blob: f21d954e2d66bbfbdbde6275062b41ffaa5798c8 [file] [log] [blame]
/*
* Copyright © 2019 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Rhys Perry (pendingchaos02@gmail.com)
*
*/
#include <map>
#include "aco_ir.h"
#include "aco_builder.h"
#include <algorithm>
namespace aco {
struct ssa_state {
bool checked_preds_for_uniform;
bool all_preds_uniform;
bool needs_init;
uint64_t cur_undef_operands;
unsigned phi_block_idx;
unsigned loop_nest_depth;
std::map<unsigned, unsigned> writes;
std::vector<Operand> latest;
std::vector<bool> visited;
};
Operand get_ssa(Program *program, unsigned block_idx, ssa_state *state, bool before_write)
{
if (!before_write) {
auto it = state->writes.find(block_idx);
if (it != state->writes.end())
return Operand(Temp(it->second, program->lane_mask));
if (state->visited[block_idx])
return state->latest[block_idx];
}
state->visited[block_idx] = true;
Block& block = program->blocks[block_idx];
size_t pred = block.linear_preds.size();
if (pred == 0 || block.loop_nest_depth < state->loop_nest_depth) {
return Operand(program->lane_mask);
} else if (block.loop_nest_depth > state->loop_nest_depth) {
Operand op = get_ssa(program, block_idx - 1, state, false);
state->latest[block_idx] = op;
return op;
} else if (pred == 1 || block.kind & block_kind_loop_exit) {
Operand op = get_ssa(program, block.linear_preds[0], state, false);
state->latest[block_idx] = op;
return op;
} else if (block.kind & block_kind_loop_header &&
!(program->blocks[state->phi_block_idx].kind & block_kind_loop_exit)) {
return Operand(program->lane_mask);
} else {
Temp res = Temp(program->allocateTmp(program->lane_mask));
state->latest[block_idx] = Operand(res);
Operand ops[pred];
for (unsigned i = 0; i < pred; i++)
ops[i] = get_ssa(program, block.linear_preds[i], state, false);
bool all_undef = true;
for (unsigned i = 0; i < pred; i++)
all_undef = all_undef && ops[i].isUndefined();
if (all_undef) {
state->latest[block_idx] = ops[0];
return ops[0];
}
aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)};
for (unsigned i = 0; i < pred; i++)
phi->operands[i] = ops[i];
phi->definitions[0] = Definition(res);
block.instructions.emplace(block.instructions.begin(), std::move(phi));
return Operand(res);
}
}
void insert_before_logical_end(Block *block, aco_ptr<Instruction> instr)
{
auto IsLogicalEnd = [] (const aco_ptr<Instruction>& instr) -> bool {
return instr->opcode == aco_opcode::p_logical_end;
};
auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
if (it == block->instructions.crend()) {
assert(block->instructions.back()->format == Format::PSEUDO_BRANCH);
block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
} else {
block->instructions.insert(std::prev(it.base()), std::move(instr));
}
}
void build_merge_code(Program *program, Block *block, Definition dst, Operand prev, Operand cur)
{
Builder bld(program);
auto IsLogicalEnd = [] (const aco_ptr<Instruction>& instr) -> bool {
return instr->opcode == aco_opcode::p_logical_end;
};
auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
assert(it != block->instructions.rend());
bld.reset(&block->instructions, std::prev(it.base()));
if (prev.isUndefined()) {
bld.sop1(Builder::s_mov, dst, cur);
return;
}
bool prev_is_constant = prev.isConstant() && prev.constantValue64(true) + 1u < 2u;
bool cur_is_constant = cur.isConstant() && cur.constantValue64(true) + 1u < 2u;
if (!prev_is_constant) {
if (!cur_is_constant) {
Temp tmp1 = bld.tmp(bld.lm), tmp2 = bld.tmp(bld.lm);
bld.sop2(Builder::s_andn2, Definition(tmp1), bld.def(s1, scc), prev, Operand(exec, bld.lm));
bld.sop2(Builder::s_and, Definition(tmp2), bld.def(s1, scc), cur, Operand(exec, bld.lm));
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), tmp1, tmp2);
} else if (cur.constantValue64(true)) {
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
} else {
bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
}
} else if (prev.constantValue64(true)) {
if (!cur_is_constant)
bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
else if (cur.constantValue64(true))
bld.sop1(Builder::s_mov, dst, program->wave_size == 64 ? Operand(UINT64_MAX) : Operand(UINT32_MAX));
else
bld.sop1(Builder::s_not, dst, bld.def(s1, scc), Operand(exec, bld.lm));
} else {
if (!cur_is_constant)
bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
else if (cur.constantValue64(true))
bld.sop1(Builder::s_mov, dst, Operand(exec, bld.lm));
else
bld.sop1(Builder::s_mov, dst, program->wave_size == 64 ? Operand((uint64_t)0u) : Operand(0u));
}
}
void lower_divergent_bool_phi(Program *program, ssa_state *state, Block *block, aco_ptr<Instruction>& phi)
{
Builder bld(program);
if (!state->checked_preds_for_uniform) {
state->all_preds_uniform = !(block->kind & block_kind_merge);
for (unsigned pred : block->logical_preds)
state->all_preds_uniform = state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform);
state->checked_preds_for_uniform = true;
}
if (state->all_preds_uniform) {
assert(block->logical_preds.size() == block->linear_preds.size());
phi->opcode = aco_opcode::p_linear_phi;
return;
}
state->latest.resize(program->blocks.size());
state->visited.resize(program->blocks.size());
uint64_t undef_operands = 0;
for (unsigned i = 0; i < phi->operands.size(); i++)
undef_operands |= phi->operands[i].isUndefined() << i;
if (state->needs_init || undef_operands != state->cur_undef_operands ||
block->logical_preds.size() > 64) {
/* this only has to be done once per block unless the set of predecessors
* which are undefined changes */
state->cur_undef_operands = undef_operands;
state->phi_block_idx = block->index;
state->loop_nest_depth = block->loop_nest_depth;
if (block->kind & block_kind_loop_exit) {
state->loop_nest_depth += 1;
}
state->writes.clear();
state->needs_init = false;
}
std::fill(state->latest.begin(), state->latest.end(), Operand(program->lane_mask));
std::fill(state->visited.begin(), state->visited.end(), false);
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
state->writes[block->logical_preds[i]] = program->allocateId(program->lane_mask);
}
bool uniform_merge = block->kind & block_kind_loop_header;
for (unsigned i = 0; i < phi->operands.size(); i++) {
Block *pred = &program->blocks[block->logical_preds[i]];
bool need_get_ssa = !uniform_merge;
if (block->kind & block_kind_loop_header && !(pred->kind & block_kind_uniform))
uniform_merge = false;
if (phi->operands[i].isUndefined())
continue;
Operand cur(bld.lm);
if (need_get_ssa)
cur = get_ssa(program, pred->index, state, true);
assert(cur.regClass() == bld.lm);
Temp new_cur = {state->writes.at(pred->index), program->lane_mask};
assert(new_cur.regClass() == bld.lm);
if (i == 1 && (block->kind & block_kind_merge) && phi->operands[0].isConstant())
cur = phi->operands[0];
build_merge_code(program, pred, Definition(new_cur), cur, phi->operands[i]);
}
unsigned num_preds = block->linear_preds.size();
if (phi->operands.size() != num_preds) {
Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
new_phi->definitions[0] = phi->definitions[0];
phi.reset(new_phi);
} else {
phi->opcode = aco_opcode::p_linear_phi;
}
assert(phi->operands.size() == num_preds);
for (unsigned i = 0; i < num_preds; i++)
phi->operands[i] = get_ssa(program, block->linear_preds[i], state, false);
return;
}
void lower_subdword_phis(Program *program, Block *block, aco_ptr<Instruction>& phi)
{
Builder bld(program);
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
if (phi->operands[i].regClass() == phi->definitions[0].regClass())
continue;
assert(phi->operands[i].isTemp());
Block *pred = &program->blocks[block->logical_preds[i]];
Temp phi_src = phi->operands[i].getTemp();
assert(phi_src.regClass().type() == RegType::sgpr);
Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), phi_src).get_ptr());
Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector, Definition(new_phi_src), tmp, Operand(0u)).get_ptr());
phi->operands[i].setTemp(new_phi_src);
}
return;
}
void lower_phis(Program* program)
{
ssa_state state;
for (Block& block : program->blocks) {
state.checked_preds_for_uniform = false;
state.needs_init = true;
for (aco_ptr<Instruction>& phi : block.instructions) {
if (phi->opcode == aco_opcode::p_phi) {
assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1 : phi->definitions[0].regClass() != s2);
if (phi->definitions[0].regClass() == program->lane_mask)
lower_divergent_bool_phi(program, &state, &block, phi);
else if (phi->definitions[0].regClass().is_subdword())
lower_subdword_phis(program, &block, phi);
} else if (!is_phi(phi)) {
break;
}
}
}
}
}