blob: 11269c2a98cd1c5b0b0a2549521cffd9b1c5973b [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "registers/adreno_pm4.xml.h"
#include "registers/adreno_common.xml.h"
#include "vk_format.h"
#include "tu_cs.h"
#define OVERFLOW_FLAG_REG REG_A6XX_CP_SCRATCH_REG(0)
void
tu_bo_list_init(struct tu_bo_list *list)
{
list->count = list->capacity = 0;
list->bo_infos = NULL;
}
void
tu_bo_list_destroy(struct tu_bo_list *list)
{
free(list->bo_infos);
}
void
tu_bo_list_reset(struct tu_bo_list *list)
{
list->count = 0;
}
/**
* \a flags consists of MSM_SUBMIT_BO_FLAGS.
*/
static uint32_t
tu_bo_list_add_info(struct tu_bo_list *list,
const struct drm_msm_gem_submit_bo *bo_info)
{
assert(bo_info->handle != 0);
for (uint32_t i = 0; i < list->count; ++i) {
if (list->bo_infos[i].handle == bo_info->handle) {
assert(list->bo_infos[i].presumed == bo_info->presumed);
list->bo_infos[i].flags |= bo_info->flags;
return i;
}
}
/* grow list->bo_infos if needed */
if (list->count == list->capacity) {
uint32_t new_capacity = MAX2(2 * list->count, 16);
struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
if (!new_bo_infos)
return TU_BO_LIST_FAILED;
list->bo_infos = new_bo_infos;
list->capacity = new_capacity;
}
list->bo_infos[list->count] = *bo_info;
return list->count++;
}
uint32_t
tu_bo_list_add(struct tu_bo_list *list,
const struct tu_bo *bo,
uint32_t flags)
{
return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
.flags = flags,
.handle = bo->gem_handle,
.presumed = bo->iova,
});
}
VkResult
tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
{
for (uint32_t i = 0; i < other->count; i++) {
if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
return VK_SUCCESS;
}
static void
tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
const struct tu_device *dev,
uint32_t pixels)
{
const uint32_t tile_align_w = 64; /* note: 32 when no input attachments */
const uint32_t tile_align_h = 16;
const uint32_t max_tile_width = 1024;
/* note: don't offset the tiling config by render_area.offset,
* because binning pass can't deal with it
* this means we might end up with more tiles than necessary,
* but load/store/etc are still scissored to the render_area
*/
tiling->tile0.offset = (VkOffset2D) {};
const uint32_t ra_width =
tiling->render_area.extent.width +
(tiling->render_area.offset.x - tiling->tile0.offset.x);
const uint32_t ra_height =
tiling->render_area.extent.height +
(tiling->render_area.offset.y - tiling->tile0.offset.y);
/* start from 1 tile */
tiling->tile_count = (VkExtent2D) {
.width = 1,
.height = 1,
};
tiling->tile0.extent = (VkExtent2D) {
.width = align(ra_width, tile_align_w),
.height = align(ra_height, tile_align_h),
};
if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
/* start with 2x2 tiles */
tiling->tile_count.width = 2;
tiling->tile_count.height = 2;
tiling->tile0.extent.width = align(DIV_ROUND_UP(ra_width, 2), tile_align_w);
tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), tile_align_h);
}
/* do not exceed max tile width */
while (tiling->tile0.extent.width > max_tile_width) {
tiling->tile_count.width++;
tiling->tile0.extent.width =
align(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
}
/* will force to sysmem, don't bother trying to have a valid tile config
* TODO: just skip all GMEM stuff when sysmem is forced?
*/
if (!pixels)
return;
/* do not exceed gmem size */
while (tiling->tile0.extent.width * tiling->tile0.extent.height > pixels) {
if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
tiling->tile_count.width++;
tiling->tile0.extent.width =
align(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
} else {
/* if this assert fails then layout is impossible.. */
assert(tiling->tile0.extent.height > tile_align_h);
tiling->tile_count.height++;
tiling->tile0.extent.height =
align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), tile_align_h);
}
}
}
static void
tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
const struct tu_device *dev)
{
const uint32_t max_pipe_count = 32; /* A6xx */
/* start from 1 tile per pipe */
tiling->pipe0 = (VkExtent2D) {
.width = 1,
.height = 1,
};
tiling->pipe_count = tiling->tile_count;
while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
if (tiling->pipe0.width < tiling->pipe0.height) {
tiling->pipe0.width += 1;
tiling->pipe_count.width =
DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
} else {
tiling->pipe0.height += 1;
tiling->pipe_count.height =
DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
}
}
}
static void
tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
const struct tu_device *dev)
{
const uint32_t max_pipe_count = 32; /* A6xx */
const uint32_t used_pipe_count =
tiling->pipe_count.width * tiling->pipe_count.height;
const VkExtent2D last_pipe = {
.width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
.height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
};
assert(used_pipe_count <= max_pipe_count);
assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
const uint32_t pipe_x = tiling->pipe0.width * x;
const uint32_t pipe_y = tiling->pipe0.height * y;
const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
? last_pipe.width
: tiling->pipe0.width;
const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
? last_pipe.height
: tiling->pipe0.height;
const uint32_t n = tiling->pipe_count.width * y + x;
tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
}
}
memset(tiling->pipe_config + used_pipe_count, 0,
sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
}
static void
tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
const struct tu_device *dev,
uint32_t tx,
uint32_t ty,
struct tu_tile *tile)
{
/* find the pipe and the slot for tile (tx, ty) */
const uint32_t px = tx / tiling->pipe0.width;
const uint32_t py = ty / tiling->pipe0.height;
const uint32_t sx = tx - tiling->pipe0.width * px;
const uint32_t sy = ty - tiling->pipe0.height * py;
/* last pipe has different width */
const uint32_t pipe_width =
MIN2(tiling->pipe0.width,
tiling->tile_count.width - px * tiling->pipe0.width);
assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
/* convert to 1D indices */
tile->pipe = tiling->pipe_count.width * py + px;
tile->slot = pipe_width * sy + sx;
/* get the blit area for the tile */
tile->begin = (VkOffset2D) {
.x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
.y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
};
tile->end.x =
(tx == tiling->tile_count.width - 1)
? tiling->render_area.offset.x + tiling->render_area.extent.width
: tile->begin.x + tiling->tile0.extent.width;
tile->end.y =
(ty == tiling->tile_count.height - 1)
? tiling->render_area.offset.y + tiling->render_area.extent.height
: tile->begin.y + tiling->tile0.extent.height;
}
enum a3xx_msaa_samples
tu_msaa_samples(uint32_t samples)
{
switch (samples) {
case 1:
return MSAA_ONE;
case 2:
return MSAA_TWO;
case 4:
return MSAA_FOUR;
case 8:
return MSAA_EIGHT;
default:
assert(!"invalid sample count");
return MSAA_ONE;
}
}
static enum a4xx_index_size
tu6_index_size(VkIndexType type)
{
switch (type) {
case VK_INDEX_TYPE_UINT16:
return INDEX4_SIZE_16_BIT;
case VK_INDEX_TYPE_UINT32:
return INDEX4_SIZE_32_BIT;
default:
unreachable("invalid VkIndexType");
return INDEX4_SIZE_8_BIT;
}
}
unsigned
tu6_emit_event_write(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
enum vgt_event_type event,
bool need_seqno)
{
unsigned seqno = 0;
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
if (need_seqno) {
tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
seqno = ++cmd->scratch_seqno;
tu_cs_emit(cs, seqno);
}
return seqno;
}
static void
tu6_emit_cache_flush(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu6_emit_event_write(cmd, cs, 0x31, false);
}
static void
tu6_emit_lrz_flush(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu6_emit_event_write(cmd, cs, LRZ_FLUSH, false);
}
static void
tu6_emit_wfi(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
if (cmd->wait_for_idle) {
tu_cs_emit_wfi(cs);
cmd->wait_for_idle = false;
}
}
static void
tu6_emit_zs(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a == VK_ATTACHMENT_UNUSED) {
tu_cs_emit_regs(cs,
A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
A6XX_RB_DEPTH_BUFFER_PITCH(0),
A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
A6XX_RB_DEPTH_BUFFER_BASE(0),
A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
tu_cs_emit_regs(cs,
A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_BUFFER_BASE(0),
A6XX_GRAS_LRZ_BUFFER_PITCH(0),
A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
return;
}
const struct tu_image_view *iview = fb->attachments[a].attachment;
enum a6xx_depth_format fmt = tu6_pipe2depth(cmd->state.pass->attachments[a].format);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
tu_cs_image_ref(cs, iview, 0);
tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
tu_cs_emit_regs(cs,
A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
tu_cs_image_flag_ref(cs, iview, 0);
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_BUFFER_BASE(0),
A6XX_GRAS_LRZ_BUFFER_PITCH(0),
A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
tu_cs_emit_regs(cs,
A6XX_RB_STENCIL_INFO(0));
/* enable zs? */
}
static void
tu6_emit_mrt(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = fb->attachments[a].attachment;
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
tu_cs_image_ref(cs, iview, 0);
tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
tu_cs_emit_regs(cs,
A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
tu_cs_image_flag_ref(cs, iview, 0);
}
tu_cs_emit_regs(cs,
A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
tu_cs_emit_regs(cs,
A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
tu_cs_emit_regs(cs,
A6XX_RB_RENDER_COMPONENTS(.dword = subpass->render_components));
tu_cs_emit_regs(cs,
A6XX_SP_FS_RENDER_COMPONENTS(.dword = subpass->render_components));
tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
}
void
tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
{
const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
bool msaa_disable = samples == MSAA_ONE;
tu_cs_emit_regs(cs,
A6XX_SP_TP_RAS_MSAA_CNTL(samples),
A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_GRAS_RAS_MSAA_CNTL(samples),
A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_RB_RAS_MSAA_CNTL(samples),
A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_RB_MSAA_CNTL(samples));
}
static void
tu6_emit_bin_size(struct tu_cs *cs,
uint32_t bin_w, uint32_t bin_h, uint32_t flags)
{
tu_cs_emit_regs(cs,
A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
.binh = bin_h,
.dword = flags));
tu_cs_emit_regs(cs,
A6XX_RB_BIN_CONTROL(.binw = bin_w,
.binh = bin_h,
.dword = flags));
/* no flag for RB_BIN_CONTROL2... */
tu_cs_emit_regs(cs,
A6XX_RB_BIN_CONTROL2(.binw = bin_w,
.binh = bin_h));
}
static void
tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs,
bool binning)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
uint32_t cntl = 0;
cntl |= A6XX_RB_RENDER_CNTL_UNK4;
if (binning) {
cntl |= A6XX_RB_RENDER_CNTL_BINNING;
} else {
uint32_t mrts_ubwc_enable = 0;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = fb->attachments[a].attachment;
if (iview->ubwc_enabled)
mrts_ubwc_enable |= 1 << i;
}
cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a != VK_ATTACHMENT_UNUSED) {
const struct tu_image_view *iview = fb->attachments[a].attachment;
if (iview->ubwc_enabled)
cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
}
/* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
* in order to set it correctly for the different subpasses. However,
* that means the packets we're emitting also happen during binning. So
* we need to guard the write on !BINNING at CP execution time.
*/
tu_cs_reserve(cs, 3 + 4);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
}
tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
tu_cs_emit(cs, cntl);
}
static void
tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
{
const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
uint32_t x1 = render_area->offset.x;
uint32_t y1 = render_area->offset.y;
uint32_t x2 = x1 + render_area->extent.width - 1;
uint32_t y2 = y1 + render_area->extent.height - 1;
if (align) {
x1 = x1 & ~(GMEM_ALIGN_W - 1);
y1 = y1 & ~(GMEM_ALIGN_H - 1);
x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
}
tu_cs_emit_regs(cs,
A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
}
void
tu6_emit_window_scissor(struct tu_cs *cs,
uint32_t x1,
uint32_t y1,
uint32_t x2,
uint32_t y2)
{
tu_cs_emit_regs(cs,
A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
tu_cs_emit_regs(cs,
A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
}
void
tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
{
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
}
static bool
use_hw_binning(struct tu_cmd_buffer *cmd)
{
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
return false;
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
return true;
return (tiling->tile_count.width * tiling->tile_count.height) > 2;
}
static bool
use_sysmem_rendering(struct tu_cmd_buffer *cmd)
{
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
return true;
/* can't fit attachments into gmem */
if (!cmd->state.pass->gmem_pixels)
return true;
if (cmd->state.framebuffer->layers > 1)
return true;
return cmd->state.tiling_config.force_sysmem;
}
static void
tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_tile *tile)
{
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
const uint32_t x1 = tile->begin.x;
const uint32_t y1 = tile->begin.y;
const uint32_t x2 = tile->end.x - 1;
const uint32_t y2 = tile->end.y - 1;
tu6_emit_window_scissor(cs, x1, y1, x2, y2);
tu6_emit_window_offset(cs, x1, y1);
tu_cs_emit_regs(cs,
A6XX_VPC_SO_OVERRIDE(.so_disable = false));
if (use_hw_binning(cmd)) {
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
A6XX_CP_REG_TEST_0_BIT(0) |
A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
tu_cs_reserve(cs, 3 + 11);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(11));
/* if (no overflow) */ {
tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
tu_cs_emit_qw(cs, cmd->vsc_data.iova + tile->pipe * cmd->vsc_data_pitch);
tu_cs_emit_qw(cs, cmd->vsc_data.iova + (tile->pipe * 4) + (32 * cmd->vsc_data_pitch));
tu_cs_emit_qw(cs, cmd->vsc_data2.iova + (tile->pipe * cmd->vsc_data2_pitch));
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x0);
/* use a NOP packet to skip over the 'else' side: */
tu_cs_emit_pkt7(cs, CP_NOP, 2);
} /* else */ {
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
}
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_regs(cs,
A6XX_RB_UNKNOWN_8804(0));
tu_cs_emit_regs(cs,
A6XX_SP_TP_UNKNOWN_B304(0));
tu_cs_emit_regs(cs,
A6XX_GRAS_UNKNOWN_80A4(0));
} else {
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
}
}
static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t a,
uint32_t gmem_a)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
struct tu_image_view *dst = fb->attachments[a].attachment;
struct tu_image_view *src = fb->attachments[gmem_a].attachment;
tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
}
static void
tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_render_pass *pass = cmd->state.pass;
const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
tu6_emit_blit_scissor(cmd, cs, true);
for (uint32_t a = 0; a < pass->attachment_count; ++a) {
if (pass->attachments[a].gmem_offset >= 0)
tu_store_gmem_attachment(cmd, cs, a, a);
}
if (subpass->resolve_attachments) {
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a != VK_ATTACHMENT_UNUSED)
tu_store_gmem_attachment(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
}
}
static void
tu6_emit_restart_index(struct tu_cs *cs, uint32_t restart_index)
{
tu_cs_emit_regs(cs,
A6XX_PC_RESTART_INDEX(restart_index));
}
static void
tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_physical_device *phys_dev = cmd->device->physical_device;
tu6_emit_cache_flush(cmd, cs);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236, 1);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9806, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B304, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8804, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A4, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A5, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A6, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8805, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8806, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8878, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8879, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
/* we don't use this yet.. probably best to disable.. */
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
/* Set not to use streamout by default, */
tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
tu_cs_emit(cs, 0);
tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
tu_cs_emit(cs, 0);
tu_cs_emit_regs(cs,
A6XX_SP_HS_CTRL_REG0(0));
tu_cs_emit_regs(cs,
A6XX_SP_GS_CTRL_REG0(0));
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_CNTL(0));
tu_cs_emit_regs(cs,
A6XX_RB_LRZ_CNTL(0));
tu_cs_emit_regs(cs,
A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
tu_cs_emit_regs(cs,
A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
tu_cs_sanity_check(cs);
}
static void
tu6_cache_flush(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
unsigned seqno;
seqno = tu6_emit_event_write(cmd, cs, RB_DONE_TS, true);
tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(seqno));
tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0));
tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(16));
seqno = tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS, true);
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_GTE, 4);
tu_cs_emit(cs, CP_WAIT_MEM_GTE_0_RESERVED(0));
tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
tu_cs_emit(cs, CP_WAIT_MEM_GTE_3_REF(seqno));
}
static void
update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
tu_cs_emit_regs(cs,
A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
.height = tiling->tile0.extent.height),
A6XX_VSC_SIZE_ADDRESS(.bo = &cmd->vsc_data,
.bo_offset = 32 * cmd->vsc_data_pitch));
tu_cs_emit_regs(cs,
A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
.ny = tiling->tile_count.height));
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
for (unsigned i = 0; i < 32; i++)
tu_cs_emit(cs, tiling->pipe_config[i]);
tu_cs_emit_regs(cs,
A6XX_VSC_PIPE_DATA2_ADDRESS(.bo = &cmd->vsc_data2),
A6XX_VSC_PIPE_DATA2_PITCH(cmd->vsc_data2_pitch),
A6XX_VSC_PIPE_DATA2_ARRAY_PITCH(cmd->vsc_data2.size));
tu_cs_emit_regs(cs,
A6XX_VSC_PIPE_DATA_ADDRESS(.bo = &cmd->vsc_data),
A6XX_VSC_PIPE_DATA_PITCH(cmd->vsc_data_pitch),
A6XX_VSC_PIPE_DATA_ARRAY_PITCH(cmd->vsc_data.size));
}
static void
emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
const uint32_t used_pipe_count =
tiling->pipe_count.width * tiling->pipe_count.height;
/* Clear vsc_scratch: */
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
tu_cs_emit(cs, 0x0);
/* Check for overflow, write vsc_scratch if detected: */
for (int i = 0; i < used_pipe_count; i++) {
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_SIZE_REG(i)));
tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_data_pitch));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_data_pitch));
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_SIZE2_REG(i)));
tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_data2_pitch));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_data2_pitch));
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(OVERFLOW_FLAG_REG) |
CP_MEM_TO_REG_0_CNT(1 - 1));
tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
/*
* This is a bit awkward, we really want a way to invert the
* CP_REG_TEST/CP_COND_REG_EXEC logic, so that we can conditionally
* execute cmds to use hwbinning when a bit is *not* set. This
* dance is to invert OVERFLOW_FLAG_REG
*
* A CP_NOP packet is used to skip executing the 'else' clause
* if (b0 set)..
*/
/* b0 will be set if VSC_DATA or VSC_DATA2 overflow: */
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
A6XX_CP_REG_TEST_0_BIT(0) |
A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
tu_cs_reserve(cs, 3 + 7);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(7));
/* if (b0 set) */ {
/*
* On overflow, mirror the value to control->vsc_overflow
* which CPU is checking to detect overflow (see
* check_vsc_overflow())
*/
tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(OVERFLOW_FLAG_REG) |
CP_REG_TO_MEM_0_CNT(0));
tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_overflow));
tu_cs_emit_pkt4(cs, OVERFLOW_FLAG_REG, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_NOP, 2); /* skip 'else' when 'if' is taken */
} /* else */ {
tu_cs_emit_pkt4(cs, OVERFLOW_FLAG_REG, 1);
tu_cs_emit(cs, 0x1);
}
}
static void
tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
uint32_t x1 = tiling->tile0.offset.x;
uint32_t y1 = tiling->tile0.offset.y;
uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
tu6_emit_window_scissor(cs, x1, y1, x2, y2);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_wfi(cs);
tu_cs_emit_regs(cs,
A6XX_VFD_MODE_CNTL(.binning_pass = true));
update_vsc_pipe(cmd, cs);
tu_cs_emit_regs(cs,
A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
tu_cs_emit_regs(cs,
A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
tu_cs_emit(cs, UNK_2C);
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
tu_cs_emit_regs(cs,
A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
/* emit IB to binning drawcmds: */
tu_cs_emit_call(cs, &cmd->draw_cs);
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
tu_cs_emit(cs, UNK_2D);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE, false);
tu6_cache_flush(cmd, cs);
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
emit_vsc_overflow_test(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
cmd->wait_for_idle = false;
}
static void
tu_emit_load_clear(struct tu_cmd_buffer *cmd,
const VkRenderPassBeginInfo *info)
{
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
tu6_emit_blit_scissor(cmd, cs, true);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_load_gmem_attachment(cmd, cs, i);
tu6_emit_blit_scissor(cmd, cs, false);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_clear_gmem_attachment(cmd, cs, i, info);
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_clear_sysmem_attachment(cmd, cs, i, info);
tu_cond_exec_end(cs);
}
static void
tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
const struct VkRect2D *renderArea)
{
const struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
assert(fb->width > 0 && fb->height > 0);
tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
tu6_emit_window_offset(cs, 0, 0);
tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
tu6_emit_lrz_flush(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR, false);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_DEPTH, false);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE, false);
tu6_emit_wfi(cmd, cs);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
/* enable stream-out, with sysmem there is only one pass: */
tu_cs_emit_regs(cs,
A6XX_VPC_SO_OVERRIDE(.so_disable = false));
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_sanity_check(cs);
}
static void
tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
/* Do any resolves of the last subpass. These are handled in the
* tile_store_ib in the gmem path.
*/
const struct tu_subpass *subpass = cmd->state.subpass;
if (subpass->resolve_attachments) {
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a != VK_ATTACHMENT_UNUSED)
tu6_emit_sysmem_resolve(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
}
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu6_emit_lrz_flush(cmd, cs);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS, true);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS, true);
tu_cs_sanity_check(cs);
}
static void
tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
tu6_emit_lrz_flush(cmd, cs);
/* lrz clear? */
tu6_emit_cache_flush(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
/* TODO: flushing with barriers instead of blindly always flushing */
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS, true);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS, true);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_COLOR, false);
tu6_emit_event_write(cmd, cs, PC_CCU_INVALIDATE_DEPTH, false);
tu_cs_emit_wfi(cs);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_gmem, .gmem = 1));
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
if (use_hw_binning(cmd)) {
/* enable stream-out during binning pass: */
tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
tu6_emit_bin_size(cs,
tiling->tile0.extent.width,
tiling->tile0.extent.height,
A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
tu6_emit_binning_pass(cmd, cs);
/* and disable stream-out for draw pass: */
tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
tu6_emit_bin_size(cs,
tiling->tile0.extent.width,
tiling->tile0.extent.height,
A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
tu_cs_emit_regs(cs,
A6XX_VFD_MODE_CNTL(0));
tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x1);
} else {
/* no binning pass, so enable stream-out for draw pass:: */
tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
tu6_emit_bin_size(cs,
tiling->tile0.extent.width,
tiling->tile0.extent.height,
0x6000000);
}
tu_cs_sanity_check(cs);
}
static void
tu6_render_tile(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_tile *tile)
{
tu6_emit_tile_select(cmd, cs, tile);
tu_cs_emit_call(cs, &cmd->draw_cs);
cmd->wait_for_idle = true;
if (use_hw_binning(cmd)) {
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
A6XX_CP_REG_TEST_0_BIT(0) |
A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
tu_cs_reserve(cs, 3 + 2);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(2));
/* if (no overflow) */ {
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
}
}
tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
tu_cs_sanity_check(cs);
}
static void
tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_CNTL(0));
tu6_emit_lrz_flush(cmd, cs);
tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS, true);
tu_cs_sanity_check(cs);
}
static void
tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
{
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
tu6_tile_render_begin(cmd, &cmd->cs);
for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
struct tu_tile tile;
tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
tu6_render_tile(cmd, &cmd->cs, &tile);
}
}
tu6_tile_render_end(cmd, &cmd->cs);
}
static void
tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
{
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
cmd->wait_for_idle = true;
tu6_sysmem_render_end(cmd, &cmd->cs);
}
static void
tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
{
const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
struct tu_cs sub_cs;
VkResult result =
tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
/* emit to tile-store sub_cs */
tu6_emit_tile_store(cmd, &sub_cs);
cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
}
static void
tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
const VkRect2D *render_area)
{
const struct tu_device *dev = cmd->device;
struct tu_tiling_config *tiling = &cmd->state.tiling_config;
tiling->render_area = *render_area;
tiling->force_sysmem = false;
tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass->gmem_pixels);
tu_tiling_config_update_pipe_layout(tiling, dev);
tu_tiling_config_update_pipes(tiling, dev);
}
const struct tu_dynamic_state default_dynamic_state = {
.viewport =
{
.count = 0,
},
.scissor =
{
.count = 0,
},
.line_width = 1.0f,
.depth_bias =
{
.bias = 0.0f,
.clamp = 0.0f,
.slope = 0.0f,
},
.blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
.depth_bounds =
{
.min = 0.0f,
.max = 1.0f,
},
.stencil_compare_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_write_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_reference =
{
.front = 0u,
.back = 0u,
},
};
static void UNUSED /* FINISHME */
tu_bind_dynamic_state(struct tu_cmd_buffer *cmd_buffer,
const struct tu_dynamic_state *src)
{
struct tu_dynamic_state *dest = &cmd_buffer->state.dynamic;
uint32_t copy_mask = src->mask;
uint32_t dest_mask = 0;
tu_use_args(cmd_buffer); /* FINISHME */
/* Make sure to copy the number of viewports/scissors because they can
* only be specified at pipeline creation time.
*/
dest->viewport.count = src->viewport.count;
dest->scissor.count = src->scissor.count;
dest->discard_rectangle.count = src->discard_rectangle.count;
if (copy_mask & TU_DYNAMIC_VIEWPORT) {
if (memcmp(&dest->viewport.viewports, &src->viewport.viewports,
src->viewport.count * sizeof(VkViewport))) {
typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
src->viewport.count);
dest_mask |= TU_DYNAMIC_VIEWPORT;
}
}
if (copy_mask & TU_DYNAMIC_SCISSOR) {
if (memcmp(&dest->scissor.scissors, &src->scissor.scissors,
src->scissor.count * sizeof(VkRect2D))) {
typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
src->scissor.count);
dest_mask |= TU_DYNAMIC_SCISSOR;
}
}
if (copy_mask & TU_DYNAMIC_LINE_WIDTH) {
if (dest->line_width != src->line_width) {
dest->line_width = src->line_width;
dest_mask |= TU_DYNAMIC_LINE_WIDTH;
}
}
if (copy_mask & TU_DYNAMIC_DEPTH_BIAS) {
if (memcmp(&dest->depth_bias, &src->depth_bias,
sizeof(src->depth_bias))) {
dest->depth_bias = src->depth_bias;
dest_mask |= TU_DYNAMIC_DEPTH_BIAS;
}
}
if (copy_mask & TU_DYNAMIC_BLEND_CONSTANTS) {
if (memcmp(&dest->blend_constants, &src->blend_constants,
sizeof(src->blend_constants))) {
typed_memcpy(dest->blend_constants, src->blend_constants, 4);
dest_mask |= TU_DYNAMIC_BLEND_CONSTANTS;
}
}
if (copy_mask & TU_DYNAMIC_DEPTH_BOUNDS) {
if (memcmp(&dest->depth_bounds, &src->depth_bounds,
sizeof(src->depth_bounds))) {
dest->depth_bounds = src->depth_bounds;
dest_mask |= TU_DYNAMIC_DEPTH_BOUNDS;
}
}
if (copy_mask & TU_DYNAMIC_STENCIL_COMPARE_MASK) {
if (memcmp(&dest->stencil_compare_mask, &src->stencil_compare_mask,
sizeof(src->stencil_compare_mask))) {
dest->stencil_compare_mask = src->stencil_compare_mask;
dest_mask |= TU_DYNAMIC_STENCIL_COMPARE_MASK;
}
}
if (copy_mask & TU_DYNAMIC_STENCIL_WRITE_MASK) {
if (memcmp(&dest->stencil_write_mask, &src->stencil_write_mask,
sizeof(src->stencil_write_mask))) {
dest->stencil_write_mask = src->stencil_write_mask;
dest_mask |= TU_DYNAMIC_STENCIL_WRITE_MASK;
}
}
if (copy_mask & TU_DYNAMIC_STENCIL_REFERENCE) {
if (memcmp(&dest->stencil_reference, &src->stencil_reference,
sizeof(src->stencil_reference))) {
dest->stencil_reference = src->stencil_reference;
dest_mask |= TU_DYNAMIC_STENCIL_REFERENCE;
}
}
if (copy_mask & TU_DYNAMIC_DISCARD_RECTANGLE) {
if (memcmp(&dest->discard_rectangle.rectangles,
&src->discard_rectangle.rectangles,
src->discard_rectangle.count * sizeof(VkRect2D))) {
typed_memcpy(dest->discard_rectangle.rectangles,
src->discard_rectangle.rectangles,
src->discard_rectangle.count);
dest_mask |= TU_DYNAMIC_DISCARD_RECTANGLE;
}
}
}
static VkResult
tu_create_cmd_buffer(struct tu_device *device,
struct tu_cmd_pool *pool,
VkCommandBufferLevel level,
VkCommandBuffer *pCommandBuffer)
{
struct tu_cmd_buffer *cmd_buffer;
cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cmd_buffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
cmd_buffer->device = device;
cmd_buffer->pool = pool;
cmd_buffer->level = level;
if (pool) {
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
cmd_buffer->queue_family_index = pool->queue_family_index;
} else {
/* Init the pool_link so we can safely call list_del when we destroy
* the command buffer
*/
list_inithead(&cmd_buffer->pool_link);
cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
}
tu_bo_list_init(&cmd_buffer->bo_list);
tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
*pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
list_inithead(&cmd_buffer->upload.list);
VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
if (result != VK_SUCCESS)
goto fail_scratch_bo;
/* TODO: resize on overflow */
cmd_buffer->vsc_data_pitch = device->vsc_data_pitch;
cmd_buffer->vsc_data2_pitch = device->vsc_data2_pitch;
cmd_buffer->vsc_data = device->vsc_data;
cmd_buffer->vsc_data2 = device->vsc_data2;
return VK_SUCCESS;
fail_scratch_bo:
list_del(&cmd_buffer->pool_link);
return result;
}
static void
tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
{
tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
list_del(&cmd_buffer->pool_link);
for (unsigned i = 0; i < VK_PIPELINE_BIND_POINT_RANGE_SIZE; i++)
free(cmd_buffer->descriptors[i].push_set.set.mapped_ptr);
tu_cs_finish(&cmd_buffer->cs);
tu_cs_finish(&cmd_buffer->draw_cs);
tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
tu_cs_finish(&cmd_buffer->sub_cs);
tu_bo_list_destroy(&cmd_buffer->bo_list);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
}
static VkResult
tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
{
cmd_buffer->wait_for_idle = true;
cmd_buffer->record_result = VK_SUCCESS;
tu_bo_list_reset(&cmd_buffer->bo_list);
tu_cs_reset(&cmd_buffer->cs);
tu_cs_reset(&cmd_buffer->draw_cs);
tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
tu_cs_reset(&cmd_buffer->sub_cs);
for (unsigned i = 0; i < VK_PIPELINE_BIND_POINT_RANGE_SIZE; i++) {
cmd_buffer->descriptors[i].valid = 0;
cmd_buffer->descriptors[i].push_dirty = false;
}
cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
return cmd_buffer->record_result;
}
VkResult
tu_AllocateCommandBuffers(VkDevice _device,
const VkCommandBufferAllocateInfo *pAllocateInfo,
VkCommandBuffer *pCommandBuffers)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
VkResult result = VK_SUCCESS;
uint32_t i;
for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
if (!list_is_empty(&pool->free_cmd_buffers)) {
struct tu_cmd_buffer *cmd_buffer = list_first_entry(
&pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
result = tu_reset_cmd_buffer(cmd_buffer);
cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
cmd_buffer->level = pAllocateInfo->level;
pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
} else {
result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
&pCommandBuffers[i]);
}
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
pCommandBuffers);
/* From the Vulkan 1.0.66 spec:
*
* "vkAllocateCommandBuffers can be used to create multiple
* command buffers. If the creation of any of those command
* buffers fails, the implementation must destroy all
* successfully created command buffer objects from this
* command, set all entries of the pCommandBuffers array to
* NULL and return the error."
*/
memset(pCommandBuffers, 0,
sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
}
return result;
}
void
tu_FreeCommandBuffers(VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers)
{
for (uint32_t i = 0; i < commandBufferCount; i++) {
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
if (cmd_buffer) {
if (cmd_buffer->pool) {
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link,
&cmd_buffer->pool->free_cmd_buffers);
} else
tu_cmd_buffer_destroy(cmd_buffer);
}
}
}
VkResult
tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
return tu_reset_cmd_buffer(cmd_buffer);
}
VkResult
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result = VK_SUCCESS;
if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
/* If the command buffer has already been resetted with
* vkResetCommandBuffer, no need to do it again.
*/
result = tu_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
cmd_buffer->usage_flags = pBeginInfo->flags;
tu_cs_begin(&cmd_buffer->cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->scratch_seqno = 0;
/* setup initial configuration into command buffer */
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
switch (cmd_buffer->queue_family_index) {
case TU_QUEUE_GENERAL:
tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
break;
default:
break;
}
} else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
(pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
cmd_buffer->state.subpass = &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
}
cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
return VK_SUCCESS;
}
void
tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
assert(firstBinding + bindingCount <= MAX_VBS);
for (uint32_t i = 0; i < bindingCount; i++) {
cmd->state.vb.buffers[firstBinding + i] =
tu_buffer_from_handle(pBuffers[i]);
cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
}
/* VB states depend on VkPipelineVertexInputStateCreateInfo */
cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
}
void
tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, buffer);
/* initialize/update the restart index */
if (!cmd->state.index_buffer || cmd->state.index_type != indexType) {
struct tu_cs *draw_cs = &cmd->draw_cs;
tu6_emit_restart_index(
draw_cs, indexType == VK_INDEX_TYPE_UINT32 ? 0xffffffff : 0xffff);
tu_cs_sanity_check(draw_cs);
}
/* track the BO */
if (cmd->state.index_buffer != buf)
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
cmd->state.index_buffer = buf;
cmd->state.index_offset = offset;
cmd->state.index_type = indexType;
}
void
tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
unsigned dyn_idx = 0;
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd_buffer, pipelineBindPoint);
for (unsigned i = 0; i < descriptorSetCount; ++i) {
unsigned idx = i + firstSet;
TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
descriptors_state->sets[idx] = set;
descriptors_state->valid |= (1u << idx);
/* Note: the actual input attachment indices come from the shader
* itself, so we can't generate the patched versions of these until
* draw time when both the pipeline and descriptors are bound and
* we're inside the render pass.
*/
unsigned dst_idx = layout->set[idx].input_attachment_start;
memcpy(&descriptors_state->input_attachments[dst_idx * A6XX_TEX_CONST_DWORDS],
set->dynamic_descriptors,
set->layout->input_attachment_count * A6XX_TEX_CONST_DWORDS * 4);
for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
/* Dynamic buffers come after input attachments in the descriptor set
* itself, but due to how the Vulkan descriptor set binding works, we
* have to put input attachments and dynamic buffers in separate
* buffers in the descriptor_state and then combine them at draw
* time. Binding a descriptor set only invalidates the descriptor
* sets after it, but if we try to tightly pack the descriptors after
* the input attachments then we could corrupt dynamic buffers in the
* descriptor set before it, or we'd have to move all the dynamic
* buffers over. We just put them into separate buffers to make
* binding as well as the later patching of input attachments easy.
*/
unsigned src_idx = j + set->layout->input_attachment_count;
unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
assert(dyn_idx < dynamicOffsetCount);
uint32_t *dst =
&descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
uint32_t *src =
&set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
uint32_t offset = pDynamicOffsets[dyn_idx];
/* Patch the storage/uniform descriptors right away. */
if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
/* Note: we can assume here that the addition won't roll over and
* change the SIZE field.
*/
uint64_t va = src[0] | ((uint64_t)src[1] << 32);
va += offset;
dst[0] = va;
dst[1] = va >> 32;
} else {
memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
/* Note: A6XX_IBO_5_DEPTH is always 0 */
uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
va += offset;
dst[4] = va;
dst[5] = va >> 32;
}
}
}
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE)
cmd_buffer->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
else
cmd_buffer->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
}
void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets,
const VkDeviceSize *pSizes)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
assert(firstBinding + bindingCount <= IR3_MAX_SO_BUFFERS);
for (uint32_t i = 0; i < bindingCount; i++) {
uint32_t idx = firstBinding + i;
TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
if (pOffsets[i] != 0)
cmd->state.streamout_reset |= 1 << idx;
cmd->state.streamout_buf.buffers[idx] = buf;
cmd->state.streamout_buf.offsets[idx] = pOffsets[i];
cmd->state.streamout_buf.sizes[idx] = pSizes[i];
cmd->state.streamout_enabled |= 1 << idx;
}
cmd->state.dirty |= TU_CMD_DIRTY_STREAMOUT_BUFFERS;
}
void tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
/* TODO do something with counter buffer? */
}
void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
/* TODO do something with counter buffer? */
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.streamout_enabled = 0;
}
void
tu_CmdPushConstants(VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void *pValues)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
memcpy((void*) cmd->push_constants + offset, pValues, size);
cmd->state.dirty |= TU_CMD_DIRTY_PUSH_CONSTANTS;
}
VkResult
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->scratch_seqno) {
tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
MSM_SUBMIT_BO_WRITE);
}
if (cmd_buffer->use_vsc_data) {
tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_data,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_data2,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
}
tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
MSM_SUBMIT_BO_READ);
for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
tu_cs_end(&cmd_buffer->cs);
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
return cmd_buffer->record_result;
}
void
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_GRAPHICS:
cmd->state.pipeline = pipeline;
cmd->state.dirty |= TU_CMD_DIRTY_PIPELINE;
break;
case VK_PIPELINE_BIND_POINT_COMPUTE:
cmd->state.compute_pipeline = pipeline;
cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
break;
default:
unreachable("unrecognized pipeline bind point");
break;
}
tu_bo_list_add(&cmd->bo_list, &pipeline->program.binary_bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
}
void
tu_CmdSetViewport(VkCommandBuffer commandBuffer,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport *pViewports)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
assert(firstViewport == 0 && viewportCount == 1);
cmd->state.dynamic.viewport.viewports[0] = pViewports[0];
cmd->state.dirty |= TU_CMD_DIRTY_DYNAMIC_VIEWPORT;
}
void
tu_CmdSetScissor(VkCommandBuffer commandBuffer,
uint32_t firstScissor,
uint32_t scissorCount,
const VkRect2D *pScissors)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
assert(firstScissor == 0 && scissorCount == 1);
cmd->state.dynamic.scissor.scissors[0] = pScissors[0];
cmd->state.dirty |= TU_CMD_DIRTY_DYNAMIC_SCISSOR;
}
void
tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.dynamic.line_width = lineWidth;
/* line width depends on VkPipelineRasterizationStateCreateInfo */
cmd->state.dirty |= TU_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
}
void
tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,
float depthBiasSlopeFactor)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *draw_cs = &cmd->draw_cs;
tu6_emit_depth_bias(draw_cs, depthBiasConstantFactor, depthBiasClamp,
depthBiasSlopeFactor);
tu_cs_sanity_check(draw_cs);
}
void
tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
const float blendConstants[4])
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *draw_cs = &cmd->draw_cs;
tu6_emit_blend_constants(draw_cs, blendConstants);
tu_cs_sanity_check(draw_cs);
}
void
tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds)
{
}
void
tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd->state.dynamic.stencil_compare_mask.front = compareMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd->state.dynamic.stencil_compare_mask.back = compareMask;
/* the front/back compare masks must be updated together */
cmd->state.dirty |= TU_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
}
void
tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd->state.dynamic.stencil_write_mask.front = writeMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd->state.dynamic.stencil_write_mask.back = writeMask;
/* the front/back write masks must be updated together */
cmd->state.dirty |= TU_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
}
void
tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd->state.dynamic.stencil_reference.front = reference;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd->state.dynamic.stencil_reference.back = reference;
/* the front/back references must be updated together */
cmd->state.dirty |= TU_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
}
void
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer *pCmdBuffers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VkResult result;
assert(commandBufferCount > 0);
for (uint32_t i = 0; i < commandBufferCount; i++) {
TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
assert(tu_cs_is_empty(&secondary->cs));
result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
&secondary->draw_epilogue_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
} else {
assert(tu_cs_is_empty(&secondary->draw_cs));
assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
tu_cs_add_entries(&cmd->cs, &secondary->cs);
}
}
cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
}
VkResult
tu_CreateCommandPool(VkDevice _device,
const VkCommandPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkCommandPool *pCmdPool)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_cmd_pool *pool;
pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pool == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
if (pAllocator)
pool->alloc = *pAllocator;
else
pool->alloc = device->alloc;
list_inithead(&pool->cmd_buffers);
list_inithead(&pool->free_cmd_buffers);
pool->queue_family_index = pCreateInfo->queueFamilyIndex;
*pCmdPool = tu_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
void
tu_DestroyCommandPool(VkDevice _device,
VkCommandPool commandPool,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
vk_free2(&device->alloc, pAllocator, pool);
}
VkResult
tu_ResetCommandPool(VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags)
{
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
VkResult result;
list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
pool_link)
{
result = tu_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
void
tu_TrimCommandPool(VkDevice device,
VkCommandPool commandPool,
VkCommandPoolTrimFlags flags)
{
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
}
void
tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
cmd->state.pass = pass;
cmd->state.subpass = pass->subpasses;
cmd->state.framebuffer = fb;
tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
tu_cmd_prepare_tile_store_ib(cmd);
tu_emit_load_clear(cmd, pRenderPassBegin);
tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
/* note: use_hw_binning only checks tiling config */
if (use_hw_binning(cmd))
cmd->use_vsc_data = true;
for (uint32_t i = 0; i < fb->attachment_count; ++i) {
const struct tu_image_view *iview = fb->attachments[i].attachment;
tu_bo_list_add(&cmd->bo_list, iview->image->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
}
/* Flag input attachment descriptors for re-emission if necessary */
cmd->state.dirty |= TU_CMD_DIRTY_INPUT_ATTACHMENTS;
}
void
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBeginInfo,
const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
{
tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
pSubpassBeginInfo->contents);
}
void
tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
const struct tu_render_pass *pass = cmd->state.pass;
struct tu_cs *cs = &cmd->draw_cs;
const struct tu_subpass *subpass = cmd->state.subpass++;
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
if (subpass->resolve_attachments) {
tu6_emit_blit_scissor(cmd, cs, true);
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
tu_store_gmem_attachment(cmd, cs, a,
subpass->color_attachments[i].attachment);
if (pass->attachments[a].gmem_offset < 0)
continue;
/* TODO:
* check if the resolved attachment is needed by later subpasses,
* if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
*/
tu_finishme("missing GMEM->GMEM resolve path\n");
tu_emit_load_gmem_attachment(cmd, cs, a);
}
}
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
/* Emit flushes so that input attachments will read the correct value.
* TODO: use subpass dependencies to flush or not
*/
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS, true);
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS, true);
if (subpass->resolve_attachments) {
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE, false);
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
tu6_emit_sysmem_resolve(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS, true);
}
tu_cond_exec_end(cs);
/* subpass->input_count > 0 then texture cache invalidate is likely to be needed */
if (cmd->state.subpass->input_count)
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE, false);
/* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
tu6_emit_zs(cmd, cmd->state.subpass, cs);
tu6_emit_mrt(cmd, cmd->state.subpass, cs);
tu6_emit_msaa(cs, cmd->state.subpass->samples);
tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
/* Flag input attachment descriptors for re-emission if necessary */
cmd->state.dirty |= TU_CMD_DIRTY_INPUT_ATTACHMENTS;
}
void
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
const VkSubpassEndInfoKHR *pSubpassEndInfo)
{
tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
}
struct tu_draw_info
{
/**
* Number of vertices.
*/
uint32_t count;
/**
* Index of the first vertex.
*/
int32_t vertex_offset;
/**
* First instance id.
*/
uint32_t first_instance;
/**
* Number of instances.
*/
uint32_t instance_count;
/**
* First index (indexed draws only).
*/
uint32_t first_index;
/**
* Whether it's an indexed draw.
*/
bool indexed;
/**
* Indirect draw parameters resource.
*/
struct tu_buffer *indirect;
uint64_t indirect_offset;
uint32_t stride;
/**
* Draw count parameters resource.
*/
struct tu_buffer *count_buffer;
uint64_t count_buffer_offset;
/**
* Stream output parameters resource.
*/
struct tu_buffer *streamout_buffer;
uint64_t streamout_buffer_offset;
};
#define ENABLE_ALL (CP_SET_DRAW_STATE__0_BINNING | CP_SET_DRAW_STATE__0_GMEM | CP_SET_DRAW_STATE__0_SYSMEM)
#define ENABLE_DRAW (CP_SET_DRAW_STATE__0_GMEM | CP_SET_DRAW_STATE__0_SYSMEM)
#define ENABLE_NON_GMEM (CP_SET_DRAW_STATE__0_BINNING | CP_SET_DRAW_STATE__0_SYSMEM)
enum tu_draw_state_group_id
{
TU_DRAW_STATE_PROGRAM,
TU_DRAW_STATE_PROGRAM_BINNING,
TU_DRAW_STATE_VI,
TU_DRAW_STATE_VI_BINNING,
TU_DRAW_STATE_VP,
TU_DRAW_STATE_RAST,
TU_DRAW_STATE_DS,
TU_DRAW_STATE_BLEND,
TU_DRAW_STATE_VS_CONST,
TU_DRAW_STATE_GS_CONST,
TU_DRAW_STATE_FS_CONST,
TU_DRAW_STATE_DESC_SETS,
TU_DRAW_STATE_DESC_SETS_GMEM,
TU_DRAW_STATE_DESC_SETS_LOAD,
TU_DRAW_STATE_VS_PARAMS,
TU_DRAW_STATE_COUNT,
};
struct tu_draw_state_group
{
enum tu_draw_state_group_id id;
uint32_t enable_mask;
struct tu_cs_entry ib;
};
static inline uint32_t
tu6_stage2opcode(gl_shader_stage type)
{
switch (type) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_GEOMETRY:
return CP_LOAD_STATE6_GEOM;
case MESA_SHADER_FRAGMENT:
case MESA_SHADER_COMPUTE:
case MESA_SHADER_KERNEL:
return CP_LOAD_STATE6_FRAG;
default:
unreachable("bad shader type");
}
}
static inline enum a6xx_state_block
tu6_stage2shadersb(gl_shader_stage type)
{
switch (type) {
case MESA_SHADER_VERTEX:
return SB6_VS_SHADER;
case MESA_SHADER_GEOMETRY:
return SB6_GS_SHADER;
case MESA_SHADER_FRAGMENT:
return SB6_FS_SHADER;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_KERNEL:
return SB6_CS_SHADER;
default:
unreachable("bad shader type");
return ~0;
}
}
static void
tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
struct tu_descriptor_state *descriptors_state,
gl_shader_stage type,
uint32_t *push_constants)
{
const struct tu_program_descriptor_linkage *link =
&pipeline->program.link[type];
const struct ir3_ubo_analysis_state *state = &link->ubo_state;
if (link->push_consts.count > 0) {
unsigned num_units = link->push_consts.count;
unsigned offset = link->push_consts.lo;
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_units));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
for (unsigned i = 0; i < num_units * 4; i++)
tu_cs_emit(cs, push_constants[i + offset * 4]);
}
for (uint32_t i = 0; i < state->num_enabled; i++) {
uint32_t size = state->range[i].end - state->range[i].start;
uint32_t offset = state->range[i].start;
/* and even if the start of the const buffer is before
* first_immediate, the end may not be:
*/
size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
if (size == 0)
continue;
/* things should be aligned to vec4: */
debug_assert((state->range[i].offset % 16) == 0);
debug_assert((size % 16) == 0);
debug_assert((offset % 16) == 0);
/* Dig out the descriptor from the descriptor state and read the VA from
* it.
*/
assert(state->range[i].bindless);
uint32_t *base = state->range[i].bindless_base == MAX_SETS ?
descriptors_state->dynamic_descriptors :
descriptors_state->sets[state->range[i].bindless_base]->mapped_ptr;
unsigned block = state->range[i].block;
/* If the block in the shader here is in the dynamic descriptor set, it
* is an index into the dynamic descriptor set which is combined from
* dynamic descriptors and input attachments on-the-fly, and we don't
* have access to it here. Instead we work backwards to get the index
* into dynamic_descriptors.
*/
if (state->range[i].bindless_base == MAX_SETS)
block -= pipeline->layout->input_attachment_count;
uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
assert(va);
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
tu_cs_emit_qw(cs, va + offset);
}
}
static struct tu_cs_entry
tu6_emit_consts(struct tu_cmd_buffer *cmd,
const struct tu_pipeline *pipeline,
struct tu_descriptor_state *descriptors_state,
gl_shader_stage type)
{
struct tu_cs cs;
tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
}
static VkResult
tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
const struct tu_draw_info *draw,
struct tu_cs_entry *entry)
{
/* TODO: fill out more than just base instance */
const struct tu_program_descriptor_linkage *link =
&cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
const struct ir3_const_state *const_state = &link->const_state;
struct tu_cs cs;
if (const_state->offsets.driver_param >= link->constlen) {
*entry = (struct tu_cs_entry) {};
return VK_SUCCESS;
}
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
if (result != VK_SUCCESS)
return result;
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, 0);
STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, draw->first_instance);
tu_cs_emit(&cs, 0);
*entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
return VK_SUCCESS;
}
static VkResult
tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd,
const struct tu_pipeline *pipeline,
VkPipelineBindPoint bind_point,
struct tu_cs_entry *entry,
bool gmem)
{
struct tu_cs *draw_state = &cmd->sub_cs;
struct tu_pipeline_layout *layout = pipeline->layout;
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd, bind_point);
const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
const uint32_t *input_attachment_idx =
pipeline->program.input_attachment_idx;
uint32_t num_dynamic_descs = layout->dynamic_offset_count +
layout->input_attachment_count;
struct ts_cs_memory dynamic_desc_set;
VkResult result;
if (num_dynamic_descs > 0) {
/* allocate and fill out dynamic descriptor set */
result = tu_cs_alloc(draw_state, num_dynamic_descs,
A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
if (result != VK_SUCCESS)
return result;
memcpy(dynamic_desc_set.map, descriptors_state->input_attachments,
layout->input_attachment_count * A6XX_TEX_CONST_DWORDS * 4);
if (gmem) {
/* Patch input attachments to refer to GMEM instead */
for (unsigned i = 0; i < layout->input_attachment_count; i++) {
uint32_t *dst =
&dynamic_desc_set.map[A6XX_TEX_CONST_DWORDS * i];
/* The compiler has already laid out input_attachment_idx in the
* final order of input attachments, so there's no need to go
* through the pipeline layout finding input attachments.
*/
unsigned attachment_idx = input_attachment_idx[i];
/* It's possible for the pipeline layout to include an input
* attachment which doesn't actually exist for the current
* subpass. Of course, this is only valid so long as the pipeline
* doesn't try to actually load that attachment. Just skip
* patching in that scenario to avoid out-of-bounds accesses.
*/
if (attachment_idx >= cmd->state.subpass->input_count)
continue;
uint32_t a = cmd->state.subpass->input_attachments[attachment_idx].attachment;
const struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[a];
assert(att->gmem_offset >= 0);
dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
dst[2] &= ~(A6XX_TEX_CONST_2_TYPE__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
dst[2] |=
A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
A6XX_TEX_CONST_2_PITCH(tiling->tile0.extent.width * att->cpp);
dst[3] = 0;
dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
dst[i] = 0;
if (cmd->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY)
tu_finishme("patch input attachment pitch for secondary cmd buffer");
}
}
memcpy(dynamic_desc_set.map + layout->input_attachment_count * A6XX_TEX_CONST_DWORDS,
descriptors_state->dynamic_descriptors,
layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
}
uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg;
uint32_t hlsq_update_value;
switch (bind_point) {
case VK_PIPELINE_BIND_POINT_GRAPHICS:
sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
hlsq_update_value = 0x7c000;
break;
case VK_PIPELINE_BIND_POINT_COMPUTE:
sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
hlsq_update_value = 0x3e00;
break;
default:
unreachable("bad bind point");
}
/* Be careful here to *not* refer to the pipeline, so that if only the
* pipeline changes we don't have to emit this again (except if there are
* dynamic descriptors in the pipeline layout). This means always emitting
* all the valid descriptors, which means that we always have to put the
* dynamic descriptor in the driver-only slot at the end
*/
uint32_t num_user_sets = util_last_bit(descriptors_state->valid);
uint32_t num_sets = num_user_sets;
if (num_dynamic_descs > 0) {
num_user_sets = MAX_SETS;
num_sets = num_user_sets + 1;
}
unsigned regs[2] = { sp_bindless_base_reg, hlsq_bindless_base_reg };
struct tu_cs cs;
result = tu_cs_begin_sub_stream(draw_state, ARRAY_SIZE(regs) * (1 + num_sets * 2) + 2, &cs);
if (result != VK_SUCCESS)
return result;
if (num_sets > 0) {
for (unsigned i = 0; i < ARRAY_SIZE(regs); i++) {
tu_cs_emit_pkt4(&cs, regs[i], num_sets * 2);
for (unsigned j = 0; j < num_user_sets; j++) {
if (descriptors_state->valid & (1 << j)) {
/* magic | 3 copied from the blob */
tu_cs_emit_qw(&cs, descriptors_state->sets[j]->va | 3);
} else {
tu_cs_emit_qw(&cs, 0 | 3);
}
}
if (num_dynamic_descs > 0) {
tu_cs_emit_qw(&cs, dynamic_desc_set.iova | 3);
}
}
tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(hlsq_update_value));
}
*entry = tu_cs_end_sub_stream(draw_state, &cs);
return VK_SUCCESS;
}
static void
tu6_emit_streamout(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_streamout_state *tf = &cmd->state.pipeline->streamout;
for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
if (!buf)
continue;
uint32_t offset;
offset = cmd->state.streamout_buf.offsets[i];
tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_BASE(i, .bo = buf->bo,
.bo_offset = buf->bo_offset));
tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_SIZE(i, buf->size));
if (cmd->state.streamout_reset & (1 << i)) {
offset *= tf->stride[i];
tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, offset));
cmd->state.streamout_reset &= ~(1 << i);
} else {
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(i)) |
CP_MEM_TO_REG_0_SHIFT_BY_2 | CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(0));
tu_cs_emit_qw(cs, cmd->scratch_bo.iova +
ctrl_offset(flush_base[i].offset));
}
tu_cs_emit_regs(cs, A6XX_VPC_SO_FLUSH_BASE(i, .bo = &cmd->scratch_bo,
.bo_offset =
ctrl_offset(flush_base[i])));
}
if (cmd->state.streamout_enabled) {
tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + (2 * tf->prog_count));
tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
tu_cs_emit(cs, tf->vpc_so_buf_cntl);
tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(0));
tu_cs_emit(cs, tf->ncomp[0]);
tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(1));
tu_cs_emit(cs, tf->ncomp[1]);
tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(2));
tu_cs_emit(cs, tf->ncomp[2]);
tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(3));
tu_cs_emit(cs, tf->ncomp[3]);
tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
for (unsigned i = 0; i < tf->prog_count; i++) {
tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
tu_cs_emit(cs, tf->prog[i]);
}
} else {
tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
tu_cs_emit(cs, 0);
tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
tu_cs_emit(cs, 0);
}
}
static VkResult
tu6_bind_draw_states(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_draw_info *draw)
{
const struct tu_pipeline *pipeline = cmd->state.pipeline;
const struct tu_dynamic_state *dynamic = &cmd->state.dynamic;
struct tu_draw_state_group draw_state_groups[TU_DRAW_STATE_COUNT];
uint32_t draw_state_group_count = 0;
VkResult result;
struct tu_descriptor_state *descriptors_state =
&cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
/* TODO lrz */
tu_cs_emit_regs(cs,
A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart =
pipeline->ia.primitive_restart && draw->indexed));
if (cmd->state.dirty &
(TU_CMD_DIRTY_PIPELINE | TU_CMD_DIRTY_DYNAMIC_LINE_WIDTH) &&
(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH)) {
tu6_emit_gras_su_cntl(cs, pipeline->rast.gras_su_cntl,
dynamic->line_width);
}
if ((cmd->state.dirty & TU_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) &&
(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
tu6_emit_stencil_compare_mask(cs, dynamic->stencil_compare_mask.front,
dynamic->stencil_compare_mask.back);
}
if ((cmd->state.dirty & TU_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) &&
(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
tu6_emit_stencil_write_mask(cs, dynamic->stencil_write_mask.front,
dynamic->stencil_write_mask.back);
}
if ((cmd->state.dirty & TU_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) &&
(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
tu6_emit_stencil_reference(cs, dynamic->stencil_reference.front,
dynamic->stencil_reference.back);
}
if ((cmd->state.dirty & TU_CMD_DIRTY_DYNAMIC_VIEWPORT) &&
(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
tu6_emit_viewport(cs, &cmd->state.dynamic.viewport.viewports[0]);
}
if ((cmd->state.dirty & TU_CMD_DIRTY_DYNAMIC_SCISSOR) &&
(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
tu6_emit_scissor(cs, &cmd->state.dynamic.scissor.scissors[0]);
}
if (cmd->state.dirty &
(TU_CMD_DIRTY_PIPELINE | TU_CMD_DIRTY_VERTEX_BUFFERS)) {
for (uint32_t i = 0; i < pipeline->vi.count; i++) {
const uint32_t binding = pipeline->vi.bindings[i];
const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
const VkDeviceSize offset = buf->bo_offset +
cmd->state.vb.offsets[binding];
const VkDeviceSize size =
offset < buf->size ? buf->size - offset : 0;
tu_cs_emit_regs(cs,
A6XX_VFD_FETCH_BASE(i, .bo = buf->bo, .bo_offset = offset),
A6XX_VFD_FETCH_SIZE(i, size));
}
}
if (cmd->state.dirty & TU_CMD_DIRTY_PIPELINE) {
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_PROGRAM,
.enable_mask = ENABLE_DRAW,
.ib = pipeline->program.state_ib,
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_PROGRAM_BINNING,
.enable_mask = CP_SET_DRAW_STATE__0_BINNING,
.ib = pipeline->program.binning_state_ib,
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_VI,
.enable_mask = ENABLE_DRAW,
.ib = pipeline->vi.state_ib,
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_VI_BINNING,
.enable_mask = CP_SET_DRAW_STATE__0_BINNING,
.ib = pipeline->vi.binning_state_ib,
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_VP,
.enable_mask = ENABLE_ALL,
.ib = pipeline->vp.state_ib,
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_RAST,
.enable_mask = ENABLE_ALL,
.ib = pipeline->rast.state_ib,
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_DS,
.enable_mask = ENABLE_ALL,
.ib = pipeline->ds.state_ib,
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_BLEND,
.enable_mask = ENABLE_ALL,
.ib = pipeline->blend.state_ib,
};
}
if (cmd->state.dirty &
(TU_CMD_DIRTY_PIPELINE | TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_PUSH_CONSTANTS)) {
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_VS_CONST,
.enable_mask = ENABLE_ALL,
.ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX)
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_GS_CONST,
.enable_mask = ENABLE_ALL,
.ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY)
};
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_FS_CONST,
.enable_mask = ENABLE_DRAW,
.ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT)
};
}
if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS)
tu6_emit_streamout(cmd, cs);
/* If there are any any dynamic descriptors, then we may need to re-emit
* them after every pipeline change in case the number of input attachments
* changes. We also always need to re-emit after a pipeline change if there
* are any input attachments, because the input attachment index comes from
* the pipeline. Finally, it can also happen that the subpass changes
* without the pipeline changing, in which case the GMEM descriptors need
* to be patched differently.
*
* TODO: We could probably be clever and avoid re-emitting state on
* pipeline changes if the number of input attachments is always 0. We
* could also only re-emit dynamic state.
*/
if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS ||
((pipeline->layout->dynamic_offset_count +
pipeline->layout->input_attachment_count > 0) &&
cmd->state.dirty & TU_CMD_DIRTY_PIPELINE) ||
(pipeline->layout->input_attachment_count > 0 &&
cmd->state.dirty & TU_CMD_DIRTY_INPUT_ATTACHMENTS)) {
struct tu_cs_entry desc_sets, desc_sets_gmem;
bool need_gmem_desc_set = pipeline->layout->input_attachment_count > 0;
result = tu6_emit_descriptor_sets(cmd, pipeline,
VK_PIPELINE_BIND_POINT_GRAPHICS,
&desc_sets, false);
if (result != VK_SUCCESS)
return result;
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_DESC_SETS,
.enable_mask = need_gmem_desc_set ? ENABLE_NON_GMEM : ENABLE_ALL,
.ib = desc_sets,
};
if (need_gmem_desc_set) {
result = tu6_emit_descriptor_sets(cmd, pipeline,
VK_PIPELINE_BIND_POINT_GRAPHICS,
&desc_sets_gmem, true);
if (result != VK_SUCCESS)
return result;
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_DESC_SETS_GMEM,
.enable_mask = CP_SET_DRAW_STATE__0_GMEM,
.ib = desc_sets_gmem,
};
}
/* We need to reload the descriptors every time the descriptor sets
* change. However, the commands we send only depend on the pipeline
* because the whole point is to cache descriptors which are used by the
* pipeline. There's a problem here, in that the firmware has an
* "optimization" which skips executing groups that are set to the same
* value as the last draw. This means that if the descriptor sets change
* but not the pipeline, we'd try to re-execute the same buffer which
* the firmware would ignore and we wouldn't pre-load the new
* descriptors. The blob seems to re-emit the LOAD_STATE group whenever
* the descriptor sets change, which we emulate here by copying the
* pre-prepared buffer.
*/
const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
if (load_entry->size > 0) {
struct tu_cs load_cs;
result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
if (result != VK_SUCCESS)
return result;
tu_cs_emit_array(&load_cs,
(uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
load_entry->size / 4);
struct tu_cs_entry load_copy = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_DESC_SETS_LOAD,
/* The blob seems to not enable this for binning, even when
* resources would actually be used in the binning shader.
* Presumably the overhead of prefetching the resources isn't
* worth it.
*/
.enable_mask = ENABLE_DRAW,
.ib = load_copy,
};
}
}
struct tu_cs_entry vs_params;
result = tu6_emit_vs_params(cmd, draw, &vs_params);
if (result != VK_SUCCESS)
return result;
draw_state_groups[draw_state_group_count++] =
(struct tu_draw_state_group) {
.id = TU_DRAW_STATE_VS_PARAMS,
.enable_mask = ENABLE_ALL,
.ib = vs_params,
};
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_group_count);
for (uint32_t i = 0; i < draw_state_group_count; i++) {
const struct tu_draw_state_group *group = &draw_state_groups[i];
debug_assert((group->enable_mask & ~ENABLE_ALL) == 0);
uint32_t cp_set_draw_state =
CP_SET_DRAW_STATE__0_COUNT(group->ib.size / 4) |
group->enable_mask |
CP_SET_DRAW_STATE__0_GROUP_ID(group->id);
uint64_t iova;
if (group->ib.size) {
iova = group->ib.bo->iova + group->ib.offset;
} else {
cp_set_draw_state |= CP_SET_DRAW_STATE__0_DISABLE;
iova = 0;
}
tu_cs_emit(cs, cp_set_draw_state);
tu_cs_emit_qw(cs, iova);
}
tu_cs_sanity_check(cs);
/* track BOs */
if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) {
for (uint32_t i = 0; i < MAX_VBS; i++) {
const struct tu_buffer *buf = cmd->state.vb.buffers[i];
if (buf)
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
}
}
if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
unsigned i;
for_each_bit(i, descriptors_state->valid) {
struct tu_descriptor_set *set = descriptors_state->sets[i];
for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
if (set->buffers[j]) {
tu_bo_list_add(&cmd->bo_list, set->buffers[j],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
}
}
if (set->size > 0) {
tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
}
}
if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS) {
for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
const struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
if (buf) {
tu_bo_list_add(&cmd->bo_list, buf->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
}
}
}
/* There are too many graphics dirty bits to list here, so just list the
* bits to preserve instead. The only things not emitted here are
* compute-related state.
*/
cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
/* Fragment shader state overwrites compute shader state, so flag the
* compute pipeline for re-emit.
*/
cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
return VK_SUCCESS;
}
static void
tu6_emit_draw_indirect(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_draw_info *draw)
{
const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
bool has_gs = cmd->state.pipeline->active_stages &
VK_SHADER_STAGE_GEOMETRY_BIT;
tu_cs_emit_regs(cs,
A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
if (draw->indexed) {
const enum a4xx_index_size index_size =
tu6_index_size(cmd->state.index_type);
const uint32_t index_bytes =
(cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
const struct tu_buffer *index_buf = cmd->state.index_buffer;
unsigned max_indicies =
(index_buf->size - cmd->state.index_offset) / index_bytes;
const uint32_t cp_draw_indx =
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
tu_cs_emit(cs, cp_draw_indx);
tu_cs_emit_qw(cs, index_buf->bo->iova + cmd->state.index_offset);
tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(max_indicies));
tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
} else {
const uint32_t cp_draw_indx =
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
tu_cs_emit(cs, cp_draw_indx);
tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
}
tu_bo_list_add(&cmd->bo_list, draw->indirect->bo, MSM_SUBMIT_BO_READ);
}
static void
tu6_emit_draw_direct(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_draw_info *draw)
{
const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
bool has_gs = cmd->state.pipeline->active_stages &
VK_SHADER_STAGE_GEOMETRY_BIT;
tu_cs_emit_regs(cs,
A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
/* TODO hw binning */
if (draw->indexed) {
const enum a4xx_index_size index_size =
tu6_index_size(cmd->state.index_type);
const uint32_t index_bytes =
(cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
const struct tu_buffer *buf = cmd->state.index_buffer;
const VkDeviceSize offset = buf->bo_offset + cmd->state.index_offset +
index_bytes * draw->first_index;
const uint32_t size = index_bytes * draw->count;
const uint32_t cp_draw_indx =
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
tu_cs_emit(cs, cp_draw_indx);
tu_cs_emit(cs, draw->instance_count);
tu_cs_emit(cs, draw->count);
tu_cs_emit(cs, 0x0); /* XXX */
tu_cs_emit_qw(cs, buf->bo->iova + offset);
tu_cs_emit(cs, size);
} else {
const uint32_t cp_draw_indx =
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
tu_cs_emit(cs, cp_draw_indx);
tu_cs_emit(cs, draw->instance_count);
tu_cs_emit(cs, draw->count);
}
}
static void
tu_draw(struct tu_cmd_buffer *cmd, const struct tu_draw_info *draw)
{
struct tu_cs *cs = &cmd->draw_cs;
VkResult result;
result = tu6_bind_draw_states(cmd, cs, draw);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
if (draw->indirect)
tu6_emit_draw_indirect(cmd, cs, draw);
else
tu6_emit_draw_direct(cmd, cs, draw);
if (cmd->state.streamout_enabled) {
for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
if (cmd->state.streamout_enabled & (1 << i))
tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i, false);
}
}
cmd->wait_for_idle = true;
tu_cs_sanity_check(cs);
}
void
tu_CmdDraw(VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_draw_info info = {};
info.count = vertexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.vertex_offset = firstVertex;
tu_draw(cmd_buffer, &info);
}
void
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_draw_info info = {};
info.indexed = true;
info.count = indexCount;
info.instance_count = instanceCount;
info.first_index = firstIndex;
info.vertex_offset = vertexOffset;
info.first_instance = firstInstance;
tu_draw(cmd_buffer, &info);
}
void
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
struct tu_draw_info info = {};
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
tu_draw(cmd_buffer, &info);
}
void
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
struct tu_draw_info info = {};
info.indexed = true;
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
tu_draw(cmd_buffer, &info);
}
void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
uint32_t instanceCount,
uint32_t firstInstance,
VkBuffer _counterBuffer,
VkDeviceSize counterBufferOffset,
uint32_t counterOffset,
uint32_t vertexStride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buffer, _counterBuffer);
struct tu_draw_info info = {};
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.streamout_buffer = buffer;
info.streamout_buffer_offset = counterBufferOffset;
info.stride = vertexStride;
tu_draw(cmd_buffer, &info);
}
struct tu_dispatch_info
{
/**
* Determine the layout of the grid (in block units) to be used.
*/
uint32_t blocks[3];
/**
* A starting offset for the grid. If unaligned is set, the offset
* must still be aligned.
*/
uint32_t offsets[3];
/**
* Whether it's an unaligned compute dispatch.
*/
bool unaligned;
/**
* Indirect compute parameters resource.
*/
struct tu_buffer *indirect;
uint64_t indirect_offset;
};
static void
tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
const struct tu_dispatch_info *info)
{
gl_shader_stage type = MESA_SHADER_COMPUTE;
const struct tu_program_descriptor_linkage *link =
&pipeline->program.link[type];
const struct ir3_const_state *const_state = &link->const_state;
uint32_t offset = const_state->offsets.driver_param;
if (link->constlen <= offset)
return;
if (!info->indirect) {
uint32_t driver_params[IR3_DP_CS_COUNT] = {
[IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
[IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
[IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
[IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
[IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
[IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
};
uint32_t num_consts = MIN2(const_state->num_driver_params,
(link->constlen - offset) * 4);
/* push constants */
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
uint32_t i;
for (i = 0; i < num_consts; i++)
tu_cs_emit(cs, driver_params[i]);
} else {
tu_finishme("Indirect driver params");
}
}
static void
tu_dispatch(struct tu_cmd_buffer *cmd,
const struct tu_dispatch_info *info)
{
struct tu_cs *cs = &cmd->cs;
struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
struct tu_descriptor_state *descriptors_state =
&cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
VkResult result;
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
tu_cs_emit_ib(cs, &pipeline->program.state_ib);
struct tu_cs_entry ib;
ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
if (ib.size)
tu_cs_emit_ib(cs, &ib);
tu_emit_compute_driver_params(cs, pipeline, info);
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) {
result = tu6_emit_descriptor_sets(cmd, pipeline,
VK_PIPELINE_BIND_POINT_COMPUTE, &ib,
false);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
/* track BOs */
unsigned i;
for_each_bit(i, descriptors_state->valid) {
struct tu_descriptor_set *set = descriptors_state->sets[i];
for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
if (set->buffers[j]) {
tu_bo_list_add(&cmd->bo_list, set->buffers[j],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
}
}
if (set->size > 0) {
tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
}
}
if (ib.size)
tu_cs_emit_ib(cs, &ib);
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS)
tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
cmd->state.dirty &=
~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
/* Compute shader state overwrites fragment shader state, so we flag the
* graphics pipeline for re-emit.
*/
cmd->state.dirty |= TU_CMD_DIRTY_PIPELINE;
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
const uint32_t *local_size = pipeline->compute.local_size;
const uint32_t *num_groups = info->blocks;
tu_cs_emit_regs(cs,
A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
.localsizex = local_size[0] - 1,
.localsizey = local_size[1] - 1,
.localsizez = local_size[2] - 1),
A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
tu_cs_emit_regs(cs,
A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
if (info->indirect) {
uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit_qw(cs, iova);
tu_cs_emit(cs,
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
} else {
tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
}
tu_cs_emit_wfi(cs);
tu6_emit_cache_flush(cmd, cs);
}
void
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
uint32_t base_x,
uint32_t base_y,
uint32_t base_z,
uint32_t x,
uint32_t y,
uint32_t z)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_dispatch_info info = {};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.offsets[0] = base_x;
info.offsets[1] = base_y;
info.offsets[2] = base_z;
tu_dispatch(cmd_buffer, &info);
}
void
tu_CmdDispatch(VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
}
void
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
struct tu_dispatch_info info = {};
info.indirect = buffer;
info.indirect_offset = offset;
tu_dispatch(cmd_buffer, &info);
}
void
tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
if (use_sysmem_rendering(cmd_buffer))
tu_cmd_render_sysmem(cmd_buffer);
else
tu_cmd_render_tiles(cmd_buffer);
/* discard draw_cs and draw_epilogue_cs entries now that the tiles are
rendered */
tu_cs_discard_entries(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.framebuffer = NULL;
}
void
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
const VkSubpassEndInfoKHR *pSubpassEndInfo)
{
tu_CmdEndRenderPass(commandBuffer);
}
struct tu_barrier_info
{
uint32_t eventCount;
const VkEvent *pEvents;
VkPipelineStageFlags srcStageMask;
};
static void
tu_barrier(struct tu_cmd_buffer *cmd,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers,
const struct tu_barrier_info *info)
{
/* renderpass case is only for subpass self-dependencies
* which means syncing the render output with texture cache
* note: only the CACHE_INVALIDATE is needed in GMEM mode
* and in sysmem mode we might not need either color/depth flush
*/
if (cmd->state.pass) {
tu6_emit_event_write(cmd, &cmd->draw_cs, PC_CCU_FLUSH_COLOR_TS, true);
tu6_emit_event_write(cmd, &cmd->draw_cs, PC_CCU_FLUSH_DEPTH_TS, true);
tu6_emit_event_write(cmd, &cmd->draw_cs, CACHE_INVALIDATE, false);
return;
}
}
void
tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_barrier_info info;
info.eventCount = 0;
info.pEvents = NULL;
info.srcStageMask = srcStageMask;
tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers, &info);
}
static void
write_event(struct tu_cmd_buffer *cmd, struct tu_event *event, unsigned value)
{
struct tu_cs *cs = &cmd->cs;
tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
/* TODO: any flush required before/after ? */
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
tu_cs_emit(cs, value);
}
void
tu_CmdSetEvent(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
write_event(cmd, event, 1);
}
void
tu_CmdResetEvent(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
write_event(cmd, event, 0);
}
void
tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->cs;
/* TODO: any flush required before/after? (CP_WAIT_FOR_ME?) */
for (uint32_t i = 0; i < eventCount; i++) {
TU_FROM_HANDLE(tu_event, event, pEvents[i]);
tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
}
}
void
tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
{
/* No-op */
}