blob: fe99b29b7da4b0b5079d0d60f8e718c451022d79 [file] [log] [blame]
/*
* Copyright (C) 2019 Alyssa Rosenzweig
* Copyright (C) 2014-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <assert.h>
#include "drm-uapi/panfrost_drm.h"
#include "pan_bo.h"
#include "pan_context.h"
#include "util/hash_table.h"
#include "util/ralloc.h"
#include "util/format/u_format.h"
#include "util/u_pack_color.h"
#include "util/rounding.h"
#include "pan_util.h"
#include "pan_blending.h"
#include "decode.h"
#include "panfrost-quirks.h"
/* panfrost_bo_access is here to help us keep track of batch accesses to BOs
* and build a proper dependency graph such that batches can be pipelined for
* better GPU utilization.
*
* Each accessed BO has a corresponding entry in the ->accessed_bos hash table.
* A BO is either being written or read at any time (see if writer != NULL).
* When the last access is a write, the batch writing the BO might have read
* dependencies (readers that have not been executed yet and want to read the
* previous BO content), and when the last access is a read, all readers might
* depend on another batch to push its results to memory. That's what the
* readers/writers keep track off.
* There can only be one writer at any given time, if a new batch wants to
* write to the same BO, a dependency will be added between the new writer and
* the old writer (at the batch level), and panfrost_bo_access->writer will be
* updated to point to the new writer.
*/
struct panfrost_bo_access {
struct util_dynarray readers;
struct panfrost_batch_fence *writer;
};
static struct panfrost_batch_fence *
panfrost_create_batch_fence(struct panfrost_batch *batch)
{
struct panfrost_batch_fence *fence;
fence = rzalloc(NULL, struct panfrost_batch_fence);
assert(fence);
pipe_reference_init(&fence->reference, 1);
fence->batch = batch;
return fence;
}
static void
panfrost_free_batch_fence(struct panfrost_batch_fence *fence)
{
ralloc_free(fence);
}
void
panfrost_batch_fence_unreference(struct panfrost_batch_fence *fence)
{
if (pipe_reference(&fence->reference, NULL))
panfrost_free_batch_fence(fence);
}
void
panfrost_batch_fence_reference(struct panfrost_batch_fence *fence)
{
pipe_reference(NULL, &fence->reference);
}
static struct panfrost_batch *
panfrost_create_batch(struct panfrost_context *ctx,
const struct pipe_framebuffer_state *key)
{
struct panfrost_batch *batch = rzalloc(ctx, struct panfrost_batch);
batch->ctx = ctx;
batch->bos = _mesa_hash_table_create(batch, _mesa_hash_pointer,
_mesa_key_pointer_equal);
batch->minx = batch->miny = ~0;
batch->maxx = batch->maxy = 0;
batch->out_sync = panfrost_create_batch_fence(batch);
util_copy_framebuffer_state(&batch->key, key);
batch->pool = panfrost_create_pool(batch, pan_device(ctx->base.screen));
return batch;
}
static void
panfrost_freeze_batch(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
struct hash_entry *entry;
/* Remove the entry in the FBO -> batch hash table if the batch
* matches. This way, next draws/clears targeting this FBO will trigger
* the creation of a new batch.
*/
entry = _mesa_hash_table_search(ctx->batches, &batch->key);
if (entry && entry->data == batch)
_mesa_hash_table_remove(ctx->batches, entry);
/* If this is the bound batch, the panfrost_context parameters are
* relevant so submitting it invalidates those parameters, but if it's
* not bound, the context parameters are for some other batch so we
* can't invalidate them.
*/
if (ctx->batch == batch) {
panfrost_invalidate_frame(ctx);
ctx->batch = NULL;
}
}
#ifdef PAN_BATCH_DEBUG
static bool panfrost_batch_is_frozen(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->batches, &batch->key);
if (entry && entry->data == batch)
return false;
if (ctx->batch == batch)
return false;
return true;
}
#endif
static void
panfrost_free_batch(struct panfrost_batch *batch)
{
if (!batch)
return;
#ifdef PAN_BATCH_DEBUG
assert(panfrost_batch_is_frozen(batch));
#endif
hash_table_foreach(batch->bos, entry)
panfrost_bo_unreference((struct panfrost_bo *)entry->key);
hash_table_foreach(batch->pool.bos, entry)
panfrost_bo_unreference((struct panfrost_bo *)entry->key);
util_dynarray_foreach(&batch->dependencies,
struct panfrost_batch_fence *, dep) {
panfrost_batch_fence_unreference(*dep);
}
/* The out_sync fence lifetime is different from the the batch one
* since other batches might want to wait on a fence of already
* submitted/signaled batch. All we need to do here is make sure the
* fence does not point to an invalid batch, which the core will
* interpret as 'batch is already submitted'.
*/
batch->out_sync->batch = NULL;
panfrost_batch_fence_unreference(batch->out_sync);
util_unreference_framebuffer_state(&batch->key);
ralloc_free(batch);
}
#ifdef PAN_BATCH_DEBUG
static bool
panfrost_dep_graph_contains_batch(struct panfrost_batch *root,
struct panfrost_batch *batch)
{
if (!root)
return false;
util_dynarray_foreach(&root->dependencies,
struct panfrost_batch_fence *, dep) {
if ((*dep)->batch == batch ||
panfrost_dep_graph_contains_batch((*dep)->batch, batch))
return true;
}
return false;
}
#endif
static void
panfrost_batch_add_dep(struct panfrost_batch *batch,
struct panfrost_batch_fence *newdep)
{
if (batch == newdep->batch)
return;
/* We might want to turn ->dependencies into a set if the number of
* deps turns out to be big enough to make this 'is dep already there'
* search inefficient.
*/
util_dynarray_foreach(&batch->dependencies,
struct panfrost_batch_fence *, dep) {
if (*dep == newdep)
return;
}
#ifdef PAN_BATCH_DEBUG
/* Make sure the dependency graph is acyclic. */
assert(!panfrost_dep_graph_contains_batch(newdep->batch, batch));
#endif
panfrost_batch_fence_reference(newdep);
util_dynarray_append(&batch->dependencies,
struct panfrost_batch_fence *, newdep);
/* We now have a batch depending on us, let's make sure new draw/clear
* calls targeting the same FBO use a new batch object.
*/
if (newdep->batch)
panfrost_freeze_batch(newdep->batch);
}
static struct panfrost_batch *
panfrost_get_batch(struct panfrost_context *ctx,
const struct pipe_framebuffer_state *key)
{
/* Lookup the job first */
struct hash_entry *entry = _mesa_hash_table_search(ctx->batches, key);
if (entry)
return entry->data;
/* Otherwise, let's create a job */
struct panfrost_batch *batch = panfrost_create_batch(ctx, key);
/* Save the created job */
_mesa_hash_table_insert(ctx->batches, &batch->key, batch);
return batch;
}
/* Get the job corresponding to the FBO we're currently rendering into */
struct panfrost_batch *
panfrost_get_batch_for_fbo(struct panfrost_context *ctx)
{
/* If we're wallpapering, we special case to workaround
* u_blitter abuse */
if (ctx->wallpaper_batch)
return ctx->wallpaper_batch;
/* If we already began rendering, use that */
if (ctx->batch) {
assert(util_framebuffer_state_equal(&ctx->batch->key,
&ctx->pipe_framebuffer));
return ctx->batch;
}
/* If not, look up the job */
struct panfrost_batch *batch = panfrost_get_batch(ctx,
&ctx->pipe_framebuffer);
/* Set this job as the current FBO job. Will be reset when updating the
* FB state and when submitting or releasing a job.
*/
ctx->batch = batch;
return batch;
}
struct panfrost_batch *
panfrost_get_fresh_batch_for_fbo(struct panfrost_context *ctx)
{
struct panfrost_batch *batch;
batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
/* The batch has no draw/clear queued, let's return it directly.
* Note that it's perfectly fine to re-use a batch with an
* existing clear, we'll just update it with the new clear request.
*/
if (!batch->scoreboard.first_job)
return batch;
/* Otherwise, we need to freeze the existing one and instantiate a new
* one.
*/
panfrost_freeze_batch(batch);
return panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
}
static void
panfrost_bo_access_gc_fences(struct panfrost_context *ctx,
struct panfrost_bo_access *access,
const struct panfrost_bo *bo)
{
if (access->writer) {
panfrost_batch_fence_unreference(access->writer);
access->writer = NULL;
}
struct panfrost_batch_fence **readers_array = util_dynarray_begin(&access->readers);
struct panfrost_batch_fence **new_readers = readers_array;
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (!(*reader))
continue;
panfrost_batch_fence_unreference(*reader);
*reader = NULL;
}
if (!util_dynarray_resize(&access->readers, struct panfrost_batch_fence *,
new_readers - readers_array) &&
new_readers != readers_array)
unreachable("Invalid dynarray access->readers");
}
/* Collect signaled fences to keep the kernel-side syncobj-map small. The
* idea is to collect those signaled fences at the end of each flush_all
* call. This function is likely to collect only fences from previous
* batch flushes not the one that have just have just been submitted and
* are probably still in flight when we trigger the garbage collection.
* Anyway, we need to do this garbage collection at some point if we don't
* want the BO access map to keep invalid entries around and retain
* syncobjs forever.
*/
static void
panfrost_gc_fences(struct panfrost_context *ctx)
{
hash_table_foreach(ctx->accessed_bos, entry) {
struct panfrost_bo_access *access = entry->data;
assert(access);
panfrost_bo_access_gc_fences(ctx, access, entry->key);
if (!util_dynarray_num_elements(&access->readers,
struct panfrost_batch_fence *) &&
!access->writer) {
ralloc_free(access);
_mesa_hash_table_remove(ctx->accessed_bos, entry);
}
}
}
#ifdef PAN_BATCH_DEBUG
static bool
panfrost_batch_in_readers(struct panfrost_batch *batch,
struct panfrost_bo_access *access)
{
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (*reader && (*reader)->batch == batch)
return true;
}
return false;
}
#endif
static void
panfrost_batch_update_bo_access(struct panfrost_batch *batch,
struct panfrost_bo *bo, bool writes,
bool already_accessed)
{
struct panfrost_context *ctx = batch->ctx;
struct panfrost_bo_access *access;
bool old_writes = false;
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->accessed_bos, bo);
access = entry ? entry->data : NULL;
if (access) {
old_writes = access->writer != NULL;
} else {
access = rzalloc(ctx, struct panfrost_bo_access);
util_dynarray_init(&access->readers, access);
_mesa_hash_table_insert(ctx->accessed_bos, bo, access);
/* We are the first to access this BO, let's initialize
* old_writes to our own access type in that case.
*/
old_writes = writes;
}
assert(access);
if (writes && !old_writes) {
/* Previous access was a read and we want to write this BO.
* We first need to add explicit deps between our batch and
* the previous readers.
*/
util_dynarray_foreach(&access->readers,
struct panfrost_batch_fence *, reader) {
/* We were already reading the BO, no need to add a dep
* on ourself (the acyclic check would complain about
* that).
*/
if (!(*reader) || (*reader)->batch == batch)
continue;
panfrost_batch_add_dep(batch, *reader);
}
panfrost_batch_fence_reference(batch->out_sync);
if (access->writer)
panfrost_batch_fence_unreference(access->writer);
/* We now are the new writer. */
access->writer = batch->out_sync;
/* Release the previous readers and reset the readers array. */
util_dynarray_foreach(&access->readers,
struct panfrost_batch_fence *,
reader) {
if (!*reader)
continue;
panfrost_batch_fence_unreference(*reader);
}
util_dynarray_clear(&access->readers);
} else if (writes && old_writes) {
/* First check if we were the previous writer, in that case
* there's nothing to do. Otherwise we need to add a
* dependency between the new writer and the old one.
*/
if (access->writer != batch->out_sync) {
if (access->writer) {
panfrost_batch_add_dep(batch, access->writer);
panfrost_batch_fence_unreference(access->writer);
}
panfrost_batch_fence_reference(batch->out_sync);
access->writer = batch->out_sync;
}
} else if (!writes && old_writes) {
/* First check if we were the previous writer, in that case
* we want to keep the access type unchanged, as a write is
* more constraining than a read.
*/
if (access->writer != batch->out_sync) {
/* Add a dependency on the previous writer. */
panfrost_batch_add_dep(batch, access->writer);
/* The previous access was a write, there's no reason
* to have entries in the readers array.
*/
assert(!util_dynarray_num_elements(&access->readers,
struct panfrost_batch_fence *));
/* Add ourselves to the readers array. */
panfrost_batch_fence_reference(batch->out_sync);
util_dynarray_append(&access->readers,
struct panfrost_batch_fence *,
batch->out_sync);
access->writer = NULL;
}
} else {
/* We already accessed this BO before, so we should already be
* in the reader array.
*/
#ifdef PAN_BATCH_DEBUG
if (already_accessed) {
assert(panfrost_batch_in_readers(batch, access));
return;
}
#endif
/* Previous access was a read and we want to read this BO.
* Add ourselves to the readers array and add a dependency on
* the previous writer if any.
*/
panfrost_batch_fence_reference(batch->out_sync);
util_dynarray_append(&access->readers,
struct panfrost_batch_fence *,
batch->out_sync);
if (access->writer)
panfrost_batch_add_dep(batch, access->writer);
}
}
void
panfrost_batch_add_bo(struct panfrost_batch *batch, struct panfrost_bo *bo,
uint32_t flags)
{
if (!bo)
return;
struct hash_entry *entry;
uint32_t old_flags = 0;
entry = _mesa_hash_table_search(batch->bos, bo);
if (!entry) {
entry = _mesa_hash_table_insert(batch->bos, bo,
(void *)(uintptr_t)flags);
panfrost_bo_reference(bo);
} else {
old_flags = (uintptr_t)entry->data;
/* All batches have to agree on the shared flag. */
assert((old_flags & PAN_BO_ACCESS_SHARED) ==
(flags & PAN_BO_ACCESS_SHARED));
}
assert(entry);
if (old_flags == flags)
return;
flags |= old_flags;
entry->data = (void *)(uintptr_t)flags;
/* If this is not a shared BO, we don't really care about dependency
* tracking.
*/
if (!(flags & PAN_BO_ACCESS_SHARED))
return;
/* All dependencies should have been flushed before we execute the
* wallpaper draw, so it should be harmless to skip the
* update_bo_access() call.
*/
if (batch == batch->ctx->wallpaper_batch)
return;
assert(flags & PAN_BO_ACCESS_RW);
panfrost_batch_update_bo_access(batch, bo, flags & PAN_BO_ACCESS_WRITE,
old_flags != 0);
}
static void
panfrost_batch_add_resource_bos(struct panfrost_batch *batch,
struct panfrost_resource *rsrc,
uint32_t flags)
{
panfrost_batch_add_bo(batch, rsrc->bo, flags);
for (unsigned i = 0; i < MAX_MIP_LEVELS; i++)
if (rsrc->slices[i].checksum_bo)
panfrost_batch_add_bo(batch, rsrc->slices[i].checksum_bo, flags);
if (rsrc->separate_stencil)
panfrost_batch_add_bo(batch, rsrc->separate_stencil->bo, flags);
}
void panfrost_batch_add_fbo_bos(struct panfrost_batch *batch)
{
uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_WRITE |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT;
for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
struct panfrost_resource *rsrc = pan_resource(batch->key.cbufs[i]->texture);
panfrost_batch_add_resource_bos(batch, rsrc, flags);
}
if (batch->key.zsbuf) {
struct panfrost_resource *rsrc = pan_resource(batch->key.zsbuf->texture);
panfrost_batch_add_resource_bos(batch, rsrc, flags);
}
}
struct panfrost_bo *
panfrost_batch_create_bo(struct panfrost_batch *batch, size_t size,
uint32_t create_flags, uint32_t access_flags)
{
struct panfrost_bo *bo;
bo = panfrost_bo_create(pan_device(batch->ctx->base.screen), size,
create_flags);
panfrost_batch_add_bo(batch, bo, access_flags);
/* panfrost_batch_add_bo() has retained a reference and
* panfrost_bo_create() initialize the refcnt to 1, so let's
* unreference the BO here so it gets released when the batch is
* destroyed (unless it's retained by someone else in the meantime).
*/
panfrost_bo_unreference(bo);
return bo;
}
/* Returns the polygon list's GPU address if available, or otherwise allocates
* the polygon list. It's perfectly fast to use allocate/free BO directly,
* since we'll hit the BO cache and this is one-per-batch anyway. */
mali_ptr
panfrost_batch_get_polygon_list(struct panfrost_batch *batch, unsigned size)
{
if (batch->polygon_list) {
assert(batch->polygon_list->size >= size);
} else {
/* Create the BO as invisible, as there's no reason to map */
size = util_next_power_of_two(size);
batch->polygon_list = panfrost_batch_create_bo(batch, size,
PAN_BO_INVISIBLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
}
return batch->polygon_list->gpu;
}
struct panfrost_bo *
panfrost_batch_get_scratchpad(struct panfrost_batch *batch,
unsigned shift,
unsigned thread_tls_alloc,
unsigned core_count)
{
unsigned size = panfrost_get_total_stack_size(shift,
thread_tls_alloc,
core_count);
if (batch->scratchpad) {
assert(batch->scratchpad->size >= size);
} else {
batch->scratchpad = panfrost_batch_create_bo(batch, size,
PAN_BO_INVISIBLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
}
return batch->scratchpad;
}
struct panfrost_bo *
panfrost_batch_get_shared_memory(struct panfrost_batch *batch,
unsigned size,
unsigned workgroup_count)
{
if (batch->shared_memory) {
assert(batch->shared_memory->size >= size);
} else {
batch->shared_memory = panfrost_batch_create_bo(batch, size,
PAN_BO_INVISIBLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER);
}
return batch->shared_memory;
}
struct panfrost_bo *
panfrost_batch_get_tiler_heap(struct panfrost_batch *batch)
{
if (batch->tiler_heap)
return batch->tiler_heap;
batch->tiler_heap = panfrost_batch_create_bo(batch, 4096 * 4096,
PAN_BO_INVISIBLE |
PAN_BO_GROWABLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
assert(batch->tiler_heap);
return batch->tiler_heap;
}
mali_ptr
panfrost_batch_get_tiler_meta(struct panfrost_batch *batch, unsigned vertex_count)
{
if (!vertex_count)
return 0;
if (batch->tiler_meta)
return batch->tiler_meta;
struct panfrost_bo *tiler_heap;
tiler_heap = panfrost_batch_get_tiler_heap(batch);
struct bifrost_tiler_heap_meta tiler_heap_meta = {
.heap_size = tiler_heap->size,
.tiler_heap_start = tiler_heap->gpu,
.tiler_heap_free = tiler_heap->gpu,
.tiler_heap_end = tiler_heap->gpu + tiler_heap->size,
.unk1 = 0x1,
.unk7e007e = 0x7e007e,
};
struct bifrost_tiler_meta tiler_meta = {
.hierarchy_mask = 0x28,
.flags = 0x0,
.width = MALI_POSITIVE(batch->key.width),
.height = MALI_POSITIVE(batch->key.height),
.tiler_heap_meta = panfrost_pool_upload(&batch->pool, &tiler_heap_meta, sizeof(tiler_heap_meta)),
};
batch->tiler_meta = panfrost_pool_upload(&batch->pool, &tiler_meta, sizeof(tiler_meta));
return batch->tiler_meta;
}
struct panfrost_bo *
panfrost_batch_get_tiler_dummy(struct panfrost_batch *batch)
{
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
uint32_t create_flags = 0;
if (batch->tiler_dummy)
return batch->tiler_dummy;
if (!(dev->quirks & MIDGARD_NO_HIER_TILING))
create_flags = PAN_BO_INVISIBLE;
batch->tiler_dummy = panfrost_batch_create_bo(batch, 4096,
create_flags,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
assert(batch->tiler_dummy);
return batch->tiler_dummy;
}
mali_ptr
panfrost_batch_reserve_framebuffer(struct panfrost_batch *batch)
{
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
/* If we haven't, reserve space for the framebuffer */
if (!batch->framebuffer.gpu) {
unsigned size = (dev->quirks & MIDGARD_SFBD) ?
sizeof(struct mali_single_framebuffer) :
sizeof(struct mali_framebuffer);
batch->framebuffer = panfrost_pool_alloc(&batch->pool, size);
/* Tag the pointer */
if (!(dev->quirks & MIDGARD_SFBD))
batch->framebuffer.gpu |= MALI_MFBD;
}
return batch->framebuffer.gpu;
}
static void
panfrost_load_surface(struct panfrost_batch *batch, struct pipe_surface *surf, unsigned loc)
{
if (!surf)
return;
struct panfrost_resource *rsrc = pan_resource(surf->texture);
unsigned level = surf->u.tex.level;
if (!rsrc->slices[level].initialized)
return;
if (!rsrc->damage.inverted_len)
return;
/* Clamp the rendering area to the damage extent. The
* KHR_partial_update() spec states that trying to render outside of
* the damage region is "undefined behavior", so we should be safe.
*/
unsigned damage_width = (rsrc->damage.extent.maxx - rsrc->damage.extent.minx);
unsigned damage_height = (rsrc->damage.extent.maxy - rsrc->damage.extent.miny);
if (damage_width && damage_height) {
panfrost_batch_intersection_scissor(batch,
rsrc->damage.extent.minx,
rsrc->damage.extent.miny,
rsrc->damage.extent.maxx,
rsrc->damage.extent.maxy);
}
/* XXX: Native blits on Bifrost */
if (batch->pool.dev->quirks & IS_BIFROST) {
if (loc != FRAG_RESULT_DATA0)
return;
/* XXX: why align on *twice* the tile length? */
batch->minx = batch->minx & ~((MALI_TILE_LENGTH * 2) - 1);
batch->miny = batch->miny & ~((MALI_TILE_LENGTH * 2) - 1);
batch->maxx = MIN2(ALIGN_POT(batch->maxx, MALI_TILE_LENGTH * 2),
rsrc->base.width0);
batch->maxy = MIN2(ALIGN_POT(batch->maxy, MALI_TILE_LENGTH * 2),
rsrc->base.height0);
struct pipe_box rect;
batch->ctx->wallpaper_batch = batch;
u_box_2d(batch->minx, batch->miny, batch->maxx - batch->minx,
batch->maxy - batch->miny, &rect);
panfrost_blit_wallpaper(batch->ctx, &rect);
batch->ctx->wallpaper_batch = NULL;
return;
}
enum pipe_format format = rsrc->base.format;
if (loc == FRAG_RESULT_DEPTH) {
if (!util_format_has_depth(util_format_description(format)))
return;
format = util_format_get_depth_only(format);
} else if (loc == FRAG_RESULT_STENCIL) {
if (!util_format_has_stencil(util_format_description(format)))
return;
if (rsrc->separate_stencil) {
rsrc = rsrc->separate_stencil;
format = rsrc->base.format;
}
format = util_format_stencil_only(format);
}
enum mali_texture_dimension dim =
panfrost_translate_texture_dimension(rsrc->base.target);
struct pan_image img = {
.width0 = rsrc->base.width0,
.height0 = rsrc->base.height0,
.depth0 = rsrc->base.depth0,
.format = format,
.dim = dim,
.modifier = rsrc->modifier,
.array_size = rsrc->base.array_size,
.first_level = level,
.last_level = level,
.first_layer = surf->u.tex.first_layer,
.last_layer = surf->u.tex.last_layer,
.nr_samples = rsrc->base.nr_samples,
.cubemap_stride = rsrc->cubemap_stride,
.bo = rsrc->bo,
.slices = rsrc->slices
};
mali_ptr blend_shader = 0;
if (loc >= FRAG_RESULT_DATA0 && !panfrost_can_fixed_blend(rsrc->base.format)) {
struct panfrost_blend_shader *b =
panfrost_get_blend_shader(batch->ctx, &batch->ctx->blit_blend, rsrc->base.format, loc - FRAG_RESULT_DATA0);
struct panfrost_bo *bo = panfrost_batch_create_bo(batch, b->size,
PAN_BO_EXECUTE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_READ |
PAN_BO_ACCESS_FRAGMENT);
memcpy(bo->cpu, b->buffer, b->size);
assert(b->work_count <= 4);
blend_shader = bo->gpu | b->first_tag;
}
struct panfrost_transfer transfer = panfrost_pool_alloc(&batch->pool,
4 * 4 * 6 * rsrc->damage.inverted_len);
for (unsigned i = 0; i < rsrc->damage.inverted_len; ++i) {
float *o = (float *) (transfer.cpu + (4 * 4 * 6 * i));
struct pan_rect r = rsrc->damage.inverted_rects[i];
float rect[] = {
r.minx, rsrc->base.height0 - r.miny, 0.0, 1.0,
r.maxx, rsrc->base.height0 - r.miny, 0.0, 1.0,
r.minx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
r.maxx, rsrc->base.height0 - r.miny, 0.0, 1.0,
r.minx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
r.maxx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
};
assert(sizeof(rect) == 4 * 4 * 6);
memcpy(o, rect, sizeof(rect));
}
panfrost_load_midg(&batch->pool, &batch->scoreboard,
blend_shader,
batch->framebuffer.gpu, transfer.gpu,
rsrc->damage.inverted_len * 6,
&img, loc);
panfrost_batch_add_bo(batch, batch->pool.dev->blit_shaders.bo,
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | PAN_BO_ACCESS_FRAGMENT);
}
static void
panfrost_batch_draw_wallpaper(struct panfrost_batch *batch)
{
panfrost_batch_reserve_framebuffer(batch);
/* Assume combined. If either depth or stencil is written, they will
* both be written so we need to be careful for reloading */
unsigned draws = batch->draws;
if (draws & PIPE_CLEAR_DEPTHSTENCIL)
draws |= PIPE_CLEAR_DEPTHSTENCIL;
/* Mask of buffers which need reload since they are not cleared and
* they are drawn. (If they are cleared, reload is useless; if they are
* not drawn and also not cleared, we can generally omit the attachment
* at the framebuffer descriptor level */
unsigned reload = ~batch->clear & draws;
for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
if (reload & (PIPE_CLEAR_COLOR0 << i))
panfrost_load_surface(batch, batch->key.cbufs[i], FRAG_RESULT_DATA0 + i);
}
if (reload & PIPE_CLEAR_DEPTH)
panfrost_load_surface(batch, batch->key.zsbuf, FRAG_RESULT_DEPTH);
if (reload & PIPE_CLEAR_STENCIL)
panfrost_load_surface(batch, batch->key.zsbuf, FRAG_RESULT_STENCIL);
}
static void
panfrost_batch_record_bo(struct hash_entry *entry, unsigned *bo_handles, unsigned idx)
{
struct panfrost_bo *bo = (struct panfrost_bo *)entry->key;
uint32_t flags = (uintptr_t)entry->data;
assert(bo->gem_handle > 0);
bo_handles[idx] = bo->gem_handle;
/* Update the BO access flags so that panfrost_bo_wait() knows
* about all pending accesses.
* We only keep the READ/WRITE info since this is all the BO
* wait logic cares about.
* We also preserve existing flags as this batch might not
* be the first one to access the BO.
*/
bo->gpu_access |= flags & (PAN_BO_ACCESS_RW);
}
static int
panfrost_batch_submit_ioctl(struct panfrost_batch *batch,
mali_ptr first_job_desc,
uint32_t reqs,
uint32_t out_sync)
{
struct panfrost_context *ctx = batch->ctx;
struct pipe_context *gallium = (struct pipe_context *) ctx;
struct panfrost_device *dev = pan_device(gallium->screen);
struct drm_panfrost_submit submit = {0,};
uint32_t *bo_handles;
int ret;
/* If we trace, we always need a syncobj, so make one of our own if we
* weren't given one to use. Remember that we did so, so we can free it
* after we're done but preventing double-frees if we were given a
* syncobj */
bool our_sync = false;
if (!out_sync && dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) {
drmSyncobjCreate(dev->fd, 0, &out_sync);
our_sync = false;
}
submit.out_sync = out_sync;
submit.jc = first_job_desc;
submit.requirements = reqs;
bo_handles = calloc(batch->pool.bos->entries + batch->bos->entries, sizeof(*bo_handles));
assert(bo_handles);
hash_table_foreach(batch->bos, entry)
panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++);
hash_table_foreach(batch->pool.bos, entry)
panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++);
submit.bo_handles = (u64) (uintptr_t) bo_handles;
ret = drmIoctl(dev->fd, DRM_IOCTL_PANFROST_SUBMIT, &submit);
free(bo_handles);
if (ret) {
if (dev->debug & PAN_DBG_MSGS)
fprintf(stderr, "Error submitting: %m\n");
return errno;
}
/* Trace the job if we're doing that */
if (dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) {
/* Wait so we can get errors reported back */
drmSyncobjWait(dev->fd, &out_sync, 1,
INT64_MAX, 0, NULL);
/* Trace gets priority over sync */
bool minimal = !(dev->debug & PAN_DBG_TRACE);
pandecode_jc(submit.jc, dev->quirks & IS_BIFROST, dev->gpu_id, minimal);
}
/* Cleanup if we created the syncobj */
if (our_sync)
drmSyncobjDestroy(dev->fd, out_sync);
return 0;
}
/* Submit both vertex/tiler and fragment jobs for a batch, possibly with an
* outsync corresponding to the later of the two (since there will be an
* implicit dep between them) */
static int
panfrost_batch_submit_jobs(struct panfrost_batch *batch, uint32_t out_sync)
{
bool has_draws = batch->scoreboard.first_job;
bool has_frag = batch->scoreboard.tiler_dep || batch->clear;
int ret = 0;
if (has_draws) {
ret = panfrost_batch_submit_ioctl(batch, batch->scoreboard.first_job,
0, has_frag ? 0 : out_sync);
assert(!ret);
}
if (has_frag) {
/* Whether we program the fragment job for draws or not depends
* on whether there is any *tiler* activity (so fragment
* shaders). If there are draws but entirely RASTERIZER_DISCARD
* (say, for transform feedback), we want a fragment job that
* *only* clears, since otherwise the tiler structures will be
* uninitialized leading to faults (or state leaks) */
mali_ptr fragjob = panfrost_fragment_job(batch,
batch->scoreboard.tiler_dep != 0);
ret = panfrost_batch_submit_ioctl(batch, fragjob,
PANFROST_JD_REQ_FS, out_sync);
assert(!ret);
}
return ret;
}
static void
panfrost_batch_submit(struct panfrost_batch *batch, uint32_t out_sync)
{
assert(batch);
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
/* Submit the dependencies first. Don't pass along the out_sync since
* they are guaranteed to terminate sooner */
util_dynarray_foreach(&batch->dependencies,
struct panfrost_batch_fence *, dep) {
if ((*dep)->batch)
panfrost_batch_submit((*dep)->batch, 0);
}
int ret;
/* Nothing to do! */
if (!batch->scoreboard.first_job && !batch->clear) {
if (out_sync)
drmSyncobjSignal(dev->fd, &out_sync, 1);
goto out;
}
panfrost_batch_draw_wallpaper(batch);
/* Now that all draws are in, we can finally prepare the
* FBD for the batch */
if (batch->framebuffer.gpu && batch->scoreboard.first_job) {
struct panfrost_context *ctx = batch->ctx;
struct pipe_context *gallium = (struct pipe_context *) ctx;
struct panfrost_device *dev = pan_device(gallium->screen);
if (dev->quirks & MIDGARD_SFBD)
panfrost_attach_sfbd(batch, ~0);
else
panfrost_attach_mfbd(batch, ~0);
}
mali_ptr polygon_list = panfrost_batch_get_polygon_list(batch,
MALI_TILER_MINIMUM_HEADER_SIZE);
panfrost_scoreboard_initialize_tiler(&batch->pool, &batch->scoreboard, polygon_list);
ret = panfrost_batch_submit_jobs(batch, out_sync);
if (ret && dev->debug & PAN_DBG_MSGS)
fprintf(stderr, "panfrost_batch_submit failed: %d\n", ret);
/* We must reset the damage info of our render targets here even
* though a damage reset normally happens when the DRI layer swaps
* buffers. That's because there can be implicit flushes the GL
* app is not aware of, and those might impact the damage region: if
* part of the damaged portion is drawn during those implicit flushes,
* you have to reload those areas before next draws are pushed, and
* since the driver can't easily know what's been modified by the draws
* it flushed, the easiest solution is to reload everything.
*/
for (unsigned i = 0; i < batch->key.nr_cbufs; i++) {
if (!batch->key.cbufs[i])
continue;
panfrost_resource_set_damage_region(NULL,
batch->key.cbufs[i]->texture, 0, NULL);
}
out:
panfrost_freeze_batch(batch);
panfrost_free_batch(batch);
}
/* Submit all batches, applying the out_sync to the currently bound batch */
void
panfrost_flush_all_batches(struct panfrost_context *ctx, uint32_t out_sync)
{
struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx);
panfrost_batch_submit(batch, out_sync);
hash_table_foreach(ctx->batches, hentry) {
struct panfrost_batch *batch = hentry->data;
assert(batch);
panfrost_batch_submit(batch, 0);
}
assert(!ctx->batches->entries);
/* Collect batch fences before returning */
panfrost_gc_fences(ctx);
}
bool
panfrost_pending_batches_access_bo(struct panfrost_context *ctx,
const struct panfrost_bo *bo)
{
struct panfrost_bo_access *access;
struct hash_entry *hentry;
hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
access = hentry ? hentry->data : NULL;
if (!access)
return false;
if (access->writer && access->writer->batch)
return true;
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (*reader && (*reader)->batch)
return true;
}
return false;
}
/* We always flush writers. We might also need to flush readers */
void
panfrost_flush_batches_accessing_bo(struct panfrost_context *ctx,
struct panfrost_bo *bo,
bool flush_readers)
{
struct panfrost_bo_access *access;
struct hash_entry *hentry;
hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
access = hentry ? hentry->data : NULL;
if (!access)
return;
if (access->writer && access->writer->batch)
panfrost_batch_submit(access->writer->batch, 0);
if (!flush_readers)
return;
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (*reader && (*reader)->batch)
panfrost_batch_submit((*reader)->batch, 0);
}
}
void
panfrost_batch_set_requirements(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
if (ctx->rasterizer->base.multisample)
batch->requirements |= PAN_REQ_MSAA;
if (ctx->depth_stencil && ctx->depth_stencil->base.depth.writemask) {
batch->requirements |= PAN_REQ_DEPTH_WRITE;
batch->draws |= PIPE_CLEAR_DEPTH;
}
if (ctx->depth_stencil && ctx->depth_stencil->base.stencil[0].enabled)
batch->draws |= PIPE_CLEAR_STENCIL;
}
void
panfrost_batch_adjust_stack_size(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
for (unsigned i = 0; i < PIPE_SHADER_TYPES; ++i) {
struct panfrost_shader_state *ss;
ss = panfrost_get_shader_state(ctx, i);
if (!ss)
continue;
batch->stack_size = MAX2(batch->stack_size, ss->stack_size);
}
}
/* Helper to smear a 32-bit color across 128-bit components */
static void
pan_pack_color_32(uint32_t *packed, uint32_t v)
{
for (unsigned i = 0; i < 4; ++i)
packed[i] = v;
}
static void
pan_pack_color_64(uint32_t *packed, uint32_t lo, uint32_t hi)
{
for (unsigned i = 0; i < 4; i += 2) {
packed[i + 0] = lo;
packed[i + 1] = hi;
}
}
static void
pan_pack_color(uint32_t *packed, const union pipe_color_union *color, enum pipe_format format)
{
/* Alpha magicked to 1.0 if there is no alpha */
bool has_alpha = util_format_has_alpha(format);
float clear_alpha = has_alpha ? color->f[3] : 1.0f;
/* Packed color depends on the framebuffer format */
const struct util_format_description *desc =
util_format_description(format);
if (util_format_is_rgba8_variant(desc) && desc->colorspace != UTIL_FORMAT_COLORSPACE_SRGB) {
pan_pack_color_32(packed,
((uint32_t) float_to_ubyte(clear_alpha) << 24) |
((uint32_t) float_to_ubyte(color->f[2]) << 16) |
((uint32_t) float_to_ubyte(color->f[1]) << 8) |
((uint32_t) float_to_ubyte(color->f[0]) << 0));
} else if (format == PIPE_FORMAT_B5G6R5_UNORM) {
/* First, we convert the components to R5, G6, B5 separately */
unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0);
unsigned g6 = _mesa_roundevenf(SATURATE(color->f[1]) * 63.0);
unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0);
/* Then we pack into a sparse u32. TODO: Why these shifts? */
pan_pack_color_32(packed, (b5 << 25) | (g6 << 14) | (r5 << 5));
} else if (format == PIPE_FORMAT_B4G4R4A4_UNORM) {
/* Convert to 4-bits */
unsigned r4 = _mesa_roundevenf(SATURATE(color->f[0]) * 15.0);
unsigned g4 = _mesa_roundevenf(SATURATE(color->f[1]) * 15.0);
unsigned b4 = _mesa_roundevenf(SATURATE(color->f[2]) * 15.0);
unsigned a4 = _mesa_roundevenf(SATURATE(clear_alpha) * 15.0);
/* Pack on *byte* intervals */
pan_pack_color_32(packed, (a4 << 28) | (b4 << 20) | (g4 << 12) | (r4 << 4));
} else if (format == PIPE_FORMAT_B5G5R5A1_UNORM) {
/* Scale as expected but shift oddly */
unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0);
unsigned g5 = _mesa_roundevenf(SATURATE(color->f[1]) * 31.0);
unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0);
unsigned a1 = _mesa_roundevenf(SATURATE(clear_alpha) * 1.0);
pan_pack_color_32(packed, (a1 << 31) | (b5 << 25) | (g5 << 15) | (r5 << 5));
} else {
/* Otherwise, it's generic subject to replication */
union util_color out = { 0 };
unsigned size = util_format_get_blocksize(format);
util_pack_color(color->f, format, &out);
if (size == 1) {
unsigned b = out.ui[0];
unsigned s = b | (b << 8);
pan_pack_color_32(packed, s | (s << 16));
} else if (size == 2)
pan_pack_color_32(packed, out.ui[0] | (out.ui[0] << 16));
else if (size == 3 || size == 4)
pan_pack_color_32(packed, out.ui[0]);
else if (size == 6)
pan_pack_color_64(packed, out.ui[0], out.ui[1] | (out.ui[1] << 16)); /* RGB16F -- RGBB */
else if (size == 8)
pan_pack_color_64(packed, out.ui[0], out.ui[1]);
else if (size == 16)
memcpy(packed, out.ui, 16);
else
unreachable("Unknown generic format size packing clear colour");
}
}
void
panfrost_batch_clear(struct panfrost_batch *batch,
unsigned buffers,
const union pipe_color_union *color,
double depth, unsigned stencil)
{
struct panfrost_context *ctx = batch->ctx;
if (buffers & PIPE_CLEAR_COLOR) {
for (unsigned i = 0; i < PIPE_MAX_COLOR_BUFS; ++i) {
if (!(buffers & (PIPE_CLEAR_COLOR0 << i)))
continue;
enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format;
pan_pack_color(batch->clear_color[i], color, format);
}
}
if (buffers & PIPE_CLEAR_DEPTH) {
batch->clear_depth = depth;
}
if (buffers & PIPE_CLEAR_STENCIL) {
batch->clear_stencil = stencil;
}
batch->clear |= buffers;
/* Clearing affects the entire framebuffer (by definition -- this is
* the Gallium clear callback, which clears the whole framebuffer. If
* the scissor test were enabled from the GL side, the gallium frontend
* would emit a quad instead and we wouldn't go down this code path) */
panfrost_batch_union_scissor(batch, 0, 0,
ctx->pipe_framebuffer.width,
ctx->pipe_framebuffer.height);
}
static bool
panfrost_batch_compare(const void *a, const void *b)
{
return util_framebuffer_state_equal(a, b);
}
static uint32_t
panfrost_batch_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct pipe_framebuffer_state));
}
/* Given a new bounding rectangle (scissor), let the job cover the union of the
* new and old bounding rectangles */
void
panfrost_batch_union_scissor(struct panfrost_batch *batch,
unsigned minx, unsigned miny,
unsigned maxx, unsigned maxy)
{
batch->minx = MIN2(batch->minx, minx);
batch->miny = MIN2(batch->miny, miny);
batch->maxx = MAX2(batch->maxx, maxx);
batch->maxy = MAX2(batch->maxy, maxy);
}
void
panfrost_batch_intersection_scissor(struct panfrost_batch *batch,
unsigned minx, unsigned miny,
unsigned maxx, unsigned maxy)
{
batch->minx = MAX2(batch->minx, minx);
batch->miny = MAX2(batch->miny, miny);
batch->maxx = MIN2(batch->maxx, maxx);
batch->maxy = MIN2(batch->maxy, maxy);
}
/* Are we currently rendering to the dev (rather than an FBO)? */
bool
panfrost_batch_is_scanout(struct panfrost_batch *batch)
{
/* If there is no color buffer, it's an FBO */
if (batch->key.nr_cbufs != 1)
return false;
/* If we're too early that no framebuffer was sent, it's scanout */
if (!batch->key.cbufs[0])
return true;
return batch->key.cbufs[0]->texture->bind & PIPE_BIND_DISPLAY_TARGET ||
batch->key.cbufs[0]->texture->bind & PIPE_BIND_SCANOUT ||
batch->key.cbufs[0]->texture->bind & PIPE_BIND_SHARED;
}
void
panfrost_batch_init(struct panfrost_context *ctx)
{
ctx->batches = _mesa_hash_table_create(ctx,
panfrost_batch_hash,
panfrost_batch_compare);
ctx->accessed_bos = _mesa_hash_table_create(ctx, _mesa_hash_pointer,
_mesa_key_pointer_equal);
}