blob: a258447b6620c9cc5a00358197a802e80f262b7b [file] [log] [blame]
/*
* Copyright © 2020 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include "vulkan/radv_shader.h"
#include "c11/threads.h"
#include "util/debug.h"
namespace aco {
uint64_t debug_flags = 0;
static const struct debug_control aco_debug_options[] = {
{"validateir", DEBUG_VALIDATE_IR},
{"validatera", DEBUG_VALIDATE_RA},
{"perfwarn", DEBUG_PERFWARN},
{"force-waitcnt", DEBUG_FORCE_WAITCNT},
{"novn", DEBUG_NO_VN},
{"noopt", DEBUG_NO_OPT},
{"nosched", DEBUG_NO_SCHED},
{NULL, 0}
};
static once_flag init_once_flag = ONCE_FLAG_INIT;
static void init_once()
{
debug_flags = parse_debug_string(getenv("ACO_DEBUG"), aco_debug_options);
#ifndef NDEBUG
/* enable some flags by default on debug builds */
debug_flags |= aco::DEBUG_VALIDATE_IR;
#endif
}
void init()
{
call_once(&init_once_flag, init_once);
}
void init_program(Program *program, Stage stage, struct radv_shader_info *info,
enum chip_class chip_class, enum radeon_family family,
ac_shader_config *config)
{
program->stage = stage;
program->config = config;
program->info = info;
program->chip_class = chip_class;
if (family == CHIP_UNKNOWN) {
switch (chip_class) {
case GFX6:
program->family = CHIP_TAHITI;
break;
case GFX7:
program->family = CHIP_BONAIRE;
break;
case GFX8:
program->family = CHIP_POLARIS10;
break;
case GFX9:
program->family = CHIP_VEGA10;
break;
case GFX10:
program->family = CHIP_NAVI10;
break;
default:
program->family = CHIP_UNKNOWN;
break;
}
} else {
program->family = family;
}
program->wave_size = info->wave_size;
program->lane_mask = program->wave_size == 32 ? s1 : s2;
program->lds_alloc_granule = chip_class >= GFX7 ? 512 : 256;
program->lds_limit = chip_class >= GFX7 ? 65536 : 32768;
/* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
program->has_16bank_lds = family == CHIP_KABINI || family == CHIP_STONEY;
program->vgpr_limit = 256;
program->vgpr_alloc_granule = 3;
if (chip_class >= GFX10) {
program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
program->sgpr_alloc_granule = 127;
program->sgpr_limit = 106;
if (chip_class >= GFX10_3)
program->vgpr_alloc_granule = program->wave_size == 32 ? 15 : 7;
else
program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
} else if (program->chip_class >= GFX8) {
program->physical_sgprs = 800;
program->sgpr_alloc_granule = 15;
if (family == CHIP_TONGA || family == CHIP_ICELAND)
program->sgpr_limit = 94; /* workaround hardware bug */
else
program->sgpr_limit = 102;
} else {
program->physical_sgprs = 512;
program->sgpr_alloc_granule = 7;
program->sgpr_limit = 104;
}
program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
program->next_fp_mode.must_flush_denorms32 = false;
program->next_fp_mode.must_flush_denorms16_64 = false;
program->next_fp_mode.care_about_round32 = false;
program->next_fp_mode.care_about_round16_64 = false;
program->next_fp_mode.denorm16_64 = fp_denorm_keep;
program->next_fp_mode.denorm32 = 0;
program->next_fp_mode.round16_64 = fp_round_ne;
program->next_fp_mode.round32 = fp_round_ne;
}
memory_sync_info get_sync_info(const Instruction* instr)
{
switch (instr->format) {
case Format::SMEM:
return static_cast<const SMEM_instruction*>(instr)->sync;
case Format::MUBUF:
return static_cast<const MUBUF_instruction*>(instr)->sync;
case Format::MIMG:
return static_cast<const MIMG_instruction*>(instr)->sync;
case Format::MTBUF:
return static_cast<const MTBUF_instruction*>(instr)->sync;
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH:
return static_cast<const FLAT_instruction*>(instr)->sync;
case Format::DS:
return static_cast<const DS_instruction*>(instr)->sync;
default:
return memory_sync_info();
}
}
bool can_use_SDWA(chip_class chip, const aco_ptr<Instruction>& instr)
{
if (!instr->isVALU())
return false;
if (chip < GFX8 || instr->isDPP())
return false;
if (instr->isSDWA())
return true;
if (instr->isVOP3()) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
if (instr->format == Format::VOP3)
return false;
if (vop3->clamp && instr->format == asVOP3(Format::VOPC) && chip != GFX8)
return false;
if (vop3->omod && chip < GFX9)
return false;
//TODO: return true if we know we will use vcc
if (instr->definitions.size() >= 2)
return false;
for (unsigned i = 1; i < instr->operands.size(); i++) {
if (instr->operands[i].isLiteral())
return false;
if (chip < GFX9 && !instr->operands[i].isOfType(RegType::vgpr))
return false;
}
}
if (!instr->operands.empty()) {
if (instr->operands[0].isLiteral())
return false;
if (chip < GFX9 && !instr->operands[0].isOfType(RegType::vgpr))
return false;
}
bool is_mac = instr->opcode == aco_opcode::v_mac_f32 ||
instr->opcode == aco_opcode::v_mac_f16 ||
instr->opcode == aco_opcode::v_fmac_f32 ||
instr->opcode == aco_opcode::v_fmac_f16;
if (chip != GFX8 && is_mac)
return false;
//TODO: return true if we know we will use vcc
if ((unsigned)instr->format & (unsigned)Format::VOPC)
return false;
if (instr->operands.size() >= 3 && !is_mac)
return false;
return instr->opcode != aco_opcode::v_madmk_f32 &&
instr->opcode != aco_opcode::v_madak_f32 &&
instr->opcode != aco_opcode::v_madmk_f16 &&
instr->opcode != aco_opcode::v_madak_f16 &&
instr->opcode != aco_opcode::v_readfirstlane_b32 &&
instr->opcode != aco_opcode::v_clrexcp &&
instr->opcode != aco_opcode::v_swap_b32;
}
/* updates "instr" and returns the old instruction (or NULL if no update was needed) */
aco_ptr<Instruction> convert_to_SDWA(chip_class chip, aco_ptr<Instruction>& instr)
{
if (instr->isSDWA())
return NULL;
aco_ptr<Instruction> tmp = std::move(instr);
Format format = (Format)(((uint16_t)tmp->format & ~(uint16_t)Format::VOP3) | (uint16_t)Format::SDWA);
instr.reset(create_instruction<SDWA_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), instr->definitions.begin());
SDWA_instruction *sdwa = static_cast<SDWA_instruction*>(instr.get());
if (tmp->isVOP3()) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(tmp.get());
memcpy(sdwa->neg, vop3->neg, sizeof(sdwa->neg));
memcpy(sdwa->abs, vop3->abs, sizeof(sdwa->abs));
sdwa->omod = vop3->omod;
sdwa->clamp = vop3->clamp;
}
for (unsigned i = 0; i < instr->operands.size(); i++) {
/* SDWA only uses operands 0 and 1. */
if (i >= 2)
break;
switch (instr->operands[i].bytes()) {
case 1:
sdwa->sel[i] = sdwa_ubyte;
break;
case 2:
sdwa->sel[i] = sdwa_uword;
break;
case 4:
sdwa->sel[i] = sdwa_udword;
break;
}
}
switch (instr->definitions[0].bytes()) {
case 1:
sdwa->dst_sel = sdwa_ubyte;
sdwa->dst_preserve = true;
break;
case 2:
sdwa->dst_sel = sdwa_uword;
sdwa->dst_preserve = true;
break;
case 4:
sdwa->dst_sel = sdwa_udword;
break;
}
if (instr->definitions[0].getTemp().type() == RegType::sgpr && chip == GFX8)
instr->definitions[0].setFixed(vcc);
if (instr->definitions.size() >= 2)
instr->definitions[1].setFixed(vcc);
if (instr->operands.size() >= 3)
instr->operands[2].setFixed(vcc);
return tmp;
}
bool can_use_opsel(chip_class chip, aco_opcode op, int idx, bool high)
{
/* opsel is only GFX9+ */
if ((high || idx == -1) && chip < GFX9)
return false;
switch (op) {
case aco_opcode::v_div_fixup_f16:
case aco_opcode::v_fma_f16:
case aco_opcode::v_mad_f16:
case aco_opcode::v_mad_u16:
case aco_opcode::v_mad_i16:
case aco_opcode::v_med3_f16:
case aco_opcode::v_med3_i16:
case aco_opcode::v_med3_u16:
case aco_opcode::v_min3_f16:
case aco_opcode::v_min3_i16:
case aco_opcode::v_min3_u16:
case aco_opcode::v_max3_f16:
case aco_opcode::v_max3_i16:
case aco_opcode::v_max3_u16:
case aco_opcode::v_max_u16_e64:
case aco_opcode::v_max_i16_e64:
case aco_opcode::v_min_u16_e64:
case aco_opcode::v_min_i16_e64:
case aco_opcode::v_add_i16:
case aco_opcode::v_sub_i16:
case aco_opcode::v_add_u16_e64:
case aco_opcode::v_sub_u16_e64:
case aco_opcode::v_lshlrev_b16_e64:
case aco_opcode::v_lshrrev_b16_e64:
case aco_opcode::v_ashrrev_i16_e64:
case aco_opcode::v_mul_lo_u16_e64:
return true;
case aco_opcode::v_pack_b32_f16:
case aco_opcode::v_cvt_pknorm_i16_f16:
case aco_opcode::v_cvt_pknorm_u16_f16:
return idx != -1;
case aco_opcode::v_mad_u32_u16:
case aco_opcode::v_mad_i32_i16:
return idx >= 0 && idx < 2;
default:
return false;
}
}
uint32_t get_reduction_identity(ReduceOp op, unsigned idx)
{
switch (op) {
case iadd8:
case iadd16:
case iadd32:
case iadd64:
case fadd16:
case fadd32:
case fadd64:
case ior8:
case ior16:
case ior32:
case ior64:
case ixor8:
case ixor16:
case ixor32:
case ixor64:
case umax8:
case umax16:
case umax32:
case umax64:
return 0;
case imul8:
case imul16:
case imul32:
case imul64:
return idx ? 0 : 1;
case fmul16:
return 0x3c00u; /* 1.0 */
case fmul32:
return 0x3f800000u; /* 1.0 */
case fmul64:
return idx ? 0x3ff00000u : 0u; /* 1.0 */
case imin8:
return INT8_MAX;
case imin16:
return INT16_MAX;
case imin32:
return INT32_MAX;
case imin64:
return idx ? 0x7fffffffu : 0xffffffffu;
case imax8:
return INT8_MIN;
case imax16:
return INT16_MIN;
case imax32:
return INT32_MIN;
case imax64:
return idx ? 0x80000000u : 0;
case umin8:
case umin16:
case iand8:
case iand16:
return 0xffffffffu;
case umin32:
case umin64:
case iand32:
case iand64:
return 0xffffffffu;
case fmin16:
return 0x7c00u; /* infinity */
case fmin32:
return 0x7f800000u; /* infinity */
case fmin64:
return idx ? 0x7ff00000u : 0u; /* infinity */
case fmax16:
return 0xfc00u; /* negative infinity */
case fmax32:
return 0xff800000u; /* negative infinity */
case fmax64:
return idx ? 0xfff00000u : 0u; /* negative infinity */
default:
unreachable("Invalid reduction operation");
break;
}
return 0;
}
}