blob: 9ef3dc04665bc1959de6df5cdb10d4df5b29ecbf [file] [log] [blame]
/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file brw_vec4_tcs.cpp
*
* Tessellaton control shader specific code derived from the vec4_visitor class.
*/
#include "brw_nir.h"
#include "brw_vec4_tcs.h"
#include "brw_fs.h"
namespace brw {
vec4_tcs_visitor::vec4_tcs_visitor(const struct brw_compiler *compiler,
void *log_data,
const struct brw_tcs_prog_key *key,
struct brw_tcs_prog_data *prog_data,
const nir_shader *nir,
void *mem_ctx,
int shader_time_index,
const struct brw_vue_map *input_vue_map)
: vec4_visitor(compiler, log_data, &key->tex, &prog_data->base,
nir, mem_ctx, false, shader_time_index),
input_vue_map(input_vue_map), key(key)
{
}
void
vec4_tcs_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
{
}
dst_reg *
vec4_tcs_visitor::make_reg_for_system_value(int location)
{
return NULL;
}
void
vec4_tcs_visitor::setup_payload()
{
int reg = 0;
/* The payload always contains important data in r0, which contains
* the URB handles that are passed on to the URB write at the end
* of the thread.
*/
reg++;
/* r1.0 - r4.7 may contain the input control point URB handles,
* which we use to pull vertex data.
*/
reg += 4;
/* Push constants may start at r5.0 */
reg = setup_uniforms(reg);
this->first_non_payload_grf = reg;
}
void
vec4_tcs_visitor::emit_prolog()
{
invocation_id = src_reg(this, glsl_type::uint_type);
emit(TCS_OPCODE_GET_INSTANCE_ID, dst_reg(invocation_id));
/* HS threads are dispatched with the dispatch mask set to 0xFF.
* If there are an odd number of output vertices, then the final
* HS instance dispatched will only have its bottom half doing real
* work, and so we need to disable the upper half:
*/
if (nir->info->tcs.vertices_out % 2) {
emit(CMP(dst_null_d(), invocation_id,
brw_imm_ud(nir->info->tcs.vertices_out), BRW_CONDITIONAL_L));
/* Matching ENDIF is in emit_thread_end() */
emit(IF(BRW_PREDICATE_NORMAL));
}
}
void
vec4_tcs_visitor::emit_thread_end()
{
vec4_instruction *inst;
current_annotation = "thread end";
if (nir->info->tcs.vertices_out % 2) {
emit(BRW_OPCODE_ENDIF);
}
if (devinfo->gen == 7) {
struct brw_tcs_prog_data *tcs_prog_data =
(struct brw_tcs_prog_data *) prog_data;
current_annotation = "release input vertices";
/* Synchronize all threads, so we know that no one is still
* using the input URB handles.
*/
if (tcs_prog_data->instances > 1) {
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
}
/* Make thread 0 (invocations <1, 0>) release pairs of ICP handles.
* We want to compare the bottom half of invocation_id with 0, but
* use that truth value for the top half as well. Unfortunately,
* we don't have stride in the vec4 world, nor UV immediates in
* align16, so we need an opcode to get invocation_id<0,4,0>.
*/
set_condmod(BRW_CONDITIONAL_Z,
emit(TCS_OPCODE_SRC0_010_IS_ZERO, dst_null_d(),
invocation_id));
emit(IF(BRW_PREDICATE_NORMAL));
for (unsigned i = 0; i < key->input_vertices; i += 2) {
/* If we have an odd number of input vertices, the last will be
* unpaired. We don't want to use an interleaved URB write in
* that case.
*/
const bool is_unpaired = i == key->input_vertices - 1;
dst_reg header(this, glsl_type::uvec4_type);
emit(TCS_OPCODE_RELEASE_INPUT, header, brw_imm_ud(i),
brw_imm_ud(is_unpaired));
}
emit(BRW_OPCODE_ENDIF);
}
if (unlikely(INTEL_DEBUG & DEBUG_SHADER_TIME))
emit_shader_time_end();
inst = emit(TCS_OPCODE_THREAD_END);
inst->base_mrf = 14;
inst->mlen = 2;
}
void
vec4_tcs_visitor::emit_input_urb_read(const dst_reg &dst,
const src_reg &vertex_index,
unsigned base_offset,
unsigned first_component,
const src_reg &indirect_offset)
{
vec4_instruction *inst;
dst_reg temp(this, glsl_type::ivec4_type);
temp.type = dst.type;
/* Set up the message header to reference the proper parts of the URB */
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
inst = emit(TCS_OPCODE_SET_INPUT_URB_OFFSETS, header, vertex_index,
indirect_offset);
inst->force_writemask_all = true;
/* Read into a temporary, ignoring writemasking. */
inst = emit(VEC4_OPCODE_URB_READ, temp, src_reg(header));
inst->offset = base_offset;
inst->mlen = 1;
inst->base_mrf = -1;
/* Copy the temporary to the destination to deal with writemasking.
*
* Also attempt to deal with gl_PointSize being in the .w component.
*/
if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
emit(MOV(dst, swizzle(src_reg(temp), BRW_SWIZZLE_WWWW)));
} else {
src_reg src = src_reg(temp);
src.swizzle = BRW_SWZ_COMP_INPUT(first_component);
emit(MOV(dst, src));
}
}
void
vec4_tcs_visitor::emit_output_urb_read(const dst_reg &dst,
unsigned base_offset,
unsigned first_component,
const src_reg &indirect_offset)
{
vec4_instruction *inst;
/* Set up the message header to reference the proper parts of the URB */
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, header,
brw_imm_ud(dst.writemask << first_component), indirect_offset);
inst->force_writemask_all = true;
vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, dst, src_reg(header));
read->offset = base_offset;
read->mlen = 1;
read->base_mrf = -1;
if (first_component) {
/* Read into a temporary and copy with a swizzle and writemask. */
read->dst = retype(dst_reg(this, glsl_type::ivec4_type), dst.type);
emit(MOV(dst, swizzle(src_reg(read->dst),
BRW_SWZ_COMP_INPUT(first_component))));
}
}
void
vec4_tcs_visitor::emit_urb_write(const src_reg &value,
unsigned writemask,
unsigned base_offset,
const src_reg &indirect_offset)
{
if (writemask == 0)
return;
src_reg message(this, glsl_type::uvec4_type, 2);
vec4_instruction *inst;
inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, dst_reg(message),
brw_imm_ud(writemask), indirect_offset);
inst->force_writemask_all = true;
inst = emit(MOV(byte_offset(dst_reg(retype(message, value.type)), REG_SIZE),
value));
inst->force_writemask_all = true;
inst = emit(TCS_OPCODE_URB_WRITE, dst_null_f(), message);
inst->offset = base_offset;
inst->mlen = 2;
inst->base_mrf = -1;
}
void
vec4_tcs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_invocation_id:
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD),
invocation_id));
break;
case nir_intrinsic_load_primitive_id:
emit(TCS_OPCODE_GET_PRIMITIVE_ID,
get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD));
break;
case nir_intrinsic_load_patch_vertices_in:
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D),
brw_imm_d(key->input_vertices)));
break;
case nir_intrinsic_load_per_vertex_input: {
src_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
nir_const_value *vertex_const = nir_src_as_const_value(instr->src[0]);
src_reg vertex_index =
vertex_const ? src_reg(brw_imm_ud(vertex_const->u32[0]))
: get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
unsigned first_component = nir_intrinsic_component(instr);
if (nir_dest_bit_size(instr->dest) == 64) {
/* We need to emit up to two 32-bit URB reads, then shuffle
* the result into a temporary, then move to the destination
* honoring the writemask
*
* We don't need to divide first_component by 2 because
* emit_input_urb_read takes a 32-bit type.
*/
dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
dst_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D);
emit_input_urb_read(tmp_d, vertex_index, imm_offset,
first_component, indirect_offset);
if (instr->num_components > 2) {
emit_input_urb_read(byte_offset(tmp_d, REG_SIZE), vertex_index,
imm_offset + 1, 0, indirect_offset);
}
src_reg tmp_src = retype(src_reg(tmp_d), BRW_REGISTER_TYPE_DF);
dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(shuffled, tmp_src, false);
dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_DF);
dst.writemask = brw_writemask_for_size(instr->num_components);
emit(MOV(dst, src_reg(shuffled)));
} else {
dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
dst.writemask = brw_writemask_for_size(instr->num_components);
emit_input_urb_read(dst, vertex_index, imm_offset,
first_component, indirect_offset);
}
break;
}
case nir_intrinsic_load_input:
unreachable("nir_lower_io should use load_per_vertex_input intrinsics");
break;
case nir_intrinsic_load_output:
case nir_intrinsic_load_per_vertex_output: {
src_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
dst.writemask = brw_writemask_for_size(instr->num_components);
emit_output_urb_read(dst, imm_offset, nir_intrinsic_component(instr),
indirect_offset);
break;
}
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_vertex_output: {
src_reg value = get_nir_src(instr->src[0]);
unsigned mask = instr->const_index[1];
unsigned swiz = BRW_SWIZZLE_XYZW;
src_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
unsigned first_component = nir_intrinsic_component(instr);
if (first_component) {
if (nir_src_bit_size(instr->src[0]) == 64)
first_component /= 2;
assert(swiz == BRW_SWIZZLE_XYZW);
swiz = BRW_SWZ_COMP_OUTPUT(first_component);
mask = mask << first_component;
}
if (nir_src_bit_size(instr->src[0]) == 64) {
/* For 64-bit data we need to shuffle the data before we write and
* emit two messages. Also, since each channel is twice as large we
* need to fix the writemask in each 32-bit message to account for it.
*/
value = swizzle(retype(value, BRW_REGISTER_TYPE_DF), swiz);
dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(shuffled, value, true);
src_reg shuffled_float = src_reg(retype(shuffled, BRW_REGISTER_TYPE_F));
for (int n = 0; n < 2; n++) {
unsigned fixed_mask = 0;
if (mask & WRITEMASK_X)
fixed_mask |= WRITEMASK_XY;
if (mask & WRITEMASK_Y)
fixed_mask |= WRITEMASK_ZW;
emit_urb_write(shuffled_float, fixed_mask,
imm_offset, indirect_offset);
shuffled_float = byte_offset(shuffled_float, REG_SIZE);
mask >>= 2;
imm_offset++;
}
} else {
emit_urb_write(swizzle(value, swiz), mask,
imm_offset, indirect_offset);
}
break;
}
case nir_intrinsic_barrier: {
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
break;
}
default:
vec4_visitor::nir_emit_intrinsic(instr);
}
}
extern "C" const unsigned *
brw_compile_tcs(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const struct brw_tcs_prog_key *key,
struct brw_tcs_prog_data *prog_data,
const nir_shader *src_shader,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str)
{
const struct gen_device_info *devinfo = compiler->devinfo;
struct brw_vue_prog_data *vue_prog_data = &prog_data->base;
const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_CTRL];
nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
nir->info->outputs_written = key->outputs_written;
nir->info->patch_outputs_written = key->patch_outputs_written;
struct brw_vue_map input_vue_map;
brw_compute_vue_map(devinfo, &input_vue_map, nir->info->inputs_read,
nir->info->separate_shader);
brw_compute_tess_vue_map(&vue_prog_data->vue_map,
nir->info->outputs_written,
nir->info->patch_outputs_written);
nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar);
brw_nir_lower_vue_inputs(nir, is_scalar, &input_vue_map);
brw_nir_lower_tcs_outputs(nir, &vue_prog_data->vue_map,
key->tes_primitive_mode);
if (key->quads_workaround)
brw_nir_apply_tcs_quads_workaround(nir);
nir = brw_postprocess_nir(nir, compiler, is_scalar);
if (is_scalar)
prog_data->instances = DIV_ROUND_UP(nir->info->tcs.vertices_out, 8);
else
prog_data->instances = DIV_ROUND_UP(nir->info->tcs.vertices_out, 2);
/* Compute URB entry size. The maximum allowed URB entry size is 32k.
* That divides up as follows:
*
* 32 bytes for the patch header (tessellation factors)
* 480 bytes for per-patch varyings (a varying component is 4 bytes and
* gl_MaxTessPatchComponents = 120)
* 16384 bytes for per-vertex varyings (a varying component is 4 bytes,
* gl_MaxPatchVertices = 32 and
* gl_MaxTessControlOutputComponents = 128)
*
* 15808 bytes left for varying packing overhead
*/
const int num_per_patch_slots = vue_prog_data->vue_map.num_per_patch_slots;
const int num_per_vertex_slots = vue_prog_data->vue_map.num_per_vertex_slots;
unsigned output_size_bytes = 0;
/* Note that the patch header is counted in num_per_patch_slots. */
output_size_bytes += num_per_patch_slots * 16;
output_size_bytes += nir->info->tcs.vertices_out * num_per_vertex_slots * 16;
assert(output_size_bytes >= 1);
if (output_size_bytes > GEN7_MAX_HS_URB_ENTRY_SIZE_BYTES)
return NULL;
/* URB entry sizes are stored as a multiple of 64 bytes. */
vue_prog_data->urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
/* HS does not use the usual payload pushing from URB to GRFs,
* because we don't have enough registers for a full-size payload, and
* the hardware is broken on Haswell anyway.
*/
vue_prog_data->urb_read_length = 0;
if (unlikely(INTEL_DEBUG & DEBUG_TCS)) {
fprintf(stderr, "TCS Input ");
brw_print_vue_map(stderr, &input_vue_map);
fprintf(stderr, "TCS Output ");
brw_print_vue_map(stderr, &vue_prog_data->vue_map);
}
if (is_scalar) {
fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
&prog_data->base.base, NULL, nir, 8,
shader_time_index, &input_vue_map);
if (!v.run_tcs_single_patch()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
fs_generator g(compiler, log_data, mem_ctx, (void *) key,
&prog_data->base.base, v.promoted_constants, false,
MESA_SHADER_TESS_CTRL);
if (unlikely(INTEL_DEBUG & DEBUG_TCS)) {
g.enable_debug(ralloc_asprintf(mem_ctx,
"%s tessellation control shader %s",
nir->info->label ? nir->info->label
: "unnamed",
nir->info->name));
}
g.generate_code(v.cfg, 8);
return g.get_assembly(final_assembly_size);
} else {
vec4_tcs_visitor v(compiler, log_data, key, prog_data,
nir, mem_ctx, shader_time_index, &input_vue_map);
if (!v.run()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
if (unlikely(INTEL_DEBUG & DEBUG_TCS))
v.dump_instructions();
return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
&prog_data->base, v.cfg,
final_assembly_size);
}
}
} /* namespace brw */