blob: 23963d5b95caa09ff66e525222d6120c1bae6b22 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include <map>
namespace aco {
namespace {
/* map: block-id -> pair (dest, src) to store phi information */
typedef std::map<uint32_t, std::vector<std::pair<Definition, Operand>>> phi_info;
struct ssa_elimination_ctx {
phi_info logical_phi_info;
phi_info linear_phi_info;
std::vector<bool> empty_blocks;
Program* program;
ssa_elimination_ctx(Program* program) : empty_blocks(program->blocks.size(), true), program(program) {}
};
void collect_phi_info(ssa_elimination_ctx& ctx)
{
for (Block& block : ctx.program->blocks) {
for (aco_ptr<Instruction>& phi : block.instructions) {
if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
break;
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
if (phi->operands[i].isTemp() && phi->operands[i].physReg() == phi->definitions[0].physReg())
continue;
std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds;
phi_info& info = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info : ctx.linear_phi_info;
const auto result = info.emplace(preds[i], std::vector<std::pair<Definition, Operand>>());
assert(phi->definitions[0].size() == phi->operands[i].size());
result.first->second.emplace_back(phi->definitions[0], phi->operands[i]);
ctx.empty_blocks[preds[i]] = false;
}
}
}
}
void insert_parallelcopies(ssa_elimination_ctx& ctx)
{
/* insert the parallelcopies from logical phis before p_logical_end */
for (auto&& entry : ctx.logical_phi_info) {
Block& block = ctx.program->blocks[entry.first];
unsigned idx = block.instructions.size() - 1;
while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) {
assert(idx > 0);
idx--;
}
std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx);
aco_ptr<Pseudo_instruction> pc{create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, entry.second.size(), entry.second.size())};
unsigned i = 0;
for (std::pair<Definition, Operand>& pair : entry.second)
{
pc->definitions[i] = pair.first;
pc->operands[i] = pair.second;
i++;
}
/* this shouldn't be needed since we're only copying vgprs */
pc->tmp_in_scc = false;
block.instructions.insert(it, std::move(pc));
}
/* insert parallelcopies for the linear phis at the end of blocks just before the branch */
for (auto&& entry : ctx.linear_phi_info) {
Block& block = ctx.program->blocks[entry.first];
std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end();
--it;
assert((*it)->format == Format::PSEUDO_BRANCH);
aco_ptr<Pseudo_instruction> pc{create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, entry.second.size(), entry.second.size())};
unsigned i = 0;
for (std::pair<Definition, Operand>& pair : entry.second)
{
pc->definitions[i] = pair.first;
pc->operands[i] = pair.second;
i++;
}
pc->tmp_in_scc = block.scc_live_out;
pc->scratch_sgpr = block.scratch_sgpr;
block.instructions.insert(it, std::move(pc));
}
}
bool is_empty_block(Block* block, bool ignore_exec_writes)
{
/* check if this block is empty and the exec mask is not needed */
for (aco_ptr<Instruction>& instr : block->instructions) {
switch (instr->opcode) {
case aco_opcode::p_linear_phi:
case aco_opcode::p_phi:
case aco_opcode::p_logical_start:
case aco_opcode::p_logical_end:
case aco_opcode::p_branch:
break;
case aco_opcode::p_parallelcopy:
for (unsigned i = 0; i < instr->definitions.size(); i++) {
if (ignore_exec_writes && instr->definitions[i].physReg() == exec)
continue;
if (instr->definitions[i].physReg() != instr->operands[i].physReg())
return false;
}
break;
case aco_opcode::s_andn2_b64:
case aco_opcode::s_andn2_b32:
if (ignore_exec_writes && instr->definitions[0].physReg() == exec)
break;
default:
return false;
}
}
return true;
}
void try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block)
{
/* check if the successor is another merge block which restores exec */
// TODO: divergent loops also restore exec
if (block->linear_succs.size() != 1 ||
!(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge))
return;
/* check if this block is empty */
if (!is_empty_block(block, true))
return;
/* keep the branch instruction and remove the rest */
aco_ptr<Instruction> branch = std::move(block->instructions.back());
block->instructions.clear();
block->instructions.emplace_back(std::move(branch));
}
void try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block)
{
assert(block->linear_succs.size() == 2);
/* only remove this block if the successor got removed as well */
if (block->linear_succs[0] != block->linear_succs[1])
return;
/* check if block is otherwise empty */
if (!is_empty_block(block, true))
return;
unsigned succ_idx = block->linear_succs[0];
assert(block->linear_preds.size() == 2);
for (unsigned i = 0; i < 2; i++) {
Block *pred = &ctx.program->blocks[block->linear_preds[i]];
pred->linear_succs[0] = succ_idx;
ctx.program->blocks[succ_idx].linear_preds[i] = pred->index;
Pseudo_branch_instruction *branch = static_cast<Pseudo_branch_instruction*>(pred->instructions.back().get());
assert(branch->format == Format::PSEUDO_BRANCH);
branch->target[0] = succ_idx;
branch->target[1] = succ_idx;
}
block->instructions.clear();
block->linear_preds.clear();
block->linear_succs.clear();
}
void try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block)
{
if (!is_empty_block(block, false))
return;
Block& pred = ctx.program->blocks[block->linear_preds[0]];
Block& succ = ctx.program->blocks[block->linear_succs[0]];
Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(pred.instructions.back().get());
if (branch->opcode == aco_opcode::p_branch) {
branch->target[0] = succ.index;
branch->target[1] = succ.index;
} else if (branch->target[0] == block->index) {
branch->target[0] = succ.index;
} else if (branch->target[0] == succ.index) {
assert(branch->target[1] == block->index);
branch->target[1] = succ.index;
branch->opcode = aco_opcode::p_branch;
} else if (branch->target[1] == block->index) {
/* check if there is a fall-through path from block to succ */
bool falls_through = block->index < succ.index;
for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) {
assert(ctx.program->blocks[j].index == j);
if (!ctx.program->blocks[j].instructions.empty())
falls_through = false;
}
if (falls_through) {
branch->target[1] = succ.index;
} else {
/* check if there is a fall-through path for the alternative target */
if (block->index >= branch->target[0])
return;
for (unsigned j = block->index + 1; j < branch->target[0]; j++) {
if (!ctx.program->blocks[j].instructions.empty())
return;
}
/* This is a (uniform) break or continue block. The branch condition has to be inverted. */
if (branch->opcode == aco_opcode::p_cbranch_z)
branch->opcode = aco_opcode::p_cbranch_nz;
else if (branch->opcode == aco_opcode::p_cbranch_nz)
branch->opcode = aco_opcode::p_cbranch_z;
else
assert(false);
/* also invert the linear successors */
pred.linear_succs[0] = pred.linear_succs[1];
pred.linear_succs[1] = succ.index;
branch->target[1] = branch->target[0];
branch->target[0] = succ.index;
}
} else {
assert(false);
}
if (branch->target[0] == branch->target[1])
branch->opcode = aco_opcode::p_branch;
for (unsigned i = 0; i < pred.linear_succs.size(); i++)
if (pred.linear_succs[i] == block->index)
pred.linear_succs[i] = succ.index;
for (unsigned i = 0; i < succ.linear_preds.size(); i++)
if (succ.linear_preds[i] == block->index)
succ.linear_preds[i] = pred.index;
block->instructions.clear();
block->linear_preds.clear();
block->linear_succs.clear();
}
void jump_threading(ssa_elimination_ctx& ctx)
{
for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) {
Block* block = &ctx.program->blocks[i];
if (!ctx.empty_blocks[i])
continue;
if (block->kind & block_kind_invert) {
try_remove_invert_block(ctx, block);
continue;
}
if (block->linear_succs.size() > 1)
continue;
if (block->kind & block_kind_merge ||
block->kind & block_kind_loop_exit)
try_remove_merge_block(ctx, block);
if (block->linear_preds.size() == 1)
try_remove_simple_block(ctx, block);
}
}
} /* end namespace */
void ssa_elimination(Program* program)
{
ssa_elimination_ctx ctx(program);
/* Collect information about every phi-instruction */
collect_phi_info(ctx);
/* eliminate empty blocks */
jump_threading(ctx);
/* insert parallelcopies from SSA elimination */
insert_parallelcopies(ctx);
}
}