, " mono.u.ps.fbfetch_is_1D = %u\n", key->mono.u.ps.fbfetch_is_1D);
fprintf(f, " mono.u.ps.fbfetch_layered = %u\n", key->mono.u.ps.fbfetch_layered);
break;
default:
assert(0);
}
if ((stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_VERTEX) &&
!key->as_es && !key->as_ls) {
fprintf(f, " opt.kill_outputs = 0x%" PRIx64 "\n", key->opt.kill_outputs);
fprintf(f, " opt.kill_clip_distances = 0x%x\n", key->opt.kill_clip_distances);
if (stage != MESA_SHADER_GEOMETRY)
fprintf(f, " opt.ngg_culling = 0x%x\n", key->opt.ngg_culling);
}
}
static void si_optimize_vs_outputs(struct si_shader_context *ctx)
{
struct si_shader *shader = ctx->shader;
struct si_shader_info *info = &shader->selector->info;
unsigned skip_vs_optim_mask = 0;
if ((ctx->stage != MESA_SHADER_VERTEX && ctx->stage != MESA_SHADER_TESS_EVAL) ||
shader->key.as_ls || shader->key.as_es)
return;
/* Optimizing these outputs is not possible, since they might be overriden
* at runtime with S_028644_PT_SPRITE_TEX. */
for (int i = 0; i < info->num_outputs; i++) {
if (info->output_semantic[i] == VARYING_SLOT_PNTC ||
(info->output_semantic[i] >= VARYING_SLOT_TEX0 &&
info->output_semantic[i] <= VARYING_SLOT_TEX7)) {
skip_vs_optim_mask |= 1u << shader->info.vs_output_param_offset[i];
}
}
ac_optimize_vs_outputs(&ctx->ac, ctx->main_fn, shader->info.vs_output_param_offset,
info->num_outputs, skip_vs_optim_mask,
&shader->info.nr_param_exports);
}
static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
const struct si_vs_prolog_bits *prolog_key,
const struct si_shader_key *key, bool ngg_cull_shader)
{
/* VGPR initialization fixup for Vega10 and Raven is always done in the
* VS prolog. */
return sel->vs_needs_prolog || prolog_key->ls_vgpr_fix ||
prolog_key->unpack_instance_id_from_vertex_id ||
(ngg_cull_shader && key->opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL);
}
static bool si_build_main_function(struct si_shader_context *ctx, struct si_shader *shader,
struct nir_shader *nir, bool free_nir, bool ngg_cull_shader)
{
struct si_shader_selector *sel = shader->selector;
const struct si_shader_info *info = &sel->info;
ctx->shader = shader;
ctx->stage = sel->info.stage;
ctx->num_const_buffers = info->base.num_ubos;
ctx->num_shader_buffers = info->base.num_ssbos;
ctx->num_samplers = util_last_bit(info->base.textures_used);
ctx->num_images = info->base.num_images;
si_llvm_init_resource_callbacks(ctx);
switch (ctx->stage) {
case MESA_SHADER_VERTEX:
si_llvm_init_vs_callbacks(ctx, ngg_cull_shader);
break;
case MESA_SHADER_TESS_CTRL:
si_llvm_init_tcs_callbacks(ctx);
break;
case MESA_SHADER_TESS_EVAL:
si_llvm_init_tes_callbacks(ctx, ngg_cull_shader);
break;
case MESA_SHADER_GEOMETRY:
si_llvm_init_gs_callbacks(ctx);
break;
case MESA_SHADER_FRAGMENT:
si_llvm_init_ps_callbacks(ctx);
break;
case MESA_SHADER_COMPUTE:
ctx->abi.load_local_group_size = si_llvm_get_block_size;
break;
default:
assert(!"Unsupported shader type");
return false;
}
si_create_function(ctx, ngg_cull_shader);
if (ctx->shader->key.as_es || ctx->stage == MESA_SHADER_GEOMETRY)
si_preload_esgs_ring(ctx);
if (ctx->stage == MESA_SHADER_GEOMETRY)
si_preload_gs_rings(ctx);
else if (ctx->stage == MESA_SHADER_TESS_EVAL)
si_llvm_preload_tes_rings(ctx);
if (ctx->stage == MESA_SHADER_TESS_CTRL && sel->info.tessfactors_are_def_in_all_invocs) {
for (unsigned i = 0; i < 6; i++) {
ctx->invoc0_tess_factors[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
}
}
if (ctx->stage == MESA_SHADER_GEOMETRY) {
for (unsigned i = 0; i < 4; i++) {
ctx->gs_next_vertex[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
}
if (shader->key.as_ngg) {
for (unsigned i = 0; i < 4; ++i) {
ctx->gs_curprim_verts[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
ctx->gs_generated_prims[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
}
assert(!ctx->gs_ngg_scratch);
LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
ctx->gs_ngg_scratch =
LLVMAddGlobalInAddressSpace(ctx->ac.module, ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(
ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
LLVMSetAlignment(ctx->gs_ngg_emit, 4);
}
}
if (ctx->stage != MESA_SHADER_GEOMETRY && (shader->key.as_ngg && !shader->key.as_es)) {
/* Unconditionally declare scratch space base for streamout and
* vertex compaction. Whether space is actually allocated is
* determined during linking / PM4 creation.
*
* Add an extra dword per vertex to ensure an odd stride, which
* avoids bank conflicts for SoA accesses.
*/
if (!gfx10_is_ngg_passthrough(shader))
si_llvm_declare_esgs_ring(ctx);
/* This is really only needed when streamout and / or vertex
* compaction is enabled.
*/
if (!ctx->gs_ngg_scratch && (sel->so.num_outputs || shader->key.opt.ngg_culling)) {
LLVMTypeRef asi32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
ctx->gs_ngg_scratch =
LLVMAddGlobalInAddressSpace(ctx->ac.module, asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
}
}
/* For GFX9 merged shaders:
* - Set EXEC for the first shader. If the prolog is present, set
* EXEC there instead.
* - Add a barrier before the second shader.
* - In the second shader, reset EXEC to ~0 and wrap the main part in
* an if-statement. This is required for correctness in geometry
* shaders, to ensure that empty GS waves do not send GS_EMIT and
* GS_CUT messages.
*
* For monolithic merged shaders, the first shader is wrapped in an
* if-block together with its prolog in si_build_wrapper_function.
*
* NGG vertex and tess eval shaders running as the last
* vertex/geometry stage handle execution explicitly using
* if-statements.
*/
if (ctx->screen->info.chip_class >= GFX9) {
if (!shader->is_monolithic && (shader->key.as_es || shader->key.as_ls) &&
(ctx->stage == MESA_SHADER_TESS_EVAL ||
(ctx->stage == MESA_SHADER_VERTEX &&
!si_vs_needs_prolog(sel, &shader->key.part.vs.prolog, &shader->key, ngg_cull_shader)))) {
si_init_exec_from_input(ctx, ctx->merged_wave_info, 0);
} else if (ctx->stage == MESA_SHADER_TESS_CTRL || ctx->stage == MESA_SHADER_GEOMETRY ||
(shader->key.as_ngg && !shader->key.as_es)) {
LLVMValueRef thread_enabled;
bool nested_barrier;
if (!shader->is_monolithic || (ctx->stage == MESA_SHADER_TESS_EVAL && shader->key.as_ngg &&
!shader->key.as_es && !shader->key.opt.ngg_culling))
ac_init_exec_full_mask(&ctx->ac);
if ((ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
shader->key.as_ngg && !shader->key.as_es && !shader->key.opt.ngg_culling) {
gfx10_ngg_build_sendmsg_gs_alloc_req(ctx);
/* Build the primitive export at the beginning
* of the shader if possible.
*/
if (gfx10_ngg_export_prim_early(shader))
gfx10_ngg_build_export_prim(ctx, NULL, NULL);
}
if (ctx->stage == MESA_SHADER_TESS_CTRL || ctx->stage == MESA_SHADER_GEOMETRY) {
if (ctx->stage == MESA_SHADER_GEOMETRY && shader->key.as_ngg) {
gfx10_ngg_gs_emit_prologue(ctx);
nested_barrier = false;
} else {
nested_barrier = true;
}
thread_enabled = si_is_gs_thread(ctx);
} else {
thread_enabled = si_is_es_thread(ctx);
nested_barrier = false;
}
ctx->merged_wrap_if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
ctx->merged_wrap_if_label = 11500;
ac_build_ifcc(&ctx->ac, thread_enabled, ctx->merged_wrap_if_label);
if (nested_barrier) {
/* Execute a barrier before the second shader in
* a merged shader.
*
* Execute the barrier inside the conditional block,
* so that empty waves can jump directly to s_endpgm,
* which will also signal the barrier.
*
* This is possible in gfx9, because an empty wave
* for the second shader does not participate in
* the epilogue. With NGG, empty waves may still
* be required to export data (e.g. GS output vertices),
* so we cannot let them exit early.
*
* If the shader is TCS and the TCS epilog is present
* and contains a barrier, it will wait there and then
* reach s_endpgm.
*/
si_llvm_emit_barrier(ctx);
}
}
}
bool success = si_nir_build_llvm(ctx, nir);
if (free_nir)
ralloc_free(nir);
if (!success) {
fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
return false;
}
si_llvm_build_ret(ctx, ctx->return_value);
return true;
}
/**
* Compute the VS prolog key, which contains all the information needed to
* build the VS prolog function, and set shader->info bits where needed.
*
* \param info Shader info of the vertex shader.
* \param num_input_sgprs Number of input SGPRs for the vertex shader.
* \param has_old_ Whether the preceding shader part is the NGG cull shader.
* \param prolog_key Key of the VS prolog
* \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
* \param key Output shader part key.
*/
static void si_get_vs_prolog_key(const struct si_shader_info *info, unsigned num_input_sgprs,
bool ngg_cull_shader, const struct si_vs_prolog_bits *prolog_key,
struct si_shader *shader_out, union si_shader_part_key *key)
{
memset(key, 0, sizeof(*key));
key->vs_prolog.states = *prolog_key;
key->vs_prolog.num_input_sgprs = num_input_sgprs;
key->vs_prolog.num_inputs = info->num_inputs;
key->vs_prolog.as_ls = shader_out->key.as_ls;
key->vs_prolog.as_es = shader_out->key.as_es;
key->vs_prolog.as_ngg = shader_out->key.as_ngg;
key->vs_prolog.as_prim_discard_cs = shader_out->key.opt.vs_as_prim_discard_cs;
if (ngg_cull_shader) {
key->vs_prolog.gs_fast_launch_tri_list =
!!(shader_out->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST);
key->vs_prolog.gs_fast_launch_tri_strip =
!!(shader_out->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP);
}
if (shader_out->selector->info.stage == MESA_SHADER_TESS_CTRL) {
key->vs_prolog.as_ls = 1;
key->vs_prolog.num_merged_next_stage_vgprs = 2;
} else if (shader_out->selector->info.stage == MESA_SHADER_GEOMETRY) {
key->vs_prolog.as_es = 1;
key->vs_prolog.num_merged_next_stage_vgprs = 5;
} else if (shader_out->key.as_ngg) {
key->vs_prolog.num_merged_next_stage_vgprs = 5;
}
/* Only one of these combinations can be set. as_ngg can be set with as_es. */
assert(key->vs_prolog.as_ls + key->vs_prolog.as_ngg +
(key->vs_prolog.as_es && !key->vs_prolog.as_ngg) + key->vs_prolog.as_prim_discard_cs <=
1);
/* Enable loading the InstanceID VGPR. */
uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
if ((key->vs_prolog.states.instance_divisor_is_one |
key->vs_prolog.states.instance_divisor_is_fetched) &
input_mask)
shader_out->info.uses_instanceid = true;
}
static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
struct si_shader_selector *sel)
{
if (!compiler->low_opt_passes)
return false;
/* Assume a slow CPU. */
assert(!sel->screen->info.has_dedicated_vram && sel->screen->info.chip_class <= GFX8);
/* For a crazy dEQP test containing 2597 memory opcodes, mostly
* buffer stores. */
return sel->info.stage == MESA_SHADER_COMPUTE && sel->info.num_memory_stores > 1000;
}
static struct nir_shader *get_nir_shader(struct si_shader_selector *sel, bool *free_nir)
{
nir_shader *nir;
*free_nir = false;
if (sel->nir) {
nir = sel->nir;
} else if (sel->nir_binary) {
struct pipe_screen *screen = &sel->screen->b;
const void *options = screen->get_compiler_options(screen, PIPE_SHADER_IR_NIR,
pipe_shader_type_from_mesa(sel->info.stage));
struct blob_reader blob_reader;
blob_reader_init(&blob_reader, sel->nir_binary, sel->nir_size);
*free_nir = true;
nir = nir_deserialize(NULL, options, &blob_reader);
} else {
return NULL;
}
NIR_PASS_V(nir, nir_lower_bool_to_int32);
return nir;
}
static bool si_llvm_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug,
struct nir_shader *nir, bool free_nir)
{
struct si_shader_selector *sel = shader->selector;
struct si_shader_context ctx;
si_llvm_context_init(&ctx, sscreen, compiler, si_get_shader_wave_size(shader));
LLVMValueRef ngg_cull_main_fn = NULL;
if (shader->key.opt.ngg_culling) {
if (!si_build_main_function(&ctx, shader, nir, false, true)) {
si_llvm_dispose(&ctx);
return false;
}
ngg_cull_main_fn = ctx.main_fn;
ctx.main_fn = NULL;
}
if (!si_build_main_function(&ctx, shader, nir, free_nir, false)) {
si_llvm_dispose(&ctx);
return false;
}
if (shader->is_monolithic && ctx.stage == MESA_SHADER_VERTEX) {
LLVMValueRef parts[4];
unsigned num_parts = 0;
bool has_prolog = false;
LLVMValueRef main_fn = ctx.main_fn;
if (ngg_cull_main_fn) {
if (si_vs_needs_prolog(sel, &shader->key.part.vs.prolog, &shader->key, true)) {
union si_shader_part_key prolog_key;
si_get_vs_prolog_key(&sel->info, shader->info.num_input_sgprs, true,
&shader->key.part.vs.prolog, shader, &prolog_key);
prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &prolog_key);
parts[num_parts++] = ctx.main_fn;
has_prolog = true;
}
parts[num_parts++] = ngg_cull_main_fn;
}
if (si_vs_needs_prolog(sel, &shader->key.part.vs.prolog, &shader->key, false)) {
union si_shader_part_key prolog_key;
si_get_vs_prolog_key(&sel->info, shader->info.num_input_sgprs, false,
&shader->key.part.vs.prolog, shader, &prolog_key);
prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &prolog_key);
parts[num_parts++] = ctx.main_fn;
has_prolog = true;
}
parts[num_parts++] = main_fn;
si_build_wrapper_function(&ctx, parts, num_parts, has_prolog ? 1 : 0, 0);
if (ctx.shader->key.opt.vs_as_prim_discard_cs)
si_build_prim_discard_compute_shader(&ctx);
} else if (shader->is_monolithic && ctx.stage == MESA_SHADER_TESS_EVAL && ngg_cull_main_fn) {
LLVMValueRef parts[2];
parts[0] = ngg_cull_main_fn;
parts[1] = ctx.main_fn;
si_build_wrapper_function(&ctx, parts, 2, 0, 0);
} else if (shader->is_monolithic && ctx.stage == MESA_SHADER_TESS_CTRL) {
if (sscreen->info.chip_class >= GFX9) {
struct si_shader_selector *ls = shader->key.part.tcs.ls;
LLVMValueRef parts[4];
bool vs_needs_prolog =
si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog, &shader->key, false);
/* TCS main part */
parts[2] = ctx.main_fn;
/* TCS epilog */
union si_shader_part_key tcs_epilog_key;
memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
si_llvm_build_tcs_epilog(&ctx, &tcs_epilog_key);
parts[3] = ctx.main_fn;
/* VS as LS main part */
nir = get_nir_shader(ls, &free_nir);
struct si_shader shader_ls = {};
shader_ls.selector = ls;
shader_ls.key.as_ls = 1;
shader_ls.key.mono = shader->key.mono;
shader_ls.key.opt = shader->key.opt;
shader_ls.is_monolithic = true;
if (!si_build_main_function(&ctx, &shader_ls, nir, free_nir, false)) {
si_llvm_dispose(&ctx);
return false;
}
shader->info.uses_instanceid |= ls->info.uses_instanceid;
parts[1] = ctx.main_fn;
/* LS prolog */
if (vs_needs_prolog) {
union si_shader_part_key vs_prolog_key;
si_get_vs_prolog_key(&ls->info, shader_ls.info.num_input_sgprs, false,
&shader->key.part.tcs.ls_prolog, shader, &vs_prolog_key);
vs_prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &vs_prolog_key);
parts[0] = ctx.main_fn;
}
/* Reset the shader context. */
ctx.shader = shader;
ctx.stage = MESA_SHADER_TESS_CTRL;
si_build_wrapper_function(&ctx, parts + !vs_needs_prolog, 4 - !vs_needs_prolog,
vs_needs_prolog, vs_needs_prolog ? 2 : 1);
} else {
LLVMValueRef parts[2];
union si_shader_part_key epilog_key;
parts[0] = ctx.main_fn;
memset(&epilog_key, 0, sizeof(epilog_key));
epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
si_llvm_build_tcs_epilog(&ctx, &epilog_key);
parts[1] = ctx.main_fn;
si_build_wrapper_function(&ctx, parts, 2, 0, 0);
}
} else if (shader->is_monolithic && ctx.stage == MESA_SHADER_GEOMETRY) {
if (ctx.screen->info.chip_class >= GFX9) {
struct si_shader_selector *es = shader->key.part.gs.es;
LLVMValueRef es_prolog = NULL;
LLVMValueRef es_main = NULL;
LLVMValueRef gs_prolog = NULL;
LLVMValueRef gs_main = ctx.main_fn;
/* GS prolog */
union si_shader_part_key gs_prolog_key;
memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
gs_prolog_key.gs_prolog.is_monolithic = true;
gs_prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
si_llvm_build_gs_prolog(&ctx, &gs_prolog_key);
gs_prolog = ctx.main_fn;
/* ES main part */
nir = get_nir_shader(es, &free_nir);
struct si_shader shader_es = {};
shader_es.selector = es;
shader_es.key.as_es = 1;
shader_es.key.as_ngg = shader->key.as_ngg;
shader_es.key.mono = shader->key.mono;
shader_es.key.opt = shader->key.opt;
shader_es.is_monolithic = true;
if (!si_build_main_function(&ctx, &shader_es, nir, free_nir, false)) {
si_llvm_dispose(&ctx);
return false;
}
shader->info.uses_instanceid |= es->info.uses_instanceid;
es_main = ctx.main_fn;
/* ES prolog */
if (es->info.stage == MESA_SHADER_VERTEX &&
si_vs_needs_prolog(es, &shader->key.part.gs.vs_prolog, &shader->key, false)) {
union si_shader_part_key vs_prolog_key;
si_get_vs_prolog_key(&es->info, shader_es.info.num_input_sgprs, false,
&shader->key.part.gs.vs_prolog, shader, &vs_prolog_key);
vs_prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &vs_prolog_key);
es_prolog = ctx.main_fn;
}
/* Reset the shader context. */
ctx.shader = shader;
ctx.stage = MESA_SHADER_GEOMETRY;
/* Prepare the array of shader parts. */
LLVMValueRef parts[4];
unsigned num_parts = 0, main_part, next_first_part;
if (es_prolog)
parts[num_parts++] = es_prolog;
parts[main_part = num_parts++] = es_main;
parts[next_first_part = num_parts++] = gs_prolog;
parts[num_parts++] = gs_main;
si_build_wrapper_function(&ctx, parts, num_parts, main_part, next_first_part);
} else {
LLVMValueRef parts[2];
union si_shader_part_key prolog_key;
parts[1] = ctx.main_fn;
memset(&prolog_key, 0, sizeof(prolog_key));
prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
si_llvm_build_gs_prolog(&ctx, &prolog_key);
parts[0] = ctx.main_fn;
si_build_wrapper_function(&ctx, parts, 2, 1, 0);
}
} else if (shader->is_monolithic && ctx.stage == MESA_SHADER_FRAGMENT) {
si_llvm_build_monolithic_ps(&ctx, shader);
}
si_llvm_optimize_module(&ctx);
/* Post-optimization transformations and analysis. */
si_optimize_vs_outputs(&ctx);
if ((debug && debug->debug_message) || si_can_dump_shader(sscreen, ctx.stage)) {
ctx.shader->info.private_mem_vgprs = ac_count_scratch_private_memory(ctx.main_fn);
}
/* Make sure the input is a pointer and not integer followed by inttoptr. */
assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) == LLVMPointerTypeKind);
/* Compile to bytecode. */
if (!si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler, &ctx.ac, debug,
ctx.stage, si_get_shader_name(shader),
si_should_optimize_less(compiler, shader->selector))) {
si_llvm_dispose(&ctx);
fprintf(stderr, "LLVM failed to compile shader\n");
return false;
}
si_llvm_dispose(&ctx);
return true;
}
bool si_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug)
{
struct si_shader_selector *sel = shader->selector;
bool free_nir;
struct nir_shader *nir = get_nir_shader(sel, &free_nir);
/* Dump NIR before doing NIR->LLVM conversion in case the
* conversion fails. */
if (si_can_dump_shader(sscreen, sel->info.stage) &&
!(sscreen->debug_flags & DBG(NO_NIR))) {
nir_print_shader(nir, stderr);
si_dump_streamout(&sel->so);
}
memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
sizeof(shader->info.vs_output_param_offset));
shader->info.uses_instanceid = sel->info.uses_instanceid;
/* TODO: ACO could compile non-monolithic shaders here (starting
* with PS and NGG VS), but monolithic shaders should be compiled
* by LLVM due to more complicated compilation.
*/
if (!si_llvm_compile_shader(sscreen, compiler, shader, debug, nir, free_nir))
return false;
/* Validate SGPR and VGPR usage for compute to detect compiler bugs.
* LLVM 3.9svn has this bug.
*/
if (sel->info.stage == MESA_SHADER_COMPUTE) {
unsigned wave_size = sscreen->compute_wave_size;
unsigned max_vgprs =
sscreen->info.num_physical_wave64_vgprs_per_simd * (wave_size == 32 ? 2 : 1);
unsigned max_sgprs = sscreen->info.num_physical_sgprs_per_simd;
unsigned max_sgprs_per_wave = 128;
unsigned simds_per_tg = 4; /* assuming WGP mode on gfx10 */
unsigned threads_per_tg = si_get_max_workgroup_size(shader);
unsigned waves_per_tg = DIV_ROUND_UP(threads_per_tg, wave_size);
unsigned waves_per_simd = DIV_ROUND_UP(waves_per_tg, simds_per_tg);
max_vgprs = max_vgprs / waves_per_simd;
max_sgprs = MIN2(max_sgprs / waves_per_simd, max_sgprs_per_wave);
if (shader->config.num_sgprs > max_sgprs || shader->config.num_vgprs > max_vgprs) {
fprintf(stderr,
"LLVM failed to compile a shader correctly: "
"SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
shader->config.num_sgprs, shader->config.num_vgprs, max_sgprs, max_vgprs);
/* Just terminate the process, because dependent
* shaders can hang due to bad input data, but use
* the env var to allow shader-db to work.
*/
if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
abort();
}
}
/* Add the scratch offset to input SGPRs. */
if (shader->config.scratch_bytes_per_wave && !si_is_merged_shader(shader))
shader->info.num_input_sgprs += 1; /* scratch byte offset */
/* Calculate the number of fragment input VGPRs. */
if (sel->info.stage == MESA_SHADER_FRAGMENT) {
shader->info.num_input_vgprs = ac_get_fs_input_vgpr_cnt(
&shader->config, &shader->info.face_vgpr_index, &shader->info.ancillary_vgpr_index);
}
si_calculate_max_simd_waves(shader);
si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
return true;
}
/**
* Create, compile and return a shader part (prolog or epilog).
*
* \param sscreen screen
* \param list list of shader parts of the same category
* \param type shader type
* \param key shader part key
* \param prolog whether the part being requested is a prolog
* \param tm LLVM target machine
* \param debug debug callback
* \param build the callback responsible for building the main function
* \return non-NULL on success
*/
static struct si_shader_part *
si_get_shader_part(struct si_screen *sscreen, struct si_shader_part **list,
gl_shader_stage stage, bool prolog, union si_shader_part_key *key,
struct ac_llvm_compiler *compiler, struct pipe_debug_callback *debug,
void (*build)(struct si_shader_context *, union si_shader_part_key *),
const char *name)
{
struct si_shader_part *result;
simple_mtx_lock(&sscreen->shader_parts_mutex);
/* Find existing. */
for (result = *list; result; result = result->next) {
if (memcmp(&result->key, key, sizeof(*key)) == 0) {
simple_mtx_unlock(&sscreen->shader_parts_mutex);
return result;
}
}
/* Compile a new one. */
result = CALLOC_STRUCT(si_shader_part);
result->key = *key;
struct si_shader_selector sel = {};
sel.screen = sscreen;
struct si_shader shader = {};
shader.selector = &sel;
switch (stage) {
case MESA_SHADER_VERTEX:
shader.key.as_ls = key->vs_prolog.as_ls;
shader.key.as_es = key->vs_prolog.as_es;
shader.key.as_ngg = key->vs_prolog.as_ngg;
shader.key.opt.ngg_culling =
(key->vs_prolog.gs_fast_launch_tri_list ? SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST : 0) |
(key->vs_prolog.gs_fast_launch_tri_strip ? SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP : 0);
shader.key.opt.vs_as_prim_discard_cs = key->vs_prolog.as_prim_discard_cs;
break;
case MESA_SHADER_TESS_CTRL:
assert(!prolog);
shader.key.part.tcs.epilog = key->tcs_epilog.states;
break;
case MESA_SHADER_GEOMETRY:
assert(prolog);
shader.key.as_ngg = key->gs_prolog.as_ngg;
break;
case MESA_SHADER_FRAGMENT:
if (prolog)
shader.key.part.ps.prolog = key->ps_prolog.states;
else
shader.key.part.ps.epilog = key->ps_epilog.states;
break;
default:
unreachable("bad shader part");
}
struct si_shader_context ctx;
si_llvm_context_init(&ctx, sscreen, compiler,
si_get_wave_size(sscreen, stage,
shader.key.as_ngg, shader.key.as_es,
shader.key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL,
shader.key.opt.vs_as_prim_discard_cs));
ctx.shader = &shader;
ctx.stage = stage;
build(&ctx, key);
/* Compile. */
si_llvm_optimize_module(&ctx);
if (!si_compile_llvm(sscreen, &result->binary, &result->config, compiler, &ctx.ac, debug,
ctx.stage, name, false)) {
FREE(result);
result = NULL;
goto out;
}
result->next = *list;
*list = result;
out:
si_llvm_dispose(&ctx);
simple_mtx_unlock(&sscreen->shader_parts_mutex);
return result;
}
static bool si_get_vs_prolog(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug,
struct si_shader *main_part, const struct si_vs_prolog_bits *key)
{
struct si_shader_selector *vs = main_part->selector;
if (!si_vs_needs_prolog(vs, key, &shader->key, false))
return true;
/* Get the prolog. */
union si_shader_part_key prolog_key;
si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs, false, key, shader,
&prolog_key);
shader->prolog =
si_get_shader_part(sscreen, &sscreen->vs_prologs, MESA_SHADER_VERTEX, true, &prolog_key,
compiler, debug, si_llvm_build_vs_prolog, "Vertex Shader Prolog");
return shader->prolog != NULL;
}
/**
* Select and compile (or reuse) vertex shader parts (prolog & epilog).
*/
static bool si_shader_select_vs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug)
{
return si_get_vs_prolog(sscreen, compiler, shader, debug, shader, &shader->key.part.vs.prolog);
}
/**
* Select and compile (or reuse) TCS parts (epilog).
*/
static bool si_shader_select_tcs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug)
{
if (sscreen->info.chip_class >= GFX9) {
struct si_shader *ls_main_part = shader->key.part.tcs.ls->main_shader_part_ls;
if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
&shader->key.part.tcs.ls_prolog))
return false;
shader->previous_stage = ls_main_part;
}
/* Get the epilog. */
union si_shader_part_key epilog_key;
memset(&epilog_key, 0, sizeof(epilog_key));
epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs, MESA_SHADER_TESS_CTRL, false,
&epilog_key, compiler, debug, si_llvm_build_tcs_epilog,
"Tessellation Control Shader Epilog");
return shader->epilog != NULL;
}
/**
* Select and compile (or reuse) GS parts (prolog).
*/
static bool si_shader_select_gs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug)
{
if (sscreen->info.chip_class >= GFX9) {
struct si_shader *es_main_part;
if (shader->key.as_ngg)
es_main_part = shader->key.part.gs.es->main_shader_part_ngg_es;
else
es_main_part = shader->key.part.gs.es->main_shader_part_es;
if (shader->key.part.gs.es->info.stage == MESA_SHADER_VERTEX &&
!si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
&shader->key.part.gs.vs_prolog))
return false;
shader->previous_stage = es_main_part;
}
if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
return true;
union si_shader_part_key prolog_key;
memset(&prolog_key, 0, sizeof(prolog_key));
prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
shader->prolog2 =
si_get_shader_part(sscreen, &sscreen->gs_prologs, MESA_SHADER_GEOMETRY, true, &prolog_key,
compiler, debug, si_llvm_build_gs_prolog, "Geometry Shader Prolog");
return shader->prolog2 != NULL;
}
/**
* Compute the PS prolog key, which contains all the information needed to
* build the PS prolog function, and set related bits in shader->config.
*/
void si_get_ps_prolog_key(struct si_shader *shader, union si_shader_part_key *key,
bool separate_prolog)
{
struct si_shader_info *info = &shader->selector->info;
memset(key, 0, sizeof(*key));
key->ps_prolog.states = shader->key.part.ps.prolog;
key->ps_prolog.colors_read = info->colors_read;
key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
key->ps_prolog.wqm =
info->base.fs.needs_helper_invocations &&
(key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
key->ps_prolog.states.force_linear_sample_interp ||
key->ps_prolog.states.force_persp_center_interp ||
key->ps_prolog.states.force_linear_center_interp ||
key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear);
key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
if (info->colors_read) {
ubyte *color = shader->selector->color_attr_index;
if (shader->key.part.ps.prolog.color_two_side) {
/* BCOLORs are stored after the last input. */
key->ps_prolog.num_interp_inputs = info->num_inputs;
key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
if (separate_prolog)
shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
}
for (unsigned i = 0; i < 2; i++) {
unsigned interp = info->color_interpolate[i];
unsigned location = info->color_interpolate_loc[i];
if (!(info->colors_read & (0xf << i * 4)))
continue;
key->ps_prolog.color_attr_index[i] = color[i];
if (shader->key.part.ps.prolog.flatshade_colors && interp == INTERP_MODE_COLOR)
interp = INTERP_MODE_FLAT;
switch (interp) {
case INTERP_MODE_FLAT:
key->ps_prolog.color_interp_vgpr_index[i] = -1;
break;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_COLOR:
/* Force the interpolation location for colors here. */
if (shader->key.part.ps.prolog.force_persp_sample_interp)
location = TGSI_INTERPOLATE_LOC_SAMPLE;
if (shader->key.part.ps.prolog.force_persp_center_interp)
location = TGSI_INTERPOLATE_LOC_CENTER;
switch (location) {
case TGSI_INTERPOLATE_LOC_SAMPLE:
key->ps_prolog.color_interp_vgpr_index[i] = 0;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTER:
key->ps_prolog.color_interp_vgpr_index[i] = 2;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTROID:
key->ps_prolog.color_interp_vgpr_index[i] = 4;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTROID_ENA(1);
}
break;
default:
assert(0);
}
break;
case INTERP_MODE_NOPERSPECTIVE:
/* Force the interpolation location for colors here. */
if (shader->key.part.ps.prolog.force_linear_sample_interp)
location = TGSI_INTERPOLATE_LOC_SAMPLE;
if (shader->key.part.ps.prolog.force_linear_center_interp)
location = TGSI_INTERPOLATE_LOC_CENTER;
/* The VGPR assignment for non-monolithic shaders
* works because InitialPSInputAddr is set on the
* main shader and PERSP_PULL_MODEL is never used.
*/
switch (location) {
case TGSI_INTERPOLATE_LOC_SAMPLE:
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 6 : 9;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTER:
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 8 : 11;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
}
break;
case TGSI_INTERPOLATE_LOC_CENTROID:
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 10 : 13;
if (separate_prolog) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTROID_ENA(1);
}
break;
default:
assert(0);
}
break;
default:
assert(0);
}
}
}
}
/**
* Check whether a PS prolog is required based on the key.
*/
bool si_need_ps_prolog(const union si_shader_part_key *key)
{
return key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
key->ps_prolog.states.force_linear_sample_interp ||
key->ps_prolog.states.force_persp_center_interp ||
key->ps_prolog.states.force_linear_center_interp ||
key->ps_prolog.states.bc_optimize_for_persp ||
key->ps_prolog.states.bc_optimize_for_linear || key->ps_prolog.states.poly_stipple ||
key->ps_prolog.states.samplemask_log_ps_iter;
}
/**
* Compute the PS epilog key, which contains all the information needed to
* build the PS epilog function.
*/
void si_get_ps_epilog_key(struct si_shader *shader, union si_shader_part_key *key)
{
struct si_shader_info *info = &shader->selector->info;
memset(key, 0, sizeof(*key));
key->ps_epilog.colors_written = info->colors_written;
key->ps_epilog.color_types = info->output_color_types;
key->ps_epilog.writes_z = info->writes_z;
key->ps_epilog.writes_stencil = info->writes_stencil;
key->ps_epilog.writes_samplemask = info->writes_samplemask;
key->ps_epilog.states = shader->key.part.ps.epilog;
}
/**
* Select and compile (or reuse) pixel shader parts (prolog & epilog).
*/
static bool si_shader_select_ps_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug)
{
union si_shader_part_key prolog_key;
union si_shader_part_key epilog_key;
/* Get the prolog. */
si_get_ps_prolog_key(shader, &prolog_key, true);
/* The prolog is a no-op if these aren't set. */
if (si_need_ps_prolog(&prolog_key)) {
shader->prolog =
si_get_shader_part(sscreen, &sscreen->ps_prologs, MESA_SHADER_FRAGMENT, true, &prolog_key,
compiler, debug, si_llvm_build_ps_prolog, "Fragment Shader Prolog");
if (!shader->prolog)
return false;
}
/* Get the epilog. */
si_get_ps_epilog_key(shader, &epilog_key);
shader->epilog =
si_get_shader_part(sscreen, &sscreen->ps_epilogs, MESA_SHADER_FRAGMENT, false, &epilog_key,
compiler, debug, si_llvm_build_ps_epilog, "Fragment Shader Epilog");
if (!shader->epilog)
return false;
/* Enable POS_FIXED_PT if polygon stippling is enabled. */
if (shader->key.part.ps.prolog.poly_stipple) {
shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
}
/* Set up the enable bits for per-sample shading if needed. */
if (shader->key.part.ps.prolog.force_persp_sample_interp &&
(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
}
if (shader->key.part.ps.prolog.force_linear_sample_interp &&
(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
}
if (shader->key.part.ps.prolog.force_persp_center_interp &&
(G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
}
if (shader->key.part.ps.prolog.force_linear_center_interp &&
(G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
}
/* POW_W_FLOAT requires that one of the perspective weights is enabled. */
if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
!(shader->config.spi_ps_input_ena & 0xf)) {
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
}
/* At least one pair of interpolation weights must be enabled. */
if (!(shader->config.spi_ps_input_ena & 0x7f)) {
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
}
/* Samplemask fixup requires the sample ID. */
if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
}
/* The sample mask input is always enabled, because the API shader always
* passes it through to the epilog. Disable it here if it's unused.
*/
if (!shader->key.part.ps.epilog.poly_line_smoothing && !shader->selector->info.reads_samplemask)
shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
return true;
}
void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size)
{
/* If tessellation is all offchip and on-chip GS isn't used, this
* workaround is not needed.
*/
return;
/* SPI barrier management bug:
* Make sure we have at least 4k of LDS in use to avoid the bug.
* It applies to workgroup sizes of more than one wavefront.
*/
if (sscreen->info.family == CHIP_BONAIRE || sscreen->info.family == CHIP_KABINI)
*lds_size = MAX2(*lds_size, 8);
}
void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader)
{
unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
if (shader->selector->info.stage == MESA_SHADER_COMPUTE &&
si_get_max_workgroup_size(shader) > sscreen->compute_wave_size) {
si_multiwave_lds_size_workaround(sscreen, &shader->config.lds_size);
}
}
bool si_create_shader_variant(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct pipe_debug_callback *debug)
{
struct si_shader_selector *sel = shader->selector;
struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
/* LS, ES, VS are compiled on demand if the main part hasn't been
* compiled for that stage.
*
* GS are compiled on demand if the main part hasn't been compiled
* for the chosen NGG-ness.
*
* Vertex shaders are compiled on demand when a vertex fetch
* workaround must be applied.
*/
if (shader->is_monolithic) {
/* Monolithic shader (compiled as a whole, has many variants,
* may take a long time to compile).
*/
if (!si_compile_shader(sscreen, compiler, shader, debug))
return false;
} else {
/* The shader consists of several parts:
*
* - the middle part is the user shader, it has 1 variant only
* and it was compiled during the creation of the shader
* selector
* - the prolog part is inserted at the beginning
* - the epilog part is inserted at the end
*
* The prolog and epilog have many (but simple) variants.
*
* Starting with gfx9, geometry and tessellation control
* shaders also contain the prolog and user shader parts of
* the previous shader stage.
*/
if (!mainp)
return false;
/* Copy the compiled shader data over. */
shader->is_binary_shared = true;
shader->binary = mainp->binary;
shader->config = mainp->config;
shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
memcpy(shader->info.vs_output_param_offset, mainp->info.vs_output_param_offset,
sizeof(mainp->info.vs_output_param_offset));
shader->info.uses_instanceid = mainp->info.uses_instanceid;
shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
shader->info.nr_param_exports = mainp->info.nr_param_exports;
/* Select prologs and/or epilogs. */
switch (sel->info.stage) {
case MESA_SHADER_VERTEX:
if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
return false;
break;
case MESA_SHADER_TESS_CTRL:
if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
return false;
break;
case MESA_SHADER_TESS_EVAL:
break;
case MESA_SHADER_GEOMETRY:
if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
return false;
break;
case MESA_SHADER_FRAGMENT:
if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
return false;
/* Make sure we have at least as many VGPRs as there
* are allocated inputs.
*/
shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->info.num_input_vgprs);
break;
default:;
}
/* Update SGPR and VGPR counts. */
if (shader->prolog) {
shader->config.num_sgprs =
MAX2(shader->config.num_sgprs, shader->prolog->config.num_sgprs);
shader->config.num_vgprs =
MAX2(shader->config.num_vgprs, shader->prolog->config.num_vgprs);
}
if (shader->previous_stage) {
shader->config.num_sgprs =
MAX2(shader->config.num_sgprs, shader->previous_stage->config.num_sgprs);
shader->config.num_vgprs =
MAX2(shader->config.num_vgprs, shader->previous_stage->config.num_vgprs);
shader->config.spilled_sgprs =
MAX2(shader->config.spilled_sgprs, shader->previous_stage->config.spilled_sgprs);
shader->config.spilled_vgprs =
MAX2(shader->config.spilled_vgprs, shader->previous_stage->config.spilled_vgprs);
shader->info.private_mem_vgprs =
MAX2(shader->info.private_mem_vgprs, shader->previous_stage->info.private_mem_vgprs);
shader->config.scratch_bytes_per_wave =
MAX2(shader->config.scratch_bytes_per_wave,
shader->previous_stage->config.scratch_bytes_per_wave);
shader->info.uses_instanceid |= shader->previous_stage->info.uses_instanceid;
}
if (shader->prolog2) {
shader->config.num_sgprs =
MAX2(shader->config.num_sgprs, shader->prolog2->config.num_sgprs);
shader->config.num_vgprs =
MAX2(shader->config.num_vgprs, shader->prolog2->config.num_vgprs);
}
if (shader->epilog) {
shader->config.num_sgprs =
MAX2(shader->config.num_sgprs, shader->epilog->config.num_sgprs);
shader->config.num_vgprs =
MAX2(shader->config.num_vgprs, shader->epilog->config.num_vgprs);
}
si_calculate_max_simd_waves(shader);
}
if (shader->key.as_ngg) {
assert(!shader->key.as_es && !shader->key.as_ls);
if (!gfx10_ngg_calculate_subgroup_info(shader)) {
fprintf(stderr, "Failed to compute subgroup info\n");
return false;
}
} else if (sscreen->info.chip_class >= GFX9 && sel->info.stage == MESA_SHADER_GEOMETRY) {
gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
}
si_fix_resource_usage(sscreen, shader);
si_shader_dump(sscreen, shader, debug, stderr, true);
/* Upload. */
if (!si_shader_binary_upload(sscreen, shader, 0)) {
fprintf(stderr, "LLVM failed to upload shader\n");
return false;
}
return true;
}
void si_shader_binary_clean(struct si_shader_binary *binary)
{
free((void *)binary->elf_buffer);
binary->elf_buffer = NULL;
free(binary->llvm_ir_string);
binary->llvm_ir_string = NULL;
}
void si_shader_destroy(struct si_shader *shader)
{
if (shader->scratch_bo)
si_resource_reference(&shader->scratch_bo, NULL);
si_resource_reference(&shader->bo, NULL);
if (!shader->is_binary_shared)
si_shader_binary_clean(&shader->binary);
free(shader->shader_log);
}