blob: ada9c4dbccf84dd61bf234be03124a1d2efedea5 [file] [log] [blame]
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/* based on pieces from si_pipe.c and radeon_llvm_emit.c */
#include "ac_llvm_build.h"
#include "ac_exp_param.h"
#include "ac_llvm_util.h"
#include "ac_shader_util.h"
#include "c11/threads.h"
#include "shader_enums.h"
#include "sid.h"
#include "util/bitscan.h"
#include "util/macros.h"
#include "util/u_atomic.h"
#include "util/u_math.h"
#include <llvm-c/Core.h>
#include <llvm/Config/llvm-config.h>
#include <assert.h>
#include <stdio.h>
#define AC_LLVM_INITIAL_CF_DEPTH 4
/* Data for if/else/endif and bgnloop/endloop control flow structures.
*/
struct ac_llvm_flow {
/* Loop exit or next part of if/else/endif. */
LLVMBasicBlockRef next_block;
LLVMBasicBlockRef loop_entry_block;
};
/* Initialize module-independent parts of the context.
*
* The caller is responsible for initializing ctx::module and ctx::builder.
*/
void ac_llvm_context_init(struct ac_llvm_context *ctx, struct ac_llvm_compiler *compiler,
enum chip_class chip_class, enum radeon_family family,
enum ac_float_mode float_mode, unsigned wave_size,
unsigned ballot_mask_bits)
{
ctx->context = LLVMContextCreate();
ctx->chip_class = chip_class;
ctx->family = family;
ctx->wave_size = wave_size;
ctx->ballot_mask_bits = ballot_mask_bits;
ctx->float_mode = float_mode;
ctx->module =
ac_create_module(wave_size == 32 ? compiler->tm_wave32 : compiler->tm, ctx->context);
ctx->builder = ac_create_builder(ctx->context, float_mode);
ctx->voidt = LLVMVoidTypeInContext(ctx->context);
ctx->i1 = LLVMInt1TypeInContext(ctx->context);
ctx->i8 = LLVMInt8TypeInContext(ctx->context);
ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
ctx->i128 = LLVMIntTypeInContext(ctx->context, 128);
ctx->intptr = ctx->i32;
ctx->f16 = LLVMHalfTypeInContext(ctx->context);
ctx->f32 = LLVMFloatTypeInContext(ctx->context);
ctx->f64 = LLVMDoubleTypeInContext(ctx->context);
ctx->v2i16 = LLVMVectorType(ctx->i16, 2);
ctx->v4i16 = LLVMVectorType(ctx->i16, 4);
ctx->v2f16 = LLVMVectorType(ctx->f16, 2);
ctx->v4f16 = LLVMVectorType(ctx->f16, 4);
ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
ctx->v3i32 = LLVMVectorType(ctx->i32, 3);
ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
ctx->v2f32 = LLVMVectorType(ctx->f32, 2);
ctx->v3f32 = LLVMVectorType(ctx->f32, 3);
ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
ctx->iN_wavemask = LLVMIntTypeInContext(ctx->context, ctx->wave_size);
ctx->iN_ballotmask = LLVMIntTypeInContext(ctx->context, ballot_mask_bits);
ctx->i8_0 = LLVMConstInt(ctx->i8, 0, false);
ctx->i8_1 = LLVMConstInt(ctx->i8, 1, false);
ctx->i16_0 = LLVMConstInt(ctx->i16, 0, false);
ctx->i16_1 = LLVMConstInt(ctx->i16, 1, false);
ctx->i32_0 = LLVMConstInt(ctx->i32, 0, false);
ctx->i32_1 = LLVMConstInt(ctx->i32, 1, false);
ctx->i64_0 = LLVMConstInt(ctx->i64, 0, false);
ctx->i64_1 = LLVMConstInt(ctx->i64, 1, false);
ctx->i128_0 = LLVMConstInt(ctx->i128, 0, false);
ctx->i128_1 = LLVMConstInt(ctx->i128, 1, false);
ctx->f16_0 = LLVMConstReal(ctx->f16, 0.0);
ctx->f16_1 = LLVMConstReal(ctx->f16, 1.0);
ctx->f32_0 = LLVMConstReal(ctx->f32, 0.0);
ctx->f32_1 = LLVMConstReal(ctx->f32, 1.0);
ctx->f64_0 = LLVMConstReal(ctx->f64, 0.0);
ctx->f64_1 = LLVMConstReal(ctx->f64, 1.0);
ctx->i1false = LLVMConstInt(ctx->i1, 0, false);
ctx->i1true = LLVMConstInt(ctx->i1, 1, false);
ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context, "range", 5);
ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context, "invariant.load", 14);
ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context, "amdgpu.uniform", 14);
ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
ctx->flow = calloc(1, sizeof(*ctx->flow));
}
void ac_llvm_context_dispose(struct ac_llvm_context *ctx)
{
free(ctx->flow->stack);
free(ctx->flow);
ctx->flow = NULL;
}
int ac_get_llvm_num_components(LLVMValueRef value)
{
LLVMTypeRef type = LLVMTypeOf(value);
unsigned num_components =
LLVMGetTypeKind(type) == LLVMVectorTypeKind ? LLVMGetVectorSize(type) : 1;
return num_components;
}
LLVMValueRef ac_llvm_extract_elem(struct ac_llvm_context *ac, LLVMValueRef value, int index)
{
if (LLVMGetTypeKind(LLVMTypeOf(value)) != LLVMVectorTypeKind) {
assert(index == 0);
return value;
}
return LLVMBuildExtractElement(ac->builder, value, LLVMConstInt(ac->i32, index, false), "");
}
int ac_get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
{
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
type = LLVMGetElementType(type);
if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind)
return LLVMGetIntTypeWidth(type);
if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
if (LLVMGetPointerAddressSpace(type) == AC_ADDR_SPACE_LDS)
return 32;
}
if (type == ctx->f16)
return 16;
if (type == ctx->f32)
return 32;
if (type == ctx->f64)
return 64;
unreachable("Unhandled type kind in get_elem_bits");
}
unsigned ac_get_type_size(LLVMTypeRef type)
{
LLVMTypeKind kind = LLVMGetTypeKind(type);
switch (kind) {
case LLVMIntegerTypeKind:
return LLVMGetIntTypeWidth(type) / 8;
case LLVMHalfTypeKind:
return 2;
case LLVMFloatTypeKind:
return 4;
case LLVMDoubleTypeKind:
return 8;
case LLVMPointerTypeKind:
if (LLVMGetPointerAddressSpace(type) == AC_ADDR_SPACE_CONST_32BIT)
return 4;
return 8;
case LLVMVectorTypeKind:
return LLVMGetVectorSize(type) * ac_get_type_size(LLVMGetElementType(type));
case LLVMArrayTypeKind:
return LLVMGetArrayLength(type) * ac_get_type_size(LLVMGetElementType(type));
default:
assert(0);
return 0;
}
}
static LLVMTypeRef to_integer_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (t == ctx->i1)
return ctx->i1;
else if (t == ctx->i8)
return ctx->i8;
else if (t == ctx->f16 || t == ctx->i16)
return ctx->i16;
else if (t == ctx->f32 || t == ctx->i32)
return ctx->i32;
else if (t == ctx->f64 || t == ctx->i64)
return ctx->i64;
else
unreachable("Unhandled integer size");
}
LLVMTypeRef ac_to_integer_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(t);
return LLVMVectorType(to_integer_type_scalar(ctx, elem_type), LLVMGetVectorSize(t));
}
if (LLVMGetTypeKind(t) == LLVMPointerTypeKind) {
switch (LLVMGetPointerAddressSpace(t)) {
case AC_ADDR_SPACE_GLOBAL:
return ctx->i64;
case AC_ADDR_SPACE_CONST_32BIT:
case AC_ADDR_SPACE_LDS:
return ctx->i32;
default:
unreachable("unhandled address space");
}
}
return to_integer_type_scalar(ctx, t);
}
LLVMValueRef ac_to_integer(struct ac_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
return LLVMBuildPtrToInt(ctx->builder, v, ac_to_integer_type(ctx, type), "");
}
return LLVMBuildBitCast(ctx->builder, v, ac_to_integer_type(ctx, type), "");
}
LLVMValueRef ac_to_integer_or_pointer(struct ac_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
if (LLVMGetTypeKind(type) == LLVMPointerTypeKind)
return v;
return ac_to_integer(ctx, v);
}
static LLVMTypeRef to_float_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (t == ctx->i8)
return ctx->i8;
else if (t == ctx->i16 || t == ctx->f16)
return ctx->f16;
else if (t == ctx->i32 || t == ctx->f32)
return ctx->f32;
else if (t == ctx->i64 || t == ctx->f64)
return ctx->f64;
else
unreachable("Unhandled float size");
}
LLVMTypeRef ac_to_float_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(t);
return LLVMVectorType(to_float_type_scalar(ctx, elem_type), LLVMGetVectorSize(t));
}
return to_float_type_scalar(ctx, t);
}
LLVMValueRef ac_to_float(struct ac_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
return LLVMBuildBitCast(ctx->builder, v, ac_to_float_type(ctx, type), "");
}
LLVMValueRef ac_build_intrinsic(struct ac_llvm_context *ctx, const char *name,
LLVMTypeRef return_type, LLVMValueRef *params, unsigned param_count,
unsigned attrib_mask)
{
LLVMValueRef function, call;
bool set_callsite_attrs = !(attrib_mask & AC_FUNC_ATTR_LEGACY);
function = LLVMGetNamedFunction(ctx->module, name);
if (!function) {
LLVMTypeRef param_types[32], function_type;
unsigned i;
assert(param_count <= 32);
for (i = 0; i < param_count; ++i) {
assert(params[i]);
param_types[i] = LLVMTypeOf(params[i]);
}
function_type = LLVMFunctionType(return_type, param_types, param_count, 0);
function = LLVMAddFunction(ctx->module, name, function_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMExternalLinkage);
if (!set_callsite_attrs)
ac_add_func_attributes(ctx->context, function, attrib_mask);
}
call = LLVMBuildCall(ctx->builder, function, params, param_count, "");
if (set_callsite_attrs)
ac_add_func_attributes(ctx->context, call, attrib_mask);
return call;
}
/**
* Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
* intrinsic names).
*/
void ac_build_type_name_for_intr(LLVMTypeRef type, char *buf, unsigned bufsize)
{
LLVMTypeRef elem_type = type;
assert(bufsize >= 8);
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
int ret = snprintf(buf, bufsize, "v%u", LLVMGetVectorSize(type));
if (ret < 0) {
char *type_name = LLVMPrintTypeToString(type);
fprintf(stderr, "Error building type name for: %s\n", type_name);
LLVMDisposeMessage(type_name);
return;
}
elem_type = LLVMGetElementType(type);
buf += ret;
bufsize -= ret;
}
switch (LLVMGetTypeKind(elem_type)) {
default:
break;
case LLVMIntegerTypeKind:
snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
break;
case LLVMHalfTypeKind:
snprintf(buf, bufsize, "f16");
break;
case LLVMFloatTypeKind:
snprintf(buf, bufsize, "f32");
break;
case LLVMDoubleTypeKind:
snprintf(buf, bufsize, "f64");
break;
}
}
/**
* Helper function that builds an LLVM IR PHI node and immediately adds
* incoming edges.
*/
LLVMValueRef ac_build_phi(struct ac_llvm_context *ctx, LLVMTypeRef type, unsigned count_incoming,
LLVMValueRef *values, LLVMBasicBlockRef *blocks)
{
LLVMValueRef phi = LLVMBuildPhi(ctx->builder, type, "");
LLVMAddIncoming(phi, values, blocks, count_incoming);
return phi;
}
void ac_build_s_barrier(struct ac_llvm_context *ctx)
{
ac_build_intrinsic(ctx, "llvm.amdgcn.s.barrier", ctx->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
}
/* Prevent optimizations (at least of memory accesses) across the current
* point in the program by emitting empty inline assembly that is marked as
* having side effects.
*
* Optionally, a value can be passed through the inline assembly to prevent
* LLVM from hoisting calls to ReadNone functions.
*/
void ac_build_optimization_barrier(struct ac_llvm_context *ctx, LLVMValueRef *pvgpr)
{
static int counter = 0;
LLVMBuilderRef builder = ctx->builder;
char code[16];
snprintf(code, sizeof(code), "; %d", p_atomic_inc_return(&counter));
if (!pvgpr) {
LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "", true, false);
LLVMBuildCall(builder, inlineasm, NULL, 0, "");
} else {
LLVMTypeRef ftype = LLVMFunctionType(ctx->i32, &ctx->i32, 1, false);
LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "=v,0", true, false);
LLVMTypeRef type = LLVMTypeOf(*pvgpr);
unsigned bitsize = ac_get_elem_bits(ctx, type);
LLVMValueRef vgpr = *pvgpr;
LLVMTypeRef vgpr_type;
unsigned vgpr_size;
LLVMValueRef vgpr0;
if (bitsize < 32)
vgpr = LLVMBuildZExt(ctx->builder, vgpr, ctx->i32, "");
vgpr_type = LLVMTypeOf(vgpr);
vgpr_size = ac_get_type_size(vgpr_type);
assert(vgpr_size % 4 == 0);
vgpr = LLVMBuildBitCast(builder, vgpr, LLVMVectorType(ctx->i32, vgpr_size / 4), "");
vgpr0 = LLVMBuildExtractElement(builder, vgpr, ctx->i32_0, "");
vgpr0 = LLVMBuildCall(builder, inlineasm, &vgpr0, 1, "");
vgpr = LLVMBuildInsertElement(builder, vgpr, vgpr0, ctx->i32_0, "");
vgpr = LLVMBuildBitCast(builder, vgpr, vgpr_type, "");
if (bitsize < 32)
vgpr = LLVMBuildTrunc(builder, vgpr, type, "");
*pvgpr = vgpr;
}
}
LLVMValueRef ac_build_shader_clock(struct ac_llvm_context *ctx, nir_scope scope)
{
const char *name =
scope == NIR_SCOPE_DEVICE ? "llvm.amdgcn.s.memrealtime" : "llvm.amdgcn.s.memtime";
LLVMValueRef tmp = ac_build_intrinsic(ctx, name, ctx->i64, NULL, 0, 0);
return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2i32, "");
}
LLVMValueRef ac_build_ballot(struct ac_llvm_context *ctx, LLVMValueRef value)
{
const char *name;
if (LLVMTypeOf(value) == ctx->i1)
value = LLVMBuildZExt(ctx->builder, value, ctx->i32, "");
if (LLVM_VERSION_MAJOR >= 9) {
if (ctx->wave_size == 64)
name = "llvm.amdgcn.icmp.i64.i32";
else
name = "llvm.amdgcn.icmp.i32.i32";
} else {
name = "llvm.amdgcn.icmp.i32";
}
LLVMValueRef args[3] = {value, ctx->i32_0, LLVMConstInt(ctx->i32, LLVMIntNE, 0)};
/* We currently have no other way to prevent LLVM from lifting the icmp
* calls to a dominating basic block.
*/
ac_build_optimization_barrier(ctx, &args[0]);
args[0] = ac_to_integer(ctx, args[0]);
return ac_build_intrinsic(
ctx, name, ctx->iN_wavemask, args, 3,
AC_FUNC_ATTR_NOUNWIND | AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
}
LLVMValueRef ac_get_i1_sgpr_mask(struct ac_llvm_context *ctx, LLVMValueRef value)
{
const char *name;
if (LLVM_VERSION_MAJOR >= 9) {
if (ctx->wave_size == 64)
name = "llvm.amdgcn.icmp.i64.i1";
else
name = "llvm.amdgcn.icmp.i32.i1";
} else {
name = "llvm.amdgcn.icmp.i1";
}
LLVMValueRef args[3] = {
value,
ctx->i1false,
LLVMConstInt(ctx->i32, LLVMIntNE, 0),
};
return ac_build_intrinsic(
ctx, name, ctx->iN_wavemask, args, 3,
AC_FUNC_ATTR_NOUNWIND | AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
}
LLVMValueRef ac_build_vote_all(struct ac_llvm_context *ctx, LLVMValueRef value)
{
LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
LLVMValueRef vote_set = ac_build_ballot(ctx, value);
return LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, active_set, "");
}
LLVMValueRef ac_build_vote_any(struct ac_llvm_context *ctx, LLVMValueRef value)
{
LLVMValueRef vote_set = ac_build_ballot(ctx, value);
return LLVMBuildICmp(ctx->builder, LLVMIntNE, vote_set, LLVMConstInt(ctx->iN_wavemask, 0, 0),
"");
}
LLVMValueRef ac_build_vote_eq(struct ac_llvm_context *ctx, LLVMValueRef value)
{
LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
LLVMValueRef vote_set = ac_build_ballot(ctx, value);
LLVMValueRef all = LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, active_set, "");
LLVMValueRef none =
LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, LLVMConstInt(ctx->iN_wavemask, 0, 0), "");
return LLVMBuildOr(ctx->builder, all, none, "");
}
LLVMValueRef ac_build_varying_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values,
unsigned value_count, unsigned component)
{
LLVMValueRef vec = NULL;
if (value_count == 1) {
return values[component];
} else if (!value_count)
unreachable("value_count is 0");
for (unsigned i = component; i < value_count + component; i++) {
LLVMValueRef value = values[i];
if (i == component)
vec = LLVMGetUndef(LLVMVectorType(LLVMTypeOf(value), value_count));
LLVMValueRef index = LLVMConstInt(ctx->i32, i - component, false);
vec = LLVMBuildInsertElement(ctx->builder, vec, value, index, "");
}
return vec;
}
LLVMValueRef ac_build_gather_values_extended(struct ac_llvm_context *ctx, LLVMValueRef *values,
unsigned value_count, unsigned value_stride, bool load,
bool always_vector)
{
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef vec = NULL;
unsigned i;
if (value_count == 1 && !always_vector) {
if (load)
return LLVMBuildLoad(builder, values[0], "");
return values[0];
} else if (!value_count)
unreachable("value_count is 0");
for (i = 0; i < value_count; i++) {
LLVMValueRef value = values[i * value_stride];
if (load)
value = LLVMBuildLoad(builder, value, "");
if (!i)
vec = LLVMGetUndef(LLVMVectorType(LLVMTypeOf(value), value_count));
LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
vec = LLVMBuildInsertElement(builder, vec, value, index, "");
}
return vec;
}
LLVMValueRef ac_build_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values,
unsigned value_count)
{
return ac_build_gather_values_extended(ctx, values, value_count, 1, false, false);
}
/* Expand a scalar or vector to <dst_channels x type> by filling the remaining
* channels with undef. Extract at most src_channels components from the input.
*/
static LLVMValueRef ac_build_expand(struct ac_llvm_context *ctx, LLVMValueRef value,
unsigned src_channels, unsigned dst_channels)
{
LLVMTypeRef elemtype;
LLVMValueRef chan[dst_channels];
if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
if (src_channels == dst_channels && vec_size == dst_channels)
return value;
src_channels = MIN2(src_channels, vec_size);
for (unsigned i = 0; i < src_channels; i++)
chan[i] = ac_llvm_extract_elem(ctx, value, i);
elemtype = LLVMGetElementType(LLVMTypeOf(value));
} else {
if (src_channels) {
assert(src_channels == 1);
chan[0] = value;
}
elemtype = LLVMTypeOf(value);
}
for (unsigned i = src_channels; i < dst_channels; i++)
chan[i] = LLVMGetUndef(elemtype);
return ac_build_gather_values(ctx, chan, dst_channels);
}
/* Extract components [start, start + channels) from a vector.
*/
LLVMValueRef ac_extract_components(struct ac_llvm_context *ctx, LLVMValueRef value, unsigned start,
unsigned channels)
{
LLVMValueRef chan[channels];
for (unsigned i = 0; i < channels; i++)
chan[i] = ac_llvm_extract_elem(ctx, value, i + start);
return ac_build_gather_values(ctx, chan, channels);
}
/* Expand a scalar or vector to <4 x type> by filling the remaining channels
* with undef. Extract at most num_channels components from the input.
*/
LLVMValueRef ac_build_expand_to_vec4(struct ac_llvm_context *ctx, LLVMValueRef value,
unsigned num_channels)
{
return ac_build_expand(ctx, value, num_channels, 4);
}
LLVMValueRef ac_build_round(struct ac_llvm_context *ctx, LLVMValueRef value)
{
unsigned type_size = ac_get_type_size(LLVMTypeOf(value));
const char *name;
if (type_size == 2)
name = "llvm.rint.f16";
else if (type_size == 4)
name = "llvm.rint.f32";
else
name = "llvm.rint.f64";
return ac_build_intrinsic(ctx, name, LLVMTypeOf(value), &value, 1, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_fdiv(struct ac_llvm_context *ctx, LLVMValueRef num, LLVMValueRef den)
{
unsigned type_size = ac_get_type_size(LLVMTypeOf(den));
const char *name;
/* For doubles, we need precise division to pass GLCTS. */
if (ctx->float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL && type_size == 8)
return LLVMBuildFDiv(ctx->builder, num, den, "");
if (type_size == 2)
name = "llvm.amdgcn.rcp.f16";
else if (type_size == 4)
name = "llvm.amdgcn.rcp.f32";
else
name = "llvm.amdgcn.rcp.f64";
LLVMValueRef rcp =
ac_build_intrinsic(ctx, name, LLVMTypeOf(den), &den, 1, AC_FUNC_ATTR_READNONE);
return LLVMBuildFMul(ctx->builder, num, rcp, "");
}
/* See fast_idiv_by_const.h. */
/* Set: increment = util_fast_udiv_info::increment ? multiplier : 0; */
LLVMValueRef ac_build_fast_udiv(struct ac_llvm_context *ctx, LLVMValueRef num,
LLVMValueRef multiplier, LLVMValueRef pre_shift,
LLVMValueRef post_shift, LLVMValueRef increment)
{
LLVMBuilderRef builder = ctx->builder;
num = LLVMBuildLShr(builder, num, pre_shift, "");
num = LLVMBuildMul(builder, LLVMBuildZExt(builder, num, ctx->i64, ""),
LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
num = LLVMBuildAdd(builder, num, LLVMBuildZExt(builder, increment, ctx->i64, ""), "");
num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
num = LLVMBuildTrunc(builder, num, ctx->i32, "");
return LLVMBuildLShr(builder, num, post_shift, "");
}
/* See fast_idiv_by_const.h. */
/* If num != UINT_MAX, this more efficient version can be used. */
/* Set: increment = util_fast_udiv_info::increment; */
LLVMValueRef ac_build_fast_udiv_nuw(struct ac_llvm_context *ctx, LLVMValueRef num,
LLVMValueRef multiplier, LLVMValueRef pre_shift,
LLVMValueRef post_shift, LLVMValueRef increment)
{
LLVMBuilderRef builder = ctx->builder;
num = LLVMBuildLShr(builder, num, pre_shift, "");
num = LLVMBuildNUWAdd(builder, num, increment, "");
num = LLVMBuildMul(builder, LLVMBuildZExt(builder, num, ctx->i64, ""),
LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
num = LLVMBuildTrunc(builder, num, ctx->i32, "");
return LLVMBuildLShr(builder, num, post_shift, "");
}
/* See fast_idiv_by_const.h. */
/* Both operands must fit in 31 bits and the divisor must not be 1. */
LLVMValueRef ac_build_fast_udiv_u31_d_not_one(struct ac_llvm_context *ctx, LLVMValueRef num,
LLVMValueRef multiplier, LLVMValueRef post_shift)
{
LLVMBuilderRef builder = ctx->builder;
num = LLVMBuildMul(builder, LLVMBuildZExt(builder, num, ctx->i64, ""),
LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
num = LLVMBuildTrunc(builder, num, ctx->i32, "");
return LLVMBuildLShr(builder, num, post_shift, "");
}
/* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27
* of the OpenGL 4.5 (Compatibility Profile) specification, except ma is
* already multiplied by two. id is the cube face number.
*/
struct cube_selection_coords {
LLVMValueRef stc[2];
LLVMValueRef ma;
LLVMValueRef id;
};
static void build_cube_intrinsic(struct ac_llvm_context *ctx, LLVMValueRef in[3],
struct cube_selection_coords *out)
{
LLVMTypeRef f32 = ctx->f32;
out->stc[1] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubetc", f32, in, 3, AC_FUNC_ATTR_READNONE);
out->stc[0] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubesc", f32, in, 3, AC_FUNC_ATTR_READNONE);
out->ma = ac_build_intrinsic(ctx, "llvm.amdgcn.cubema", f32, in, 3, AC_FUNC_ATTR_READNONE);
out->id = ac_build_intrinsic(ctx, "llvm.amdgcn.cubeid", f32, in, 3, AC_FUNC_ATTR_READNONE);
}
/**
* Build a manual selection sequence for cube face sc/tc coordinates and
* major axis vector (multiplied by 2 for consistency) for the given
* vec3 \p coords, for the face implied by \p selcoords.
*
* For the major axis, we always adjust the sign to be in the direction of
* selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
* the selcoords major axis.
*/
static void build_cube_select(struct ac_llvm_context *ctx,
const struct cube_selection_coords *selcoords,
const LLVMValueRef *coords, LLVMValueRef *out_st,
LLVMValueRef *out_ma)
{
LLVMBuilderRef builder = ctx->builder;
LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
LLVMValueRef is_ma_positive;
LLVMValueRef sgn_ma;
LLVMValueRef is_ma_z, is_not_ma_z;
LLVMValueRef is_ma_y;
LLVMValueRef is_ma_x;
LLVMValueRef sgn;
LLVMValueRef tmp;
is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->ma, LLVMConstReal(f32, 0.0), "");
sgn_ma = LLVMBuildSelect(builder, is_ma_positive, LLVMConstReal(f32, 1.0),
LLVMConstReal(f32, -1.0), "");
is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
is_ma_y = LLVMBuildAnd(
builder, is_not_ma_z,
LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
/* Select sc */
tmp = LLVMBuildSelect(builder, is_ma_x, coords[2], coords[0], "");
sgn = LLVMBuildSelect(
builder, is_ma_y, LLVMConstReal(f32, 1.0),
LLVMBuildSelect(builder, is_ma_z, sgn_ma, LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select tc */
tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
sgn = LLVMBuildSelect(builder, is_ma_y, sgn_ma, LLVMConstReal(f32, -1.0), "");
out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select ma */
tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
tmp = ac_build_intrinsic(ctx, "llvm.fabs.f32", ctx->f32, &tmp, 1, AC_FUNC_ATTR_READNONE);
*out_ma = LLVMBuildFMul(builder, tmp, LLVMConstReal(f32, 2.0), "");
}
void ac_prepare_cube_coords(struct ac_llvm_context *ctx, bool is_deriv, bool is_array, bool is_lod,
LLVMValueRef *coords_arg, LLVMValueRef *derivs_arg)
{
LLVMBuilderRef builder = ctx->builder;
struct cube_selection_coords selcoords;
LLVMValueRef coords[3];
LLVMValueRef invma;
if (is_array && !is_lod) {
LLVMValueRef tmp = ac_build_round(ctx, coords_arg[3]);
/* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says:
*
* "For Array forms, the array layer used will be
*
* max(0, min(d−1, floor(layer+0.5)))
*
* where d is the depth of the texture array and layer
* comes from the component indicated in the tables below.
* Workaroudn for an issue where the layer is taken from a
* helper invocation which happens to fall on a different
* layer due to extrapolation."
*
* GFX8 and earlier attempt to implement this in hardware by
* clamping the value of coords[2] = (8 * layer) + face.
* Unfortunately, this means that the we end up with the wrong
* face when clamping occurs.
*
* Clamp the layer earlier to work around the issue.
*/
if (ctx->chip_class <= GFX8) {
LLVMValueRef ge0;
ge0 = LLVMBuildFCmp(builder, LLVMRealOGE, tmp, ctx->f32_0, "");
tmp = LLVMBuildSelect(builder, ge0, tmp, ctx->f32_0, "");
}
coords_arg[3] = tmp;
}
build_cube_intrinsic(ctx, coords_arg, &selcoords);
invma =
ac_build_intrinsic(ctx, "llvm.fabs.f32", ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE);
invma = ac_build_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma);
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
coords[2] = selcoords.id;
if (is_deriv && derivs_arg) {
LLVMValueRef derivs[4];
int axis;
/* Convert cube derivatives to 2D derivatives. */
for (axis = 0; axis < 2; axis++) {
LLVMValueRef deriv_st[2];
LLVMValueRef deriv_ma;
/* Transform the derivative alongside the texture
* coordinate. Mathematically, the correct formula is
* as follows. Assume we're projecting onto the +Z face
* and denote by dx/dh the derivative of the (original)
* X texture coordinate with respect to horizontal
* window coordinates. The projection onto the +Z face
* plane is:
*
* f(x,z) = x/z
*
* Then df/dh = df/dx * dx/dh + df/dz * dz/dh
* = 1/z * dx/dh - x/z * 1/z * dz/dh.
*
* This motivatives the implementation below.
*
* Whether this actually gives the expected results for
* apps that might feed in derivatives obtained via
* finite differences is anyone's guess. The OpenGL spec
* seems awfully quiet about how textureGrad for cube
* maps should be handled.
*/
build_cube_select(ctx, &selcoords, &derivs_arg[axis * 3], deriv_st, &deriv_ma);
deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
for (int i = 0; i < 2; ++i)
derivs[axis * 2 + i] =
LLVMBuildFSub(builder, LLVMBuildFMul(builder, deriv_st[i], invma, ""),
LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
}
memcpy(derivs_arg, derivs, sizeof(derivs));
}
/* Shift the texture coordinate. This must be applied after the
* derivative calculation.
*/
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), "");
if (is_array) {
/* for cube arrays coord.z = coord.w(array_index) * 8 + face */
/* coords_arg.w component - array_index for cube arrays */
coords[2] = ac_build_fmad(ctx, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), coords[2]);
}
memcpy(coords_arg, coords, sizeof(coords));
}
LLVMValueRef ac_build_fs_interp(struct ac_llvm_context *ctx, LLVMValueRef llvm_chan,
LLVMValueRef attr_number, LLVMValueRef params, LLVMValueRef i,
LLVMValueRef j)
{
LLVMValueRef args[5];
LLVMValueRef p1;
args[0] = i;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1", ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
args[0] = p1;
args[1] = j;
args[2] = llvm_chan;
args[3] = attr_number;
args[4] = params;
return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2", ctx->f32, args, 5,
AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_fs_interp_f16(struct ac_llvm_context *ctx, LLVMValueRef llvm_chan,
LLVMValueRef attr_number, LLVMValueRef params, LLVMValueRef i,
LLVMValueRef j)
{
LLVMValueRef args[6];
LLVMValueRef p1;
args[0] = i;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = ctx->i1false;
args[4] = params;
p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1.f16", ctx->f32, args, 5,
AC_FUNC_ATTR_READNONE);
args[0] = p1;
args[1] = j;
args[2] = llvm_chan;
args[3] = attr_number;
args[4] = ctx->i1false;
args[5] = params;
return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2.f16", ctx->f16, args, 6,
AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_fs_interp_mov(struct ac_llvm_context *ctx, LLVMValueRef parameter,
LLVMValueRef llvm_chan, LLVMValueRef attr_number,
LLVMValueRef params)
{
LLVMValueRef args[4];
args[0] = parameter;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.mov", ctx->f32, args, 4,
AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_gep_ptr(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
LLVMValueRef index)
{
return LLVMBuildGEP(ctx->builder, base_ptr, &index, 1, "");
}
LLVMValueRef ac_build_gep0(struct ac_llvm_context *ctx, LLVMValueRef base_ptr, LLVMValueRef index)
{
LLVMValueRef indices[2] = {
ctx->i32_0,
index,
};
return LLVMBuildGEP(ctx->builder, base_ptr, indices, 2, "");
}
LLVMValueRef ac_build_pointer_add(struct ac_llvm_context *ctx, LLVMValueRef ptr, LLVMValueRef index)
{
return LLVMBuildPointerCast(ctx->builder, LLVMBuildGEP(ctx->builder, ptr, &index, 1, ""),
LLVMTypeOf(ptr), "");
}
void ac_build_indexed_store(struct ac_llvm_context *ctx, LLVMValueRef base_ptr, LLVMValueRef index,
LLVMValueRef value)
{
LLVMBuildStore(ctx->builder, value, ac_build_gep0(ctx, base_ptr, index));
}
/**
* Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
* It's equivalent to doing a load from &base_ptr[index].
*
* \param base_ptr Where the array starts.
* \param index The element index into the array.
* \param uniform Whether the base_ptr and index can be assumed to be
* dynamically uniform (i.e. load to an SGPR)
* \param invariant Whether the load is invariant (no other opcodes affect it)
* \param no_unsigned_wraparound
* For all possible re-associations and re-distributions of an expression
* "base_ptr + index * elemsize" into "addr + offset" (excluding GEPs
* without inbounds in base_ptr), this parameter is true if "addr + offset"
* does not result in an unsigned integer wraparound. This is used for
* optimal code generation of 32-bit pointer arithmetic.
*
* For example, a 32-bit immediate offset that causes a 32-bit unsigned
* integer wraparound can't be an imm offset in s_load_dword, because
* the instruction performs "addr + offset" in 64 bits.
*
* Expected usage for bindless textures by chaining GEPs:
* // possible unsigned wraparound, don't use InBounds:
* ptr1 = LLVMBuildGEP(base_ptr, index);
* image = load(ptr1); // becomes "s_load ptr1, 0"
*
* ptr2 = LLVMBuildInBoundsGEP(ptr1, 32 / elemsize);
* sampler = load(ptr2); // becomes "s_load ptr1, 32" thanks to InBounds
*/
static LLVMValueRef ac_build_load_custom(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
LLVMValueRef index, bool uniform, bool invariant,
bool no_unsigned_wraparound)
{
LLVMValueRef pointer, result;
if (no_unsigned_wraparound &&
LLVMGetPointerAddressSpace(LLVMTypeOf(base_ptr)) == AC_ADDR_SPACE_CONST_32BIT)
pointer = LLVMBuildInBoundsGEP(ctx->builder, base_ptr, &index, 1, "");
else
pointer = LLVMBuildGEP(ctx->builder, base_ptr, &index, 1, "");
if (uniform)
LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
result = LLVMBuildLoad(ctx->builder, pointer, "");
if (invariant)
LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
return result;
}
LLVMValueRef ac_build_load(struct ac_llvm_context *ctx, LLVMValueRef base_ptr, LLVMValueRef index)
{
return ac_build_load_custom(ctx, base_ptr, index, false, false, false);
}
LLVMValueRef ac_build_load_invariant(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
LLVMValueRef index)
{
return ac_build_load_custom(ctx, base_ptr, index, false, true, false);
}
/* This assumes that there is no unsigned integer wraparound during the address
* computation, excluding all GEPs within base_ptr. */
LLVMValueRef ac_build_load_to_sgpr(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
LLVMValueRef index)
{
return ac_build_load_custom(ctx, base_ptr, index, true, true, true);
}
/* See ac_build_load_custom() documentation. */
LLVMValueRef ac_build_load_to_sgpr_uint_wraparound(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
return ac_build_load_custom(ctx, base_ptr, index, true, true, false);
}
static unsigned get_load_cache_policy(struct ac_llvm_context *ctx, unsigned cache_policy)
{
return cache_policy | (ctx->chip_class >= GFX10 && cache_policy & ac_glc ? ac_dlc : 0);
}
static void ac_build_buffer_store_common(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef data, LLVMValueRef vindex,
LLVMValueRef voffset, LLVMValueRef soffset,
unsigned cache_policy, bool use_format, bool structurized)
{
LLVMValueRef args[6];
int idx = 0;
args[idx++] = data;
args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
if (structurized)
args[idx++] = vindex ? vindex : ctx->i32_0;
args[idx++] = voffset ? voffset : ctx->i32_0;
args[idx++] = soffset ? soffset : ctx->i32_0;
args[idx++] = LLVMConstInt(ctx->i32, cache_policy, 0);
const char *indexing_kind = structurized ? "struct" : "raw";
char name[256], type_name[8];
ac_build_type_name_for_intr(LLVMTypeOf(data), type_name, sizeof(type_name));
if (use_format) {
snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.format.%s", indexing_kind,
type_name);
} else {
snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.%s", indexing_kind, type_name);
}
ac_build_intrinsic(ctx, name, ctx->voidt, args, idx, AC_FUNC_ATTR_INACCESSIBLE_MEM_ONLY);
}
void ac_build_buffer_store_format(struct ac_llvm_context *ctx, LLVMValueRef rsrc, LLVMValueRef data,
LLVMValueRef vindex, LLVMValueRef voffset, unsigned cache_policy)
{
ac_build_buffer_store_common(ctx, rsrc, data, vindex, voffset, NULL, cache_policy, true, true);
}
/* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
* The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
* or v4i32 (num_channels=3,4).
*/
void ac_build_buffer_store_dword(struct ac_llvm_context *ctx, LLVMValueRef rsrc, LLVMValueRef vdata,
unsigned num_channels, LLVMValueRef voffset, LLVMValueRef soffset,
unsigned inst_offset, unsigned cache_policy)
{
/* Split 3 channel stores, because only LLVM 9+ support 3-channel
* intrinsics. */
if (num_channels == 3 && !ac_has_vec3_support(ctx->chip_class, false)) {
LLVMValueRef v[3], v01;
for (int i = 0; i < 3; i++) {
v[i] = LLVMBuildExtractElement(ctx->builder, vdata, LLVMConstInt(ctx->i32, i, 0), "");
}
v01 = ac_build_gather_values(ctx, v, 2);
ac_build_buffer_store_dword(ctx, rsrc, v01, 2, voffset, soffset, inst_offset, cache_policy);
ac_build_buffer_store_dword(ctx, rsrc, v[2], 1, voffset, soffset, inst_offset + 8,
cache_policy);
return;
}
/* SWIZZLE_ENABLE requires that soffset isn't folded into voffset
* (voffset is swizzled, but soffset isn't swizzled).
* llvm.amdgcn.buffer.store doesn't have a separate soffset parameter.
*/
if (!(cache_policy & ac_swizzled)) {
LLVMValueRef offset = soffset;
if (inst_offset)
offset = LLVMBuildAdd(ctx->builder, offset, LLVMConstInt(ctx->i32, inst_offset, 0), "");
ac_build_buffer_store_common(ctx, rsrc, ac_to_float(ctx, vdata), ctx->i32_0, voffset, offset,
cache_policy, false, false);
return;
}
static const unsigned dfmts[] = {V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32_32};
unsigned dfmt = dfmts[num_channels - 1];
unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
LLVMValueRef immoffset = LLVMConstInt(ctx->i32, inst_offset, 0);
ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset, immoffset, num_channels, dfmt,
nfmt, cache_policy);
}
static LLVMValueRef ac_build_buffer_load_common(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef vindex, LLVMValueRef voffset,
LLVMValueRef soffset, unsigned num_channels,
LLVMTypeRef channel_type, unsigned cache_policy,
bool can_speculate, bool use_format,
bool structurized)
{
LLVMValueRef args[5];
int idx = 0;
args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
if (structurized)
args[idx++] = vindex ? vindex : ctx->i32_0;
args[idx++] = voffset ? voffset : ctx->i32_0;
args[idx++] = soffset ? soffset : ctx->i32_0;
args[idx++] = LLVMConstInt(ctx->i32, get_load_cache_policy(ctx, cache_policy), 0);
unsigned func =
!ac_has_vec3_support(ctx->chip_class, use_format) && num_channels == 3 ? 4 : num_channels;
const char *indexing_kind = structurized ? "struct" : "raw";
char name[256], type_name[8];
/* D16 is only supported on gfx8+ */
assert(!use_format || (channel_type != ctx->f16 && channel_type != ctx->i16) ||
ctx->chip_class >= GFX8);
LLVMTypeRef type = func > 1 ? LLVMVectorType(channel_type, func) : channel_type;
ac_build_type_name_for_intr(type, type_name, sizeof(type_name));
if (use_format) {
snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.format.%s", indexing_kind,
type_name);
} else {
snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.%s", indexing_kind, type_name);
}
return ac_build_intrinsic(ctx, name, type, args, idx, ac_get_load_intr_attribs(can_speculate));
}
LLVMValueRef ac_build_buffer_load(struct ac_llvm_context *ctx, LLVMValueRef rsrc, int num_channels,
LLVMValueRef vindex, LLVMValueRef voffset, LLVMValueRef soffset,
unsigned inst_offset, unsigned cache_policy, bool can_speculate,
bool allow_smem)
{
LLVMValueRef offset = LLVMConstInt(ctx->i32, inst_offset, 0);
if (voffset)
offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
if (soffset)
offset = LLVMBuildAdd(ctx->builder, offset, soffset, "");
if (allow_smem && !(cache_policy & ac_slc) &&
(!(cache_policy & ac_glc) || ctx->chip_class >= GFX8)) {
assert(vindex == NULL);
LLVMValueRef result[8];
for (int i = 0; i < num_channels; i++) {
if (i) {
offset = LLVMBuildAdd(ctx->builder, offset, LLVMConstInt(ctx->i32, 4, 0), "");
}
LLVMValueRef args[3] = {
rsrc,
offset,
LLVMConstInt(ctx->i32, get_load_cache_policy(ctx, cache_policy), 0),
};
result[i] = ac_build_intrinsic(ctx, "llvm.amdgcn.s.buffer.load.f32", ctx->f32, args, 3,
AC_FUNC_ATTR_READNONE);
}
if (num_channels == 1)
return result[0];
if (num_channels == 3 && !ac_has_vec3_support(ctx->chip_class, false))
result[num_channels++] = LLVMGetUndef(ctx->f32);
return ac_build_gather_values(ctx, result, num_channels);
}
return ac_build_buffer_load_common(ctx, rsrc, vindex, offset, ctx->i32_0, num_channels, ctx->f32,
cache_policy, can_speculate, false, false);
}
LLVMValueRef ac_build_buffer_load_format(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef vindex, LLVMValueRef voffset,
unsigned num_channels, unsigned cache_policy,
bool can_speculate, bool d16)
{
return ac_build_buffer_load_common(ctx, rsrc, vindex, voffset, ctx->i32_0, num_channels,
d16 ? ctx->f16 : ctx->f32, cache_policy, can_speculate, true,
true);
}
static LLVMValueRef ac_build_tbuffer_load(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef vindex, LLVMValueRef voffset,
LLVMValueRef soffset, LLVMValueRef immoffset,
unsigned num_channels, unsigned dfmt, unsigned nfmt,
unsigned cache_policy, bool can_speculate,
bool structurized)
{
voffset = LLVMBuildAdd(ctx->builder, voffset, immoffset, "");
LLVMValueRef args[6];
int idx = 0;
args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
if (structurized)
args[idx++] = vindex ? vindex : ctx->i32_0;
args[idx++] = voffset ? voffset : ctx->i32_0;
args[idx++] = soffset ? soffset : ctx->i32_0;
args[idx++] = LLVMConstInt(ctx->i32, ac_get_tbuffer_format(ctx->chip_class, dfmt, nfmt), 0);
args[idx++] = LLVMConstInt(ctx->i32, get_load_cache_policy(ctx, cache_policy), 0);
unsigned func =
!ac_has_vec3_support(ctx->chip_class, true) && num_channels == 3 ? 4 : num_channels;
const char *indexing_kind = structurized ? "struct" : "raw";
char name[256], type_name[8];
LLVMTypeRef type = func > 1 ? LLVMVectorType(ctx->i32, func) : ctx->i32;
ac_build_type_name_for_intr(type, type_name, sizeof(type_name));
snprintf(name, sizeof(name), "llvm.amdgcn.%s.tbuffer.load.%s", indexing_kind, type_name);
return ac_build_intrinsic(ctx, name, type, args, idx, ac_get_load_intr_attribs(can_speculate));
}
LLVMValueRef ac_build_struct_tbuffer_load(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef vindex, LLVMValueRef voffset,
LLVMValueRef soffset, LLVMValueRef immoffset,
unsigned num_channels, unsigned dfmt, unsigned nfmt,
unsigned cache_policy, bool can_speculate)
{
return ac_build_tbuffer_load(ctx, rsrc, vindex, voffset, soffset, immoffset, num_channels, dfmt,
nfmt, cache_policy, can_speculate, true);
}
LLVMValueRef ac_build_raw_tbuffer_load(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef voffset, LLVMValueRef soffset,
LLVMValueRef immoffset, unsigned num_channels, unsigned dfmt,
unsigned nfmt, unsigned cache_policy, bool can_speculate)
{
return ac_build_tbuffer_load(ctx, rsrc, NULL, voffset, soffset, immoffset, num_channels, dfmt,
nfmt, cache_policy, can_speculate, false);
}
LLVMValueRef ac_build_tbuffer_load_short(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef voffset, LLVMValueRef soffset,
LLVMValueRef immoffset, unsigned cache_policy)
{
LLVMValueRef res;
if (LLVM_VERSION_MAJOR >= 9) {
voffset = LLVMBuildAdd(ctx->builder, voffset, immoffset, "");
/* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
res = ac_build_buffer_load_common(ctx, rsrc, NULL, voffset, soffset, 1, ctx->i16,
cache_policy, false, false, false);
} else {
unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_16;
unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
res = ac_build_raw_tbuffer_load(ctx, rsrc, voffset, soffset, immoffset, 1, dfmt, nfmt,
cache_policy, false);
res = LLVMBuildTrunc(ctx->builder, res, ctx->i16, "");
}
return res;
}
LLVMValueRef ac_build_tbuffer_load_byte(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef voffset, LLVMValueRef soffset,
LLVMValueRef immoffset, unsigned cache_policy)
{
LLVMValueRef res;
if (LLVM_VERSION_MAJOR >= 9) {
voffset = LLVMBuildAdd(ctx->builder, voffset, immoffset, "");
/* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
res = ac_build_buffer_load_common(ctx, rsrc, NULL, voffset, soffset, 1, ctx->i8, cache_policy,
false, false, false);
} else {
unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_8;
unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
res = ac_build_raw_tbuffer_load(ctx, rsrc, voffset, soffset, immoffset, 1, dfmt, nfmt,
cache_policy, false);
res = LLVMBuildTrunc(ctx->builder, res, ctx->i8, "");
}
return res;
}
/**
* Convert an 11- or 10-bit unsigned floating point number to an f32.
*
* The input exponent is expected to be biased analogous to IEEE-754, i.e. by
* 2^(exp_bits-1) - 1 (as defined in OpenGL and other graphics APIs).
*/
static LLVMValueRef ac_ufN_to_float(struct ac_llvm_context *ctx, LLVMValueRef src,
unsigned exp_bits, unsigned mant_bits)
{
assert(LLVMTypeOf(src) == ctx->i32);
LLVMValueRef tmp;
LLVMValueRef mantissa;
mantissa =
LLVMBuildAnd(ctx->builder, src, LLVMConstInt(ctx->i32, (1 << mant_bits) - 1, false), "");
/* Converting normal numbers is just a shift + correcting the exponent bias */
unsigned normal_shift = 23 - mant_bits;
unsigned bias_shift = 127 - ((1 << (exp_bits - 1)) - 1);
LLVMValueRef shifted, normal;
shifted = LLVMBuildShl(ctx->builder, src, LLVMConstInt(ctx->i32, normal_shift, false), "");
normal =
LLVMBuildAdd(ctx->builder, shifted, LLVMConstInt(ctx->i32, bias_shift << 23, false), "");
/* Converting nan/inf numbers is the same, but with a different exponent update */
LLVMValueRef naninf;
naninf = LLVMBuildOr(ctx->builder, normal, LLVMConstInt(ctx->i32, 0xff << 23, false), "");
/* Converting denormals is the complex case: determine the leading zeros of the
* mantissa to obtain the correct shift for the mantissa and exponent correction.
*/
LLVMValueRef denormal;
LLVMValueRef params[2] = {
mantissa, ctx->i1true, /* result can be undef when arg is 0 */
};
LLVMValueRef ctlz =
ac_build_intrinsic(ctx, "llvm.ctlz.i32", ctx->i32, params, 2, AC_FUNC_ATTR_READNONE);
/* Shift such that the leading 1 ends up as the LSB of the exponent field. */
tmp = LLVMBuildSub(ctx->builder, ctlz, LLVMConstInt(ctx->i32, 8, false), "");
denormal = LLVMBuildShl(ctx->builder, mantissa, tmp, "");
unsigned denormal_exp = bias_shift + (32 - mant_bits) - 1;
tmp = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, denormal_exp, false), ctlz, "");
tmp = LLVMBuildShl(ctx->builder, tmp, LLVMConstInt(ctx->i32, 23, false), "");
denormal = LLVMBuildAdd(ctx->builder, denormal, tmp, "");
/* Select the final result. */
LLVMValueRef result;
tmp = LLVMBuildICmp(ctx->builder, LLVMIntUGE, src,
LLVMConstInt(ctx->i32, ((1 << exp_bits) - 1) << mant_bits, false), "");
result = LLVMBuildSelect(ctx->builder, tmp, naninf, normal, "");
tmp = LLVMBuildICmp(ctx->builder, LLVMIntUGE, src, LLVMConstInt(ctx->i32, 1 << mant_bits, false),
"");
result = LLVMBuildSelect(ctx->builder, tmp, result, denormal, "");
tmp = LLVMBuildICmp(ctx->builder, LLVMIntNE, src, ctx->i32_0, "");
result = LLVMBuildSelect(ctx->builder, tmp, result, ctx->i32_0, "");
return ac_to_float(ctx, result);
}
/**
* Generate a fully general open coded buffer format fetch with all required
* fixups suitable for vertex fetch, using non-format buffer loads.
*
* Some combinations of argument values have special interpretations:
* - size = 8 bytes, format = fixed indicates PIPE_FORMAT_R11G11B10_FLOAT
* - size = 8 bytes, format != {float,fixed} indicates a 2_10_10_10 data format
*
* \param log_size log(size of channel in bytes)
* \param num_channels number of channels (1 to 4)
* \param format AC_FETCH_FORMAT_xxx value
* \param reverse whether XYZ channels are reversed
* \param known_aligned whether the source is known to be aligned to hardware's
* effective element size for loading the given format
* (note: this means dword alignment for 8_8_8_8, 16_16, etc.)
* \param rsrc buffer resource descriptor
* \return the resulting vector of floats or integers bitcast to <4 x i32>
*/
LLVMValueRef ac_build_opencoded_load_format(struct ac_llvm_context *ctx, unsigned log_size,
unsigned num_channels, unsigned format, bool reverse,
bool known_aligned, LLVMValueRef rsrc,
LLVMValueRef vindex, LLVMValueRef voffset,
LLVMValueRef soffset, unsigned cache_policy,
bool can_speculate)
{
LLVMValueRef tmp;
unsigned load_log_size = log_size;
unsigned load_num_channels = num_channels;
if (log_size == 3) {
load_log_size = 2;
if (format == AC_FETCH_FORMAT_FLOAT) {
load_num_channels = 2 * num_channels;
} else {
load_num_channels = 1; /* 10_11_11 or 2_10_10_10 */
}
}
int log_recombine = 0;
if ((ctx->chip_class == GFX6 || ctx->chip_class >= GFX10) && !known_aligned) {
/* Avoid alignment restrictions by loading one byte at a time. */
load_num_channels <<= load_log_size;
log_recombine = load_log_size;
load_log_size = 0;
} else if (load_num_channels == 2 || load_num_channels == 4) {
log_recombine = -util_logbase2(load_num_channels);
load_num_channels = 1;
load_log_size += -log_recombine;
}
assert(load_log_size >= 2 || LLVM_VERSION_MAJOR >= 9);
LLVMValueRef loads[32]; /* up to 32 bytes */
for (unsigned i = 0; i < load_num_channels; ++i) {
tmp =
LLVMBuildAdd(ctx->builder, soffset, LLVMConstInt(ctx->i32, i << load_log_size, false), "");
LLVMTypeRef channel_type =
load_log_size == 0 ? ctx->i8 : load_log_size == 1 ? ctx->i16 : ctx->i32;
unsigned num_channels = 1 << (MAX2(load_log_size, 2) - 2);
loads[i] =
ac_build_buffer_load_common(ctx, rsrc, vindex, voffset, tmp, num_channels, channel_type,
cache_policy, can_speculate, false, true);
if (load_log_size >= 2)
loads[i] = ac_to_integer(ctx, loads[i]);
}
if (log_recombine > 0) {
/* Recombine bytes if necessary (GFX6 only) */
LLVMTypeRef dst_type = log_recombine == 2 ? ctx->i32 : ctx->i16;
for (unsigned src = 0, dst = 0; src < load_num_channels; ++dst) {
LLVMValueRef accum = NULL;
for (unsigned i = 0; i < (1 << log_recombine); ++i, ++src) {
tmp = LLVMBuildZExt(ctx->builder, loads[src], dst_type, "");
if (i == 0) {
accum = tmp;
} else {
tmp = LLVMBuildShl(ctx->builder, tmp, LLVMConstInt(dst_type, 8 * i, false), "");
accum = LLVMBuildOr(ctx->builder, accum, tmp, "");
}
}
loads[dst] = accum;
}
} else if (log_recombine < 0) {
/* Split vectors of dwords */
if (load_log_size > 2) {
assert(load_num_channels == 1);
LLVMValueRef loaded = loads[0];
unsigned log_split = load_log_size - 2;
log_recombine += log_split;
load_num_channels = 1 << log_split;
load_log_size = 2;
for (unsigned i = 0; i < load_num_channels; ++i) {
tmp = LLVMConstInt(ctx->i32, i, false);
loads[i] = LLVMBuildExtractElement(ctx->builder, loaded, tmp, "");
}
}
/* Further split dwords and shorts if required */
if (log_recombine < 0) {
for (unsigned src = load_num_channels, dst = load_num_channels << -log_recombine; src > 0;
--src) {
unsigned dst_bits = 1 << (3 + load_log_size + log_recombine);
LLVMTypeRef dst_type = LLVMIntTypeInContext(ctx->context, dst_bits);
LLVMValueRef loaded = loads[src - 1];
LLVMTypeRef loaded_type = LLVMTypeOf(loaded);
for (unsigned i = 1 << -log_recombine; i > 0; --i, --dst) {
tmp = LLVMConstInt(loaded_type, dst_bits * (i - 1), false);
tmp = LLVMBuildLShr(ctx->builder, loaded, tmp, "");
loads[dst - 1] = LLVMBuildTrunc(ctx->builder, tmp, dst_type, "");
}
}
}
}
if (log_size == 3) {
if (format == AC_FETCH_FORMAT_FLOAT) {
for (unsigned i = 0; i < num_channels; ++i) {
tmp = ac_build_gather_values(ctx, &loads[2 * i], 2);
loads[i] = LLVMBuildBitCast(ctx->builder, tmp, ctx->f64, "");
}
} else if (format == AC_FETCH_FORMAT_FIXED) {
/* 10_11_11_FLOAT */
LLVMValueRef data = loads[0];
LLVMValueRef i32_2047 = LLVMConstInt(ctx->i32, 2047, false);
LLVMValueRef r = LLVMBuildAnd(ctx->builder, data, i32_2047, "");
tmp = LLVMBuildLShr(ctx->builder, data, LLVMConstInt(ctx->i32, 11, false), "");
LLVMValueRef g = LLVMBuildAnd(ctx->builder, tmp, i32_2047, "");
LLVMValueRef b = LLVMBuildLShr(ctx->builder, data, LLVMConstInt(ctx->i32, 22, false), "");
loads[0] = ac_to_integer(ctx, ac_ufN_to_float(ctx, r, 5, 6));
loads[1] = ac_to_integer(ctx, ac_ufN_to_float(ctx, g, 5, 6));
loads[2] = ac_to_integer(ctx, ac_ufN_to_float(ctx, b, 5, 5));
num_channels = 3;
log_size = 2;
format = AC_FETCH_FORMAT_FLOAT;
} else {
/* 2_10_10_10 data formats */
LLVMValueRef data = loads[0];
LLVMTypeRef i10 = LLVMIntTypeInContext(ctx->context, 10);
LLVMTypeRef i2 = LLVMIntTypeInContext(ctx->context, 2);
loads[0] = LLVMBuildTrunc(ctx->builder, data, i10, "");
tmp = LLVMBuildLShr(ctx->builder, data, LLVMConstInt(ctx->i32, 10, false), "");
loads[1] = LLVMBuildTrunc(ctx->builder, tmp, i10, "");
tmp = LLVMBuildLShr(ctx->builder, data, LLVMConstInt(ctx->i32, 20, false), "");
loads[2] = LLVMBuildTrunc(ctx->builder, tmp, i10, "");
tmp = LLVMBuildLShr(ctx->builder, data, LLVMConstInt(ctx->i32, 30, false), "");
loads[3] = LLVMBuildTrunc(ctx->builder, tmp, i2, "");
num_channels = 4;
}
}
if (format == AC_FETCH_FORMAT_FLOAT) {
if (log_size != 2) {
for (unsigned chan = 0; chan < num_channels; ++chan) {
tmp = ac_to_float(ctx, loads[chan]);
if (log_size == 3)
tmp = LLVMBuildFPTrunc(ctx->builder, tmp, ctx->f32, "");
else if (log_size == 1)
tmp = LLVMBuildFPExt(ctx->builder, tmp, ctx->f32, "");
loads[chan] = ac_to_integer(ctx, tmp);
}
}
} else if (format == AC_FETCH_FORMAT_UINT) {
if (log_size != 2) {
for (unsigned chan = 0; chan < num_channels; ++chan)
loads[chan] = LLVMBuildZExt(ctx->builder, loads[chan], ctx->i32, "");
}
} else if (format == AC_FETCH_FORMAT_SINT) {
if (log_size != 2) {
for (unsigned chan = 0; chan < num_channels; ++chan)
loads[chan] = LLVMBuildSExt(ctx->builder, loads[chan], ctx->i32, "");
}
} else {
bool unsign = format == AC_FETCH_FORMAT_UNORM || format == AC_FETCH_FORMAT_USCALED ||
format == AC_FETCH_FORMAT_UINT;
for (unsigned chan = 0; chan < num_channels; ++chan) {
if (unsign) {
tmp = LLVMBuildUIToFP(ctx->builder, loads[chan], ctx->f32, "");
} else {
tmp = LLVMBuildSIToFP(ctx->builder, loads[chan], ctx->f32, "");
}
LLVMValueRef scale = NULL;
if (format == AC_FETCH_FORMAT_FIXED) {
assert(log_size == 2);
scale = LLVMConstReal(ctx->f32, 1.0 / 0x10000);
} else if (format == AC_FETCH_FORMAT_UNORM) {
unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(loads[chan]));
scale = LLVMConstReal(ctx->f32, 1.0 / (((uint64_t)1 << bits) - 1));
} else if (format == AC_FETCH_FORMAT_SNORM) {
unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(loads[chan]));
scale = LLVMConstReal(ctx->f32, 1.0 / (((uint64_t)1 << (bits - 1)) - 1));
}
if (scale)
tmp = LLVMBuildFMul(ctx->builder, tmp, scale, "");
if (format == AC_FETCH_FORMAT_SNORM) {
/* Clamp to [-1, 1] */
LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
LLVMValueRef clamp = LLVMBuildFCmp(ctx->builder, LLVMRealULT, tmp, neg_one, "");
tmp = LLVMBuildSelect(ctx->builder, clamp, neg_one, tmp, "");
}
loads[chan] = ac_to_integer(ctx, tmp);
}
}
while (num_channels < 4) {
if (format == AC_FETCH_FORMAT_UINT || format == AC_FETCH_FORMAT_SINT) {
loads[num_channels] = num_channels == 3 ? ctx->i32_1 : ctx->i32_0;
} else {
loads[num_channels] = ac_to_integer(ctx, num_channels == 3 ? ctx->f32_1 : ctx->f32_0);
}
num_channels++;
}
if (reverse) {
tmp = loads[0];
loads[0] = loads[2];
loads[2] = tmp;
}
return ac_build_gather_values(ctx, loads, 4);
}
static void ac_build_tbuffer_store(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef vdata, LLVMValueRef vindex, LLVMValueRef voffset,
LLVMValueRef soffset, LLVMValueRef immoffset,
unsigned num_channels, unsigned dfmt, unsigned nfmt,
unsigned cache_policy, bool structurized)
{
voffset = LLVMBuildAdd(ctx->builder, voffset ? voffset : ctx->i32_0, immoffset, "");
LLVMValueRef args[7];
int idx = 0;
args[idx++] = vdata;
args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
if (structurized)
args[idx++] = vindex ? vindex : ctx->i32_0;
args[idx++] = voffset ? voffset : ctx->i32_0;
args[idx++] = soffset ? soffset : ctx->i32_0;
args[idx++] = LLVMConstInt(ctx->i32, ac_get_tbuffer_format(ctx->chip_class, dfmt, nfmt), 0);
args[idx++] = LLVMConstInt(ctx->i32, cache_policy, 0);
unsigned func =
!ac_has_vec3_support(ctx->chip_class, true) && num_channels == 3 ? 4 : num_channels;
const char *indexing_kind = structurized ? "struct" : "raw";
char name[256], type_name[8];
LLVMTypeRef type = func > 1 ? LLVMVectorType(ctx->i32, func) : ctx->i32;
ac_build_type_name_for_intr(type, type_name, sizeof(type_name));
snprintf(name, sizeof(name), "llvm.amdgcn.%s.tbuffer.store.%s", indexing_kind, type_name);
ac_build_intrinsic(ctx, name, ctx->voidt, args, idx, AC_FUNC_ATTR_INACCESSIBLE_MEM_ONLY);
}
void ac_build_struct_tbuffer_store(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef vdata, LLVMValueRef vindex, LLVMValueRef voffset,
LLVMValueRef soffset, LLVMValueRef immoffset,
unsigned num_channels, unsigned dfmt, unsigned nfmt,
unsigned cache_policy)
{
ac_build_tbuffer_store(ctx, rsrc, vdata, vindex, voffset, soffset, immoffset, num_channels, dfmt,
nfmt, cache_policy, true);
}
void ac_build_raw_tbuffer_store(struct ac_llvm_context *ctx, LLVMValueRef rsrc, LLVMValueRef vdata,
LLVMValueRef voffset, LLVMValueRef soffset, LLVMValueRef immoffset,
unsigned num_channels, unsigned dfmt, unsigned nfmt,
unsigned cache_policy)
{
ac_build_tbuffer_store(ctx, rsrc, vdata, NULL, voffset, soffset, immoffset, num_channels, dfmt,
nfmt, cache_policy, false);
}
void ac_build_tbuffer_store_short(struct ac_llvm_context *ctx, LLVMValueRef rsrc,
LLVMValueRef vdata, LLVMValueRef voffset, LLVMValueRef soffset,
unsigned cache_policy)
{
vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i16, "");
if (LLVM_VERSION_MAJOR >= 9) {
/* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
ac_build_buffer_store_common(ctx, rsrc, vdata, NULL, voffset, soffset, cache_policy, false,
false);
} else {
unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_16;
unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
vdata = LLVMBuildZExt(ctx->builder, vdata, ctx->i32, "");
ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset, ctx->i32_0, 1, dfmt, nfmt,
cache_policy);
}
}
void ac_build_tbuffer_store_byte(struct ac_llvm_context *ctx, LLVMValueRef rsrc, LLVMValueRef vdata,
LLVMValueRef voffset, LLVMValueRef soffset, unsigned cache_policy)
{
vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i8, "");
if (LLVM_VERSION_MAJOR >= 9) {
/* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
ac_build_buffer_store_common(ctx, rsrc, vdata, NULL, voffset, soffset, cache_policy, false,
false);
} else {
unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_8;
unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
vdata = LLVMBuildZExt(ctx->builder, vdata, ctx->i32, "");
ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset, ctx->i32_0, 1, dfmt, nfmt,
cache_policy);
}
}
/**
* Set range metadata on an instruction. This can only be used on load and
* call instructions. If you know an instruction can only produce the values
* 0, 1, 2, you would do set_range_metadata(value, 0, 3);
* \p lo is the minimum value inclusive.
* \p hi is the maximum value exclusive.
*/
static void set_range_metadata(struct ac_llvm_context *ctx, LLVMValueRef value, unsigned lo,
unsigned hi)
{
LLVMValueRef range_md, md_args[2];
LLVMTypeRef type = LLVMTypeOf(value);
LLVMContextRef context = LLVMGetTypeContext(type);
md_args[0] = LLVMConstInt(type, lo, false);
md_args[1] = LLVMConstInt(type, hi, false);
range_md = LLVMMDNodeInContext(context, md_args, 2);
LLVMSetMetadata(value, ctx->range_md_kind, range_md);
}
LLVMValueRef ac_get_thread_id(struct ac_llvm_context *ctx)
{
LLVMValueRef tid;
LLVMValueRef tid_args[2];
tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
tid_args[1] = ctx->i32_0;
tid_args[1] =
ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.lo", ctx->i32, tid_args, 2, AC_FUNC_ATTR_READNONE);
if (ctx->wave_size == 32) {
tid = tid_args[1];
} else {
tid = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi", ctx->i32, tid_args, 2,
AC_FUNC_ATTR_READNONE);
}
set_range_metadata(ctx, tid, 0, ctx->wave_size);
return tid;
}
/*
* AMD GCN implements derivatives using the local data store (LDS)
* All writes to the LDS happen in all executing threads at
* the same time. TID is the Thread ID for the current
* thread and is a value between 0 and 63, representing
* the thread's position in the wavefront.
*
* For the pixel shader threads are grouped into quads of four pixels.
* The TIDs of the pixels of a quad are:
*
* +------+------+
* |4n + 0|4n + 1|
* +------+------+
* |4n + 2|4n + 3|
* +------+------+
*
* So, masking the TID with 0xfffffffc yields the TID of the top left pixel
* of the quad, masking with 0xfffffffd yields the TID of the top pixel of
* the current pixel's column, and masking with 0xfffffffe yields the TID
* of the left pixel of the current pixel's row.
*
* Adding 1 yields the TID of the pixel to the right of the left pixel, and
* adding 2 yields the TID of the pixel below the top pixel.
*/
LLVMValueRef ac_build_ddxy(struct ac_llvm_context *ctx, uint32_t mask, int idx, LLVMValueRef val)
{
unsigned tl_lanes[4], trbl_lanes[4];
char name[32], type[8];
LLVMValueRef tl, trbl;
LLVMTypeRef result_type;
LLVMValueRef result;
result_type = ac_to_float_type(ctx, LLVMTypeOf(val));
if (result_type == ctx->f16)
val = LLVMBuildZExt(ctx->builder, val, ctx->i32, "");
else if (result_type == ctx->v2f16)
val = LLVMBuildBitCast(ctx->builder, val, ctx->i32, "");
for (unsigned i = 0; i < 4; ++i) {
tl_lanes[i] = i & mask;
trbl_lanes[i] = (i & mask) + idx;
}
tl = ac_build_quad_swizzle(ctx, val, tl_lanes[0], tl_lanes[1], tl_lanes[2], tl_lanes[3]);
trbl =
ac_build_quad_swizzle(ctx, val, trbl_lanes[0], trbl_lanes[1], trbl_lanes[2], trbl_lanes[3]);
if (result_type == ctx->f16) {
tl = LLVMBuildTrunc(ctx->builder, tl, ctx->i16, "");
trbl = LLVMBuildTrunc(ctx->builder, trbl, ctx->i16, "");
}
tl = LLVMBuildBitCast(ctx->builder, tl, result_type, "");
trbl = LLVMBuildBitCast(ctx->builder, trbl, result_type, "");
result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
ac_build_type_name_for_intr(result_type, type, sizeof(type));
snprintf(name, sizeof(name), "llvm.amdgcn.wqm.%s", type);
return ac_build_intrinsic(ctx, name, result_type, &result, 1, 0);
}
void ac_build_sendmsg(struct ac_llvm_context *ctx, uint32_t msg, LLVMValueRef wave_id)
{
LLVMValueRef args[2];
args[0] = LLVMConstInt(ctx->i32, msg, false);
args[1] = wave_id;
ac_build_intrinsic(ctx, "llvm.amdgcn.s.sendmsg", ctx->voidt, args, 2, 0);
}
LLVMValueRef ac_build_imsb(struct ac_llvm_context *ctx, LLVMValueRef arg, LLVMTypeRef dst_type)
{
LLVMValueRef msb =
ac_build_intrinsic(ctx, "llvm.amdgcn.sffbh.i32", dst_type, &arg, 1, AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but NIR/TGSI wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false), msb, "");
LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
LLVMValueRef cond =
LLVMBuildOr(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, ctx->i32_0, ""),
LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, all_ones, ""), "");
return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
}
LLVMValueRef ac_build_umsb(struct ac_llvm_context *ctx, LLVMValueRef arg, LLVMTypeRef dst_type)
{
const char *intrin_name;
LLVMTypeRef type;
LLVMValueRef highest_bit;
LLVMValueRef zero;
unsigned bitsize;
bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(arg));
switch (bitsize) {
case 64:
intrin_name = "llvm.ctlz.i64";
type = ctx->i64;
highest_bit = LLVMConstInt(ctx->i64, 63, false);
zero = ctx->i64_0;
break;
case 32:
intrin_name = "llvm.ctlz.i32";
type = ctx->i32;
highest_bit = LLVMConstInt(ctx->i32, 31, false);
zero = ctx->i32_0;
break;
case 16:
intrin_name = "llvm.ctlz.i16";
type = ctx->i16;
highest_bit = LLVMConstInt(ctx->i16, 15, false);
zero = ctx->i16_0;
break;
case 8:
intrin_name = "llvm.ctlz.i8";
type = ctx->i8;
highest_bit = LLVMConstInt(ctx->i8, 7, false);
zero = ctx->i8_0;
break;
default:
unreachable(!"invalid bitsize");
break;
}
LLVMValueRef params[2] = {
arg,
ctx->i1true,
};
LLVMValueRef msb = ac_build_intrinsic(ctx, intrin_name, type, params, 2, AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but TGSI/NIR wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, highest_bit, msb, "");
if (bitsize == 64) {
msb = LLVMBuildTrunc(ctx->builder, msb, ctx->i32, "");
} else if (bitsize < 32) {
msb = LLVMBuildSExt(ctx->builder, msb, ctx->i32, "");
}
/* check for zero */
return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, zero, ""),
LLVMConstInt(ctx->i32, -1, true), msb, "");
}
LLVMValueRef ac_build_fmin(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b)
{
char name[64], type[64];
ac_build_type_name_for_intr(LLVMTypeOf(a), type, sizeof(type));
snprintf(name, sizeof(name), "llvm.minnum.%s", type);
LLVMValueRef args[2] = {a, b};
return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_fmax(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b)
{
char name[64], type[64];
ac_build_type_name_for_intr(LLVMTypeOf(a), type, sizeof(type));
snprintf(name, sizeof(name), "llvm.maxnum.%s", type);
LLVMValueRef args[2] = {a, b};
return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_imin(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b)
{
LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSLE, a, b, "");
return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
}
LLVMValueRef ac_build_imax(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b)
{
LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, a, b, "");
return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
}
LLVMValueRef ac_build_umin(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b)
{
LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntULE, a, b, "");
return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
}
LLVMValueRef ac_build_umax(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b)
{
LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntUGE, a, b, "");
return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
}
LLVMValueRef ac_build_clamp(struct ac_llvm_context *ctx, LLVMValueRef value)
{
LLVMTypeRef t = LLVMTypeOf(value);
return ac_build_fmin(ctx, ac_build_fmax(ctx, value, LLVMConstReal(t, 0.0)),
LLVMConstReal(t, 1.0));
}
void ac_build_export(struct ac_llvm_context *ctx, struct ac_export_args *a)
{
LLVMValueRef args[9];
args[0] = LLVMConstInt(ctx->i32, a->target, 0);
args[1] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
if (a->compr) {
args[2] = LLVMBuildBitCast(ctx->builder, a->out[0], ctx->v2i16, "");
args[3] = LLVMBuildBitCast(ctx->builder, a->out[1], ctx->v2i16, "");
args[4] = LLVMConstInt(ctx->i1, a->done, 0);
args[5] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
ac_build_intrinsic(ctx, "llvm.amdgcn.exp.compr.v2i16", ctx->voidt, args, 6, 0);
} else {
args[2] = a->out[0];
args[3] = a->out[1];
args[4] = a->out[2];
args[5] = a->out[3];
args[6] = LLVMConstInt(ctx->i1, a->done, 0);
args[7] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
ac_build_intrinsic(ctx, "llvm.amdgcn.exp.f32", ctx->voidt, args, 8, 0);
}
}
void ac_build_export_null(struct ac_llvm_context *ctx)
{
struct ac_export_args args;
args.enabled_channels = 0x0; /* enabled channels */
args.valid_mask = 1; /* whether the EXEC mask is valid */
args.done = 1; /* DONE bit */
args.target = V_008DFC_SQ_EXP_NULL;
args.compr = 0; /* COMPR flag (0 = 32-bit export) */
args.out[0] = LLVMGetUndef(ctx->f32); /* R */
args.out[1] = LLVMGetUndef(ctx->f32); /* G */
args.out[2] = LLVMGetUndef(ctx->f32); /* B */
args.out[3] = LLVMGetUndef(ctx->f32); /* A */
ac_build_export(ctx, &args);
}
static unsigned ac_num_coords(enum ac_image_dim dim)
{
switch (dim) {
case ac_image_1d:
return 1;
case ac_image_2d:
case ac_image_1darray:
return 2;
case ac_image_3d:
case ac_image_cube:
case ac_image_2darray:
case ac_image_2dmsaa:
return 3;
case ac_image_2darraymsaa:
return 4;
default:
unreachable("ac_num_coords: bad dim");
}
}
static unsigned ac_num_derivs(enum ac_image_dim dim)
{
switch (dim) {
case ac_image_1d:
case ac_image_1darray:
return 2;
case ac_image_2d:
case ac_image_2darray:
case ac_image_cube:
return 4;
case ac_image_3d:
return 6;
case ac_image_2dmsaa:
case ac_image_2darraymsaa:
default:
unreachable("derivatives not supported");
}
}
static const char *get_atomic_name(enum ac_atomic_op op)
{
switch (op) {
case ac_atomic_swap:
return "swap";
case ac_atomic_add:
return "add";
case ac_atomic_sub:
return "sub";
case ac_atomic_smin:
return "smin";
case ac_atomic_umin:
return "umin";
case ac_atomic_smax:
return "smax";
case ac_atomic_umax:
return "umax";
case ac_atomic_and:
return "and";
case ac_atomic_or:
return "or";
case ac_atomic_xor:
return "xor";
case ac_atomic_inc_wrap:
return "inc";
case ac_atomic_dec_wrap:
return "dec";
}
unreachable("bad atomic op");
}
LLVMValueRef ac_build_image_opcode(struct ac_llvm_context *ctx, struct ac_image_args *a)
{
const char *overload[3] = {"", "", ""};
unsigned num_overloads = 0;
LLVMValueRef args[18];
unsigned num_args = 0;
enum ac_image_dim dim = a->dim;
assert(!a->lod || a->lod == ctx->i32_0 || a->lod == ctx->f32_0 || !a->level_zero);
assert((a->opcode != ac_image_get_resinfo && a->opcode != ac_image_load_mip &&
a->opcode != ac_image_store_mip) ||
a->lod);
assert(a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
(!a->compare && !a->offset));
assert((a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
a->opcode == ac_image_get_lod) ||
!a->bias);
assert((a->bias ? 1 : 0) + (a->lod ? 1 : 0) + (a->level_zero ? 1 : 0) + (a->derivs[0] ? 1 : 0) <=
1);
assert((a->min_lod ? 1 : 0) + (a->lod ? 1 : 0) + (a->level_zero ? 1 : 0) <= 1);
assert(!a->d16 || (ctx->chip_class >= GFX8 && a->opcode != ac_image_atomic &&
a->opcode != ac_image_atomic_cmpswap && a->opcode != ac_image_get_lod &&
a->opcode != ac_image_get_resinfo));
if (a->opcode == ac_image_get_lod) {
switch (dim) {
case ac_image_1darray:
dim = ac_image_1d;
break;
case ac_image_2darray:
case ac_image_cube:
dim = ac_image_2d;
break;
default:
break;
}
}
bool sample = a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
a->opcode == ac_image_get_lod;
bool atomic = a->opcode == ac_image_atomic || a->opcode == ac_image_atomic_cmpswap;
bool load = a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
a->opcode == ac_image_load || a->opcode == ac_image_load_mip;
LLVMTypeRef coord_type = sample ? ctx->f32 : ctx->i32;
uint8_t dmask = a->dmask;
LLVMTypeRef data_type;
char data_type_str[8];
if (atomic) {
data_type = ctx->i32;
} else if (a->opcode == ac_image_store || a->opcode == ac_image_store_mip) {
/* Image stores might have been shrinked using the format. */
data_type = LLVMTypeOf(a->data[0]);
dmask = (1 << ac_get_llvm_num_components(a->data[0])) - 1;
} else {
data_type = a->d16 ? ctx->v4f16 : ctx->v4f32;
}
if (atomic || a->opcode == ac_image_store || a->opcode == ac_image_store_mip) {
args[num_args++] = a->data[0];
if (a->opcode == ac_image_atomic_cmpswap)
args[num_args++] = a->data[1];
}
if (!atomic)
args[num_args++] = LLVMConstInt(ctx->i32, dmask, false);
if (a->offset)
args[num_args++] = ac_to_integer(ctx, a->offset);
if (a->bias) {
args[num_args++] = ac_to_float(ctx, a->bias);
overload[num_overloads++] = ".f32";
}
if (a->compare)
args[num_args++] = ac_to_float(ctx, a->compare);
if (a->derivs[0]) {
unsigned count = ac_num_derivs(dim);
for (unsigned i = 0; i < count; ++i)
args[num_args++] = ac_to_float(ctx, a->derivs[i]);
overload[num_overloads++] = ".f32";
}
unsigned num_coords = a->opcode != ac_image_get_resinfo ? ac_num_coords(dim) : 0;
for (unsigned i = 0; i < num_coords; ++i)
args[num_args++] = LLVMBuildBitCast(ctx->builder, a->coords[i], coord_type, "");
if (a->lod)
args[num_args++] = LLVMBuildBitCast(ctx->builder, a->lod, coord_type, "");
if (a->min_lod)
args[num_args++] = LLVMBuildBitCast(ctx->builder, a->min_lod, coord_type, "");
overload[num_overloads++] = sample ? ".f32" : ".i32";
args[num_args++] = a->resource;
if (sample) {
args[num_args++] = a->sampler;
args[num_args++] = LLVMConstInt(ctx->i1, a->unorm, false);
}
args[num_args++] = ctx->i32_0; /* texfailctrl */
args[num_args++] = LLVMConstInt(
ctx->i32, load ? get_load_cache_policy(ctx, a->cache_policy) : a->cache_policy, false);
const char *name;
const char *atomic_subop = "";
switch (a->opcode) {
case ac_image_sample:
name = "sample";
break;
case ac_image_gather4:
name = "gather4";
break;
case ac_image_load:
name = "load";
break;
case ac_image_load_mip:
name = "load.mip";
break;
case ac_image_store:
name = "store";
break;
case ac_image_store_mip:
name = "store.mip";
break;
case ac_image_atomic:
name = "atomic.";
atomic_subop = get_atomic_name(a->atomic);
break;
case ac_image_atomic_cmpswap:
name = "atomic.";
atomic_subop = "cmpswap";
break;
case ac_image_get_lod:
name = "getlod";
break;
case ac_image_get_resinfo:
name = "getresinfo";
break;
default:
unreachable("invalid image opcode");
}
const char *dimname;
switch (dim) {
case ac_image_1d:
dimname = "1d";
break;
case ac_image_2d:
dimname = "2d";
break;
case ac_image_3d:
dimname = "3d";
break;
case ac_image_cube:
dimname = "cube";
break;
case ac_image_1darray:
dimname = "1darray";
break;
case ac_image_2darray:
dimname = "2darray";
break;
case ac_image_2dmsaa:
dimname = "2dmsaa";
break;
case ac_image_2darraymsaa:
dimname = "2darraymsaa";
break;
default:
unreachable("invalid dim");
}
ac_build_type_name_for_intr(data_type, data_type_str, sizeof(data_type_str));
bool lod_suffix = a->lod && (a->opcode == ac_image_sample || a->opcode == ac_image_gather4);
char intr_name[96];
snprintf(intr_name, sizeof(intr_name),
"llvm.amdgcn.image.%s%s" /* base name */
"%s%s%s%s" /* sample/gather modifiers */
".%s.%s%s%s%s", /* dimension and type overloads */
name, atomic_subop, a->compare ? ".c" : "",
a->bias ? ".b" : lod_suffix ? ".l" : a->derivs[0] ? ".d" : a->level_zero ? ".lz" : "",
a->min_lod ? ".cl" : "", a->offset ? ".o" : "", dimname,
data_type_str, overload[0], overload[1], overload[2]);
LLVMTypeRef retty;
if (atomic)
retty = ctx->i32;
else if (a->opcode == ac_image_store || a->opcode == ac_image_store_mip)
retty = ctx->voidt;
else
retty = a->d16 ? ctx->v4f16 : ctx->v4f32;
LLVMValueRef result = ac_build_intrinsic(ctx, intr_name, retty, args, num_args, a->attributes);
if (!sample && !atomic && retty != ctx->voidt)
result = ac_to_integer(ctx, result);
return result;
}
LLVMValueRef ac_build_image_get_sample_count(struct ac_llvm_context *ctx, LLVMValueRef rsrc)
{
LLVMValueRef samples;
/* Read the samples from the descriptor directly.
* Hardware doesn't have any instruction for this.
*/
samples = LLVMBuildExtractElement(ctx->builder, rsrc, LLVMConstInt(ctx->i32, 3, 0), "");
samples = LLVMBuildLShr(ctx->builder, samples, LLVMConstInt(ctx->i32, 16, 0), "");
samples = LLVMBuildAnd(ctx->builder, samples, LLVMConstInt(ctx->i32, 0xf, 0), "");
samples = LLVMBuildShl(ctx->builder, ctx->i32_1, samples, "");
return samples;
}
LLVMValueRef ac_build_cvt_pkrtz_f16(struct ac_llvm_context *ctx, LLVMValueRef args[2])
{
return ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pkrtz", ctx->v2f16, args, 2,
AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_cvt_pknorm_i16(struct ac_llvm_context *ctx, LLVMValueRef args[2])
{
LLVMValueRef res = ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.i16", ctx->v2i16, args, 2,
AC_FUNC_ATTR_READNONE);
return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
}
LLVMValueRef ac_build_cvt_pknorm_u16(struct ac_llvm_context *ctx, LLVMValueRef args[2])
{
LLVMValueRef res = ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.u16", ctx->v2i16, args, 2,
AC_FUNC_ATTR_READNONE);
return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
}
LLVMValueRef ac_build_cvt_pknorm_i16_f16(struct ac_llvm_context *ctx,
LLVMValueRef args[2])
{
LLVMTypeRef param_types[] = {ctx->f16, ctx->f16};
LLVMTypeRef calltype = LLVMFunctionType(ctx->i32, param_types, 2, false);
LLVMValueRef code = LLVMConstInlineAsm(calltype,
"v_cvt_pknorm_i16_f16 $0, $1, $2", "=v,v,v",
false, false);
return LLVMBuildCall(ctx->builder, code, args, 2, "");
}
LLVMValueRef ac_build_cvt_pknorm_u16_f16(struct ac_llvm_context *ctx,
LLVMValueRef args[2])
{
LLVMTypeRef param_types[] = {ctx->f16, ctx->f16};
LLVMTypeRef calltype = LLVMFunctionType(ctx->i32, param_types, 2, false);
LLVMValueRef code = LLVMConstInlineAsm(calltype,
"v_cvt_pknorm_u16_f16 $0, $1, $2", "=v,v,v",
false, false);
return LLVMBuildCall(ctx->builder, code, args, 2, "");
}
/* The 8-bit and 10-bit clamping is for HW workarounds. */
LLVMValueRef ac_build_cvt_pk_i16(struct ac_llvm_context *ctx, LLVMValueRef args[2], unsigned bits,
bool hi)
{
assert(bits == 8 || bits == 10 || bits == 16);
LLVMValueRef max_rgb = LLVMConstInt(ctx->i32, bits == 8 ? 127 : bits == 10 ? 511 : 32767, 0);
LLVMValueRef min_rgb = LLVMConstInt(ctx->i32, bits == 8 ? -128 : bits == 10 ? -512 : -32768, 0);
LLVMValueRef max_alpha = bits != 10 ? max_rgb : ctx->i32_1;
LLVMValueRef min_alpha = bits != 10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0);
/* Clamp. */
if (bits != 16) {
for (int i = 0; i < 2; i++) {
bool alpha = hi && i == 1;
args[i] = ac_build_imin(ctx, args[i], alpha ? max_alpha : max_rgb);
args[i] = ac_build_imax(ctx, args[i], alpha ? min_alpha : min_rgb);
}
}
LLVMValueRef res =
ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.i16", ctx->v2i16, args, 2, AC_FUNC_ATTR_READNONE);
return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
}
/* The 8-bit and 10-bit clamping is for HW workarounds. */
LLVMValueRef ac_build_cvt_pk_u16(struct ac_llvm_context *ctx, LLVMValueRef args[2], unsigned bits,
bool hi)
{
assert(bits == 8 || bits == 10 || bits == 16);
LLVMValueRef max_rgb = LLVMConstInt(ctx->i32, bits == 8 ? 255 : bits == 10 ? 1023 : 65535, 0);
LLVMValueRef max_alpha = bits != 10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0);
/* Clamp. */
if (bits != 16) {
for (int i = 0; i < 2; i++) {
bool alpha = hi && i == 1;
args[i] = ac_build_umin(ctx, args[i], alpha ? max_alpha : max_rgb);
}
}
LLVMValueRef res =
ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.u16", ctx->v2i16, args, 2, AC_FUNC_ATTR_READNONE);
return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
}
LLVMValueRef ac_build_wqm_vote(struct ac_llvm_context *ctx, LLVMValueRef i1)
{
return ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.vote", ctx->i1, &i1, 1, AC_FUNC_ATTR_READNONE);
}
void ac_build_kill_if_false(struct ac_llvm_context *ctx, LLVMValueRef i1)
{
ac_build_intrinsic(ctx, "llvm.amdgcn.kill", ctx->voidt, &i1, 1, 0);
}
LLVMValueRef ac_build_bfe(struct ac_llvm_context *ctx, LLVMValueRef input, LLVMValueRef offset,
LLVMValueRef width, bool is_signed)
{
LLVMValueRef args[] = {
input,
offset,
width,
};
return ac_build_intrinsic(ctx, is_signed ? "llvm.amdgcn.sbfe.i32" : "llvm.amdgcn.ubfe.i32",
ctx->i32, args, 3, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_imad(struct ac_llvm_context *ctx, LLVMValueRef s0, LLVMValueRef s1,
LLVMValueRef s2)
{
return LLVMBuildAdd(ctx->builder, LLVMBuildMul(ctx->builder, s0, s1, ""), s2, "");
}
LLVMValueRef ac_build_fmad(struct ac_llvm_context *ctx, LLVMValueRef s0, LLVMValueRef s1,
LLVMValueRef s2)
{
/* FMA is better on GFX10, because it has FMA units instead of MUL-ADD units. */
if (ctx->chip_class >= GFX10) {
return ac_build_intrinsic(ctx, "llvm.fma.f32", ctx->f32, (LLVMValueRef[]){s0, s1, s2}, 3,
AC_FUNC_ATTR_READNONE);
}
return LLVMBuildFAdd(ctx->builder, LLVMBuildFMul(ctx->builder, s0, s1, ""), s2, "");
}
void ac_build_waitcnt(struct ac_llvm_context *ctx, unsigned wait_flags)
{
if (!wait_flags)
return;
unsigned lgkmcnt = 63;
unsigned vmcnt = ctx->chip_class >= GFX9 ? 63 : 15;
unsigned vscnt = 63;
if (wait_flags & AC_WAIT_LGKM)
lgkmcnt = 0;
if (wait_flags & AC_WAIT_VLOAD)
vmcnt = 0;
if (wait_flags & AC_WAIT_VSTORE) {
if (ctx->chip_class >= GFX10)
vscnt = 0;
else
vmcnt = 0;
}
/* There is no intrinsic for vscnt(0), so use a fence. */
if ((wait_flags & AC_WAIT_LGKM && wait_flags & AC_WAIT_VLOAD && wait_flags & AC_WAIT_VSTORE) ||
vscnt == 0) {
LLVMBuildFence(ctx->builder, LLVMAtomicOrderingRelease, false, "");
return;
}
unsigned simm16 = (lgkmcnt << 8) | (7 << 4) | /* expcnt */
(vmcnt & 0xf) | ((vmcnt >> 4) << 14);
LLVMValueRef args[1] = {
LLVMConstInt(ctx->i32, simm16, false),
};
ac_build_intrinsic(ctx, "llvm.amdgcn.s.waitcnt", ctx->voidt, args, 1, 0);
}
LLVMValueRef ac_build_fsat(struct ac_llvm_context *ctx, LLVMValueRef src,
LLVMTypeRef type)
{
unsigned bitsize = ac_get_elem_bits(ctx, type);
LLVMValueRef zero = LLVMConstReal(type, 0.0);
LLVMValueRef one = LLVMConstReal(type, 1.0);
LLVMValueRef result;
if (bitsize == 64 || (bitsize == 16 && ctx->chip_class <= GFX8)) {
/* Use fmin/fmax for 64-bit fsat or 16-bit on GFX6-GFX8 because LLVM
* doesn't expose an intrinsic.
*/
result = ac_build_fmin(ctx, ac_build_fmax(ctx, src, zero), one);
} else {
LLVMTypeRef type;
char *intr;
if (bitsize == 16) {
intr = "llvm.amdgcn.fmed3.f16";
type = ctx->f16;
} else {
assert(bitsize == 32);
intr = "llvm.amdgcn.fmed3.f32";
type = ctx->f32;
}
LLVMValueRef params[] = {
zero,
one,
src,
};
result = ac_build_intrinsic(ctx, intr, type, params, 3,
AC_FUNC_ATTR_READNONE);
}
if (ctx->chip_class < GFX9 && bitsize == 32) {
/* Only pre-GFX9 chips do not flush denorms. */
result = ac_build_canonicalize(ctx, result, bitsize);
}
return result;
}
LLVMValueRef ac_build_fract(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize)
{
LLVMTypeRef type;
char *intr;
if (bitsize == 16) {
intr = "llvm.amdgcn.fract.f16";
type = ctx->f16;
} else if (bitsize == 32) {
intr = "llvm.amdgcn.fract.f32";
type = ctx->f32;
} else {
intr = "llvm.amdgcn.fract.f64";
type = ctx->f64;
}
LLVMValueRef params[] = {
src0,
};
return ac_build_intrinsic(ctx, intr, type, params, 1, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_const_uint_vec(struct ac_llvm_context *ctx, LLVMTypeRef type, uint64_t value)
{
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
LLVMValueRef scalar = LLVMConstInt(LLVMGetElementType(type), value, 0);
unsigned vec_size = LLVMGetVectorSize(type);
LLVMValueRef *scalars = alloca(vec_size * sizeof(LLVMValueRef));
for (unsigned i = 0; i < vec_size; i++)
scalars[i] = scalar;
return LLVMConstVector(scalars, vec_size);
}
return LLVMConstInt(type, value, 0);
}
LLVMValueRef ac_build_isign(struct ac_llvm_context *ctx, LLVMValueRef src0)
{
LLVMTypeRef type = LLVMTypeOf(src0);
LLVMValueRef val;
/* v_med3 is selected only when max is first. (LLVM bug?) */
val = ac_build_imax(ctx, src0, ac_const_uint_vec(ctx, type, -1));
return ac_build_imin(ctx, val, ac_const_uint_vec(ctx, type, 1));
}
static LLVMValueRef ac_eliminate_negative_zero(struct ac_llvm_context *ctx, LLVMValueRef val)
{
ac_enable_signed_zeros(ctx);
/* (val + 0) converts negative zero to positive zero. */
val = LLVMBuildFAdd(ctx->builder, val, LLVMConstNull(LLVMTypeOf(val)), "");
ac_disable_signed_zeros(ctx);
return val;
}
LLVMValueRef ac_build_fsign(struct ac_llvm_context *ctx, LLVMValueRef src)
{
LLVMTypeRef type = LLVMTypeOf(src);
LLVMValueRef pos, neg, dw[2], val;
unsigned bitsize = ac_get_elem_bits(ctx, type);
/* The standard version leads to this:
* v_cmp_ngt_f32_e64 s[0:1], s4, 0 ; D40B0000 00010004
* v_cndmask_b32_e64 v4, 1.0, s4, s[0:1] ; D5010004 000008F2
* v_cmp_le_f32_e32 vcc, 0, v4 ; 7C060880
* v_cndmask_b32_e32 v4, -1.0, v4, vcc ; 020808F3
*
* The isign version:
* v_add_f32_e64 v4, s4, 0 ; D5030004 00010004
* v_med3_i32 v4, v4, -1, 1 ; D5580004 02058304
* v_cvt_f32_i32_e32 v4, v4 ; 7E080B04
*
* (src0 + 0) converts negative zero to positive zero.
* After that, int(fsign(x)) == isign(floatBitsToInt(x)).
*
* For FP64, use the standard version, which doesn't suffer from the huge DP rate
* reduction. (FP64 comparisons are as fast as int64 comparisons)
*/
if (bitsize == 16 || bitsize == 32) {
val = ac_to_integer(ctx, ac_eliminate_negative_zero(ctx, src));
val = ac_build_isign(ctx, val);
return LLVMBuildSIToFP(ctx->builder, val, type, "");
}
assert(bitsize == 64);
pos = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src, ctx->f64_0, "");
neg = LLVMBuildFCmp(ctx->builder, LLVMRealOLT, src, ctx->f64_0, "");
dw[0] = ctx->i32_0;
dw[1] = LLVMBuildSelect(
ctx->builder, pos, LLVMConstInt(ctx->i32, 0x3FF00000, 0),
LLVMBuildSelect(ctx->builder, neg, LLVMConstInt(ctx->i32, 0xBFF00000, 0), ctx->i32_0, ""),
"");
return LLVMBuildBitCast(ctx->builder, ac_build_gather_values(ctx, dw, 2), ctx->f64, "");
}
LLVMValueRef ac_build_bit_count(struct ac_llvm_context *ctx, LLVMValueRef src0)
{
LLVMValueRef result;
unsigned bitsize;
bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
switch (bitsize) {
case 128:
result = ac_build_intrinsic(ctx, "llvm.ctpop.i128", ctx->i128, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, "");
break;
case 64:
result = ac_build_intrinsic(ctx, "llvm.ctpop.i64", ctx->i64, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, "");
break;
case 32:
result = ac_build_intrinsic(ctx, "llvm.ctpop.i32", ctx->i32, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
break;
case 16:
result = ac_build_intrinsic(ctx, "llvm.ctpop.i16", ctx->i16, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
break;
case 8:
result = ac_build_intrinsic(ctx, "llvm.ctpop.i8", ctx->i8, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
break;
default:
unreachable(!"invalid bitsize");
break;
}
return result;
}
LLVMValueRef ac_build_bitfield_reverse(struct ac_llvm_context *ctx, LLVMValueRef src0)
{
LLVMValueRef result;
unsigned bitsize;
bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
switch (bitsize) {
case 64:
result = ac_build_intrinsic(ctx, "llvm.bitreverse.i64", ctx->i64, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, "");
break;
case 32:
result = ac_build_intrinsic(ctx, "llvm.bitreverse.i32", ctx->i32, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
break;
case 16:
result = ac_build_intrinsic(ctx, "llvm.bitreverse.i16", ctx->i16, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
break;
case 8:
result = ac_build_intrinsic(ctx, "llvm.bitreverse.i8", ctx->i8, (LLVMValueRef[]){src0}, 1,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
break;
default:
unreachable(!"invalid bitsize");
break;
}
return result;
}
#define AC_EXP_TARGET 0
#define AC_EXP_ENABLED_CHANNELS 1
#define AC_EXP_OUT0 2
enum ac_ir_type
{
AC_IR_UNDEF,
AC_IR_CONST,
AC_IR_VALUE,
};
struct ac_vs_exp_chan {
LLVMValueRef value;
float const_float;
enum ac_ir_type type;
};
struct ac_vs_exp_inst {
unsigned offset;
LLVMValueRef inst;
struct ac_vs_exp_chan chan[4];
};
struct ac_vs_exports {
unsigned num;
struct ac_vs_exp_inst exp[VARYING_SLOT_MAX];
};
/* Return true if the PARAM export has been eliminated. */
static bool ac_eliminate_const_output(uint8_t *vs_output_param_offset, uint32_t num_outputs,
struct ac_vs_exp_inst *exp)
{
unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
bool is_zero[4] = {0}, is_one[4] = {0};
for (i = 0; i < 4; i++) {
/* It's a constant expression. Undef outputs are eliminated too. */
if (exp->chan[i].type == AC_IR_UNDEF) {
is_zero[i] = true;
is_one[i] = true;
} else if (exp->chan[i].type == AC_IR_CONST) {
if (exp->chan[i].const_float == 0)
is_zero[i] = true;
else if (exp->chan[i].const_float == 1)
is_one[i] = true;
else
return false; /* other constant */
} else
return false;
}
/* Only certain combinations of 0 and 1 can be eliminated. */
if (is_zero[0] && is_zero[1] && is_zero[2])
default_val = is_zero[3] ? 0 : 1;
else if (is_one[0] && is_one[1] && is_one[2])
default_val = is_zero[3] ? 2 : 3;
else
return false;
/* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
LLVMInstructionEraseFromParent(exp->inst);
/* Change OFFSET to DEFAULT_VAL. */
for (i = 0; i < num_outputs; i++) {
if (vs_output_param_offset[i] == exp->offset) {
vs_output_param_offset[i] = AC_EXP_PARAM_DEFAULT_VAL_0000 + default_val;
break;
}
}
return true;
}
static bool ac_eliminate_duplicated_output(struct ac_llvm_context *ctx,
uint8_t *vs_output_param_offset, uint32_t num_outputs,
struct ac_vs_exports *processed,
struct ac_vs_exp_inst *exp)
{
unsigned p, copy_back_channels = 0;
/* See if the output is already in the list of processed outputs.
* The LLVMValueRef comparison relies on SSA.
*/
for (p = 0; p < processed->num; p++) {
bool different = false;
for (unsigned j = 0; j < 4; j++) {
struct ac_vs_exp_chan *c1 = &processed->exp[p].chan[j];
struct ac_vs_exp_chan *c2 = &exp->chan[j];
/* Treat undef as a match. */
if (c2->type == AC_IR_UNDEF)
continue;
/* If c1 is undef but c2 isn't, we can copy c2 to c1
* and consider the instruction duplicated.
*/
if (c1->type == AC_IR_UNDEF) {
copy_back_channels |= 1 << j;
continue;
}
/* Test whether the channels are not equal. */
if (c1->type != c2->type ||
(c1->type == AC_IR_CONST && c1->const_float != c2->const_float) ||
(c1->type == AC_IR_VALUE && c1->value != c2->value)) {
different = true;
break;
}
}
if (!different)
break;
copy_back_channels = 0;
}
if (p == processed->num)
return false;
/* If a match was found, but the matching export has undef where the new
* one has a normal value, copy the normal value to the undef channel.
*/
struct ac_vs_exp_inst *match = &processed->exp[p];
/* Get current enabled channels mask. */
LLVMValueRef arg = LLVMGetOperand(match->inst, AC_EXP_ENABLED_CHANNELS);
unsigned enabled_channels = LLVMConstIntGetZExtValue(arg);
while (copy_back_channels) {
unsigned chan = u_bit_scan(&copy_back_channels);
assert(match->chan[chan].type == AC_IR_UNDEF);
LLVMSetOperand(match->inst, AC_EXP_OUT0 + chan, exp->chan[chan].value);
match->chan[chan] = exp->chan[chan];
/* Update number of enabled channels because the original mask
* is not always 0xf.
*/
enabled_channels |= (1 << chan);
LLVMSetOperand(match->inst, AC_EXP_ENABLED_CHANNELS,
LLVMConstInt(ctx->i32, enabled_channels, 0));
}
/* The PARAM export is duplicated. Kill it. */
LLVMInstructionEraseFromParent(exp->inst);
/* Change OFFSET to the matching export. */
for (unsigned i = 0; i < num_outputs; i++) {
if (vs_output_param_offset[i] == exp->offset) {
vs_output_param_offset[i] = match->offset;
break;
}
}
return true;
}
void ac_optimize_vs_outputs(struct ac_llvm_context *ctx, LLVMValueRef main_fn,
uint8_t *vs_output_param_offset, uint32_t num_outputs,
uint32_t skip_output_mask, uint8_t *num_param_exports)
{
LLVMBasicBlockRef bb;
bool removed_any = false;
struct ac_vs_exports exports;
exports.num = 0;
/* Process all LLVM instructions. */
bb = LLVMGetFirstBasicBlock(main_fn);
while (bb) {
LLVMValueRef inst = LLVMGetFirstInstruction(bb);
while (inst) {
LLVMValueRef cur = inst;
inst = LLVMGetNextInstruction(inst);
struct ac_vs_exp_inst exp;
if (LLVMGetInstructionOpcode(cur) != LLVMCall)
continue;
LLVMValueRef callee = ac_llvm_get_called_value(cur);
if (!ac_llvm_is_function(callee))
continue;
const char *name = LLVMGetValueName(callee);
unsigned num_args = LLVMCountParams(callee);
/* Check if this is an export instruction. */
if ((num_args != 9 && num_args != 8) ||
(strcmp(name, "llvm.SI.export") && strcmp(name, "llvm.amdgcn.exp.f32")))
continue;
LLVMValueRef arg = LLVMGetOperand(cur, AC_EXP_TARGET);
unsigned target = LLVMConstIntGetZExtValue(arg);
if (target < V_008DFC_SQ_EXP_PARAM)
continue;
target -= V_008DFC_SQ_EXP_PARAM;
/* Parse the instruction. */
memset(&exp, 0, sizeof(exp));
exp.offset = target;
exp.inst = cur;
for (unsigned i = 0; i < 4; i++) {
LLVMValueRef v = LLVMGetOperand(cur, AC_EXP_OUT0 + i);
exp.chan[i].value = v;
if (LLVMIsUndef(v)) {
exp.chan[i].type = AC_IR_UNDEF;
} else if (LLVMIsAConstantFP(v)) {
LLVMBool loses_info;
exp.chan[i].type = AC_IR_CONST;
exp.chan[i].const_float = LLVMConstRealGetDouble(v, &loses_info);
} else {
exp.chan[i].type = AC_IR_VALUE;
}
}
/* Eliminate constant and duplicated PARAM exports. */
if (!((1u << target) & skip_output_mask) &&
(ac_eliminate_const_output(vs_output_param_offset, num_outputs, &exp) ||
ac_eliminate_duplicated_output(ctx, vs_output_param_offset, num_outputs, &exports,
&exp))) {
removed_any = true;
} else {
exports.exp[exports.num++] = exp;
}
}
bb = LLVMGetNextBasicBlock(bb);
}
/* Remove holes in export memory due to removed PARAM exports.
* This is done by renumbering all PARAM exports.
*/
if (removed_any) {
uint8_t old_offset[VARYING_SLOT_MAX];
unsigned out, i;
/* Make a copy of the offsets. We need the old version while
* we are modifying some of them. */
memcpy(old_offset, vs_output_param_offset, sizeof(old_offset));
for (i = 0; i < exports.num; i++) {
unsigned offset = exports.exp[i].offset;
/* Update vs_output_param_offset. Multiple outputs can
* have the same offset.
*/
for (out = 0; out < num_outputs; out++) {
if (old_offset[out] == offset)
vs_output_param_offset[out] = i;
}
/* Change the PARAM offset in the instruction. */
LLVMSetOperand(exports.exp[i].inst, AC_EXP_TARGET,
LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_PARAM + i, 0));
}
*num_param_exports = exports.num;
}
}
void ac_init_exec_full_mask(struct ac_llvm_context *ctx)
{
LLVMValueRef full_mask = LLVMConstInt(ctx->i64, ~0ull, 0);
ac_build_intrinsic(ctx, "llvm.amdgcn.init.exec", ctx->voidt, &full_mask, 1,
AC_FUNC_ATTR_CONVERGENT);
}
void ac_declare_lds_as_pointer(struct ac_llvm_context *ctx)
{
unsigned lds_size = ctx->chip_class >= GFX7 ? 65536 : 32768;
ctx->lds = LLVMBuildIntToPtr(
ctx->builder, ctx->i32_0,
LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), AC_ADDR_SPACE_LDS), "lds");
}
LLVMValueRef ac_lds_load(struct ac_llvm_context *ctx, LLVMValueRef dw_addr)
{
return LLVMBuildLoad(ctx->builder, ac_build_gep0(ctx, ctx->lds, dw_addr), "");
}
void ac_lds_store(struct ac_llvm_context *ctx, LLVMValueRef dw_addr, LLVMValueRef value)
{
value = ac_to_integer(ctx, value);
ac_build_indexed_store(ctx, ctx->lds, dw_addr, value);
}
LLVMValueRef ac_find_lsb(struct ac_llvm_context *ctx, LLVMTypeRef dst_type, LLVMValueRef src0)
{
unsigned src0_bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
const char *intrin_name;
LLVMTypeRef type;
LLVMValueRef zero;
switch (src0_bitsize) {
case 64:
intrin_name = "llvm.cttz.i64";
type = ctx->i64;
zero = ctx->i64_0;
break;
case 32:
intrin_name = "llvm.cttz.i32";
type = ctx->i32;
zero = ctx->i32_0;
break;
case 16:
intrin_name = "llvm.cttz.i16";
type = ctx->i16;
zero = ctx->i16_0;
break;
case 8:
intrin_name = "llvm.cttz.i8";
type = ctx->i8;
zero = ctx->i8_0;
break;
default:
unreachable(!"invalid bitsize");
}
LLVMValueRef params[2] = {
src0,
/* The value of 1 means that ffs(x=0) = undef, so LLVM won't
* add special code to check for x=0. The reason is that
* the LLVM behavior for x=0 is different from what we
* need here. However, LLVM also assumes that ffs(x) is
* in [0, 31], but GLSL expects that ffs(0) = -1, so
* a conditional assignment to handle 0 is still required.
*
* The hardware already implements the correct behavior.
*/
ctx->i1true,
};
LLVMValueRef lsb = ac_build_intrinsic(ctx, intrin_name, type, params, 2, AC_FUNC_ATTR_READNONE);
if (src0_bitsize == 64) {
lsb = LLVMBuildTrunc(ctx->builder, lsb, ctx->i32, "");
} else if (src0_bitsize < 32) {
lsb = LLVMBuildSExt(ctx->builder, lsb, ctx->i32, "");
}
/* TODO: We need an intrinsic to skip this conditional. */
/* Check for zero: */
return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntEQ, src0, zero, ""),
LLVMConstInt(ctx->i32, -1, 0), lsb, "");
}
LLVMTypeRef ac_array_in_const_addr_space(LLVMTypeRef elem_type)
{
return LLVMPointerType(elem_type, AC_ADDR_SPACE_CONST);
}
LLVMTypeRef ac_array_in_const32_addr_space(LLVMTypeRef elem_type)
{
return LLVMPointerType(elem_type, AC_ADDR_SPACE_CONST_32BIT);
}
static struct ac_llvm_flow *get_current_flow(struct ac_llvm_context *ctx)
{
if (ctx->flow->depth > 0)
return &ctx->flow->stack[ctx->flow->depth - 1];
return NULL;
}
static struct ac_llvm_flow *get_innermost_loop(struct ac_llvm_context *ctx)
{
for (unsigned i = ctx->flow->depth; i > 0; --i) {
if (ctx->flow->stack[i - 1].loop_entry_block)
return &ctx->flow->stack[i - 1];
}
return NULL;
}
static struct ac_llvm_flow *push_flow(struct ac_llvm_context *ctx)
{
struct ac_llvm_flow *flow;
if (ctx->flow->depth >= ctx->flow->depth_max) {
unsigned new_max = MAX2(ctx->flow->depth << 1, AC_LLVM_INITIAL_CF_DEPTH);
ctx->flow->stack = realloc(ctx->flow->stack, new_max * sizeof(*ctx->flow->stack));
ctx->flow->depth_max = new_max;
}
flow = &ctx->flow->stack[ctx->flow->depth];
ctx->flow->depth++;
flow->next_block = NULL;
flow->loop_entry_block = NULL;
return flow;
}
static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base, int label_id)
{
char buf[32];
snprintf(buf, sizeof(buf), "%s%d", base, label_id);
LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
}
/* Append a basic block at the level of the parent flow.
*/
static LLVMBasicBlockRef append_basic_block(struct ac_llvm_context *ctx, const char *name)
{
assert(ctx->flow->depth >= 1);
if (ctx->flow->depth >= 2) {
struct ac_llvm_flow *flow = &ctx->flow->stack[ctx->flow->depth - 2];
return LLVMInsertBasicBlockInContext(ctx->context, flow->next_block, name);
}
LLVMValueRef main_fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->builder));
return LLVMAppendBasicBlockInContext(ctx->context, main_fn, name);
}
/* Emit a branch to the given default target for the current block if
* applicable -- that is, if the current block does not already contain a
* branch from a break or continue.
*/
static void emit_default_branch(LLVMBuilderRef builder, LLVMBasicBlockRef target)
{
if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
LLVMBuildBr(builder, target);
}
void ac_build_bgnloop(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *flow = push_flow(ctx);
flow->loop_entry_block = append_basic_block(ctx, "LOOP");
flow->next_block = append_basic_block(ctx, "ENDLOOP");
set_basicblock_name(flow->loop_entry_block, "loop", label_id);
LLVMBuildBr(ctx->builder, flow->loop_entry_block);
LLVMPositionBuilderAtEnd(ctx->builder, flow->loop_entry_block);
}
void ac_build_break(struct ac_llvm_context *ctx)
{
struct ac_llvm_flow *flow = get_innermost_loop(ctx);
LLVMBuildBr(ctx->builder, flow->next_block);
}
void ac_build_continue(struct ac_llvm_context *ctx)
{
struct ac_llvm_flow *flow = get_innermost_loop(ctx);
LLVMBuildBr(ctx->builder, flow->loop_entry_block);
}
void ac_build_else(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *current_branch = get_current_flow(ctx);
LLVMBasicBlockRef endif_block;
assert(!current_branch->loop_entry_block);
endif_block = append_basic_block(ctx, "ENDIF");
emit_default_branch(ctx->builder, endif_block);
LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
set_basicblock_name(current_branch->next_block, "else", label_id);
current_branch->next_block = endif_block;
}
void ac_build_endif(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *current_branch = get_current_flow(ctx);
assert(!current_branch->loop_entry_block);
emit_default_branch(ctx->builder, current_branch->next_block);
LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
set_basicblock_name(current_branch->next_block, "endif", label_id);
ctx->flow->depth--;
}
void ac_build_endloop(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *current_loop = get_current_flow(ctx);
assert(current_loop->loop_entry_block);
emit_default_branch(ctx->builder, current_loop->loop_entry_block);
LLVMPositionBuilderAtEnd(ctx->builder, current_loop->next_block);
set_basicblock_name(current_loop->next_block, "endloop", label_id);
ctx->flow->depth--;
}
void ac_build_ifcc(struct ac_llvm_context *ctx, LLVMValueRef cond, int label_id)
{
struct ac_llvm_flow *flow = push_flow(ctx);
LLVMBasicBlockRef if_block;
if_block = append_basic_block(ctx, "IF");
flow->next_block = append_basic_block(ctx, "ELSE");
set_basicblock_name(if_block, "if", label_id);
LLVMBuildCondBr(ctx->builder, cond, if_block, flow->next_block);
LLVMPositionBuilderAtEnd(ctx->builder, if_block);
}
LLVMValueRef ac_build_alloca_undef(struct ac_llvm_context *ac, LLVMTypeRef type, const char *name)
{
LLVMBuilderRef builder = ac->builder;
LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context);
LLVMValueRef res;
if (first_instr) {
LLVMPositionBuilderBefore(first_builder, first_instr);
} else {
LLVMPositionBuilderAtEnd(first_builder, first_block);
}
res = LLVMBuildAlloca(first_builder, type, name);
LLVMDisposeBuilder(first_builder);
return res;
}
LLVMValueRef ac_build_alloca(struct ac_llvm_context *ac, LLVMTypeRef type, const char *name)
{
LLVMValueRef ptr = ac_build_alloca_undef(ac, type, name);
LLVMBuildStore(ac->builder, LLVMConstNull(type), ptr);
return ptr;
}
LLVMValueRef ac_cast_ptr(struct ac_llvm_context *ctx, LLVMValueRef ptr, LLVMTypeRef type)
{
int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
return LLVMBuildBitCast(ctx->builder, ptr, LLVMPointerType(type, addr_space), "");
}
LLVMValueRef ac_trim_vector(struct ac_llvm_context *ctx, LLVMValueRef value, unsigned count)
{
unsigned num_components = ac_get_llvm_num_components(value);
if (count == num_components)
return value;
LLVMValueRef masks[MAX2(count, 2)];
masks[0] = ctx->i32_0;
masks[1] = ctx->i32_1;
for (unsigned i = 2; i < count; i++)
masks[i] = LLVMConstInt(ctx->i32, i, false);
if (count == 1)
return LLVMBuildExtractElement(ctx->builder, value, masks[0], "");
LLVMValueRef swizzle = LLVMConstVector(masks, count);
return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
}
LLVMValueRef ac_unpack_param(struct ac_llvm_context *ctx, LLVMValueRef param, unsigned rshift,
unsigned bitwidth)
{
LLVMValueRef value = param;
if (rshift)
value = LLVMBuildLShr(ctx->builder, value, LLVMConstInt(ctx->i32, rshift, false), "");
if (rshift + bitwidth < 32) {
unsigned mask = (1 << bitwidth) - 1;
value = LLVMBuildAnd(ctx->builder, value, LLVMConstInt(ctx->i32, mask, false), "");
}
return value;
}
/* Adjust the sample index according to FMASK.
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* addr[sample_index] = (fmask >> (addr[sample_index] * 4)) & 0xF;
*/
void ac_apply_fmask_to_sample(struct ac_llvm_context *ac, LLVMValueRef fmask, LLVMValueRef *addr,
bool is_array_tex)
{
struct ac_image_args fmask_load = {0};
fmask_load.opcode = ac_image_load;
fmask_load.resource = fmask;
fmask_load.dmask = 0xf;
fmask_load.dim = is_array_tex ? ac_image_2darray : ac_image_2d;
fmask_load.attributes = AC_FUNC_ATTR_READNONE;
fmask_load.coords[0] = addr[0];
fmask_load.coords[1] = addr[1];
if (is_array_tex)
fmask_load.coords[2] = addr[2];
LLVMValueRef fmask_value = ac_build_image_opcode(ac, &fmask_load);
fmask_value = LLVMBuildExtractElement(ac->builder, fmask_value, ac->i32_0, "");
/* Apply the formula. */
unsigned sample_chan = is_array_tex ? 3 : 2;
LLVMValueRef final_sample;
final_sample = LLVMBuildMul(ac->builder, addr[sample_chan], LLVMConstInt(ac->i32, 4, 0), "");
final_sample = LLVMBuildLShr(ac->builder, fmask_value, final_sample, "");
/* Mask the sample index by 0x7, because 0x8 means an unknown value
* with EQAA, so those will map to 0. */
final_sample = LLVMBuildAnd(ac->builder, final_sample, LLVMConstInt(ac->i32, 0x7, 0), "");
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
* resource descriptor is 0 (invalid).
*/
LLVMValueRef tmp;
tmp = LLVMBuildBitCast(ac->builder, fmask, ac->v8i32, "");
tmp = LLVMBuildExtractElement(ac->builder, tmp, ac->i32_1, "");
tmp = LLVMBuildICmp(ac->builder, LLVMIntNE, tmp, ac->i32_0, "");
/* Replace the MSAA sample index. */
addr[sample_chan] = LLVMBuildSelect(ac->builder, tmp, final_sample, addr[sample_chan], "");
}
static LLVMValueRef _ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src,
LLVMValueRef lane, bool with_opt_barrier)
{
LLVMTypeRef type = LLVMTypeOf(src);
LLVMValueRef result;
if (with_opt_barrier)
ac_build_optimization_barrier(ctx, &src);
src = LLVMBuildZExt(ctx->builder, src, ctx->i32, "");
if (lane)
lane = LLVMBuildZExt(ctx->builder, lane, ctx->i32, "");
result =
ac_build_intrinsic(ctx, lane == NULL ? "llvm.amdgcn.readfirstlane" : "llvm.amdgcn.readlane",
ctx->i32, (LLVMValueRef[]){src, lane}, lane == NULL ? 1 : 2,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
return LLVMBuildTrunc(ctx->builder, result, type, "");
}
static LLVMValueRef ac_build_readlane_common(struct ac_llvm_context *ctx, LLVMValueRef src,
LLVMValueRef lane, bool with_opt_barrier)
{
LLVMTypeRef src_type = LLVMTypeOf(src);
src = ac_to_integer(ctx, src);
unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
LLVMValueRef ret;
if (bits > 32) {
assert(bits % 32 == 0);
LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, "");
ret = LLVMGetUndef(vec_type);
for (unsigned i = 0; i < bits / 32; i++) {
LLVMValueRef ret_comp;
src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), "");
ret_comp = _ac_build_readlane(ctx, src, lane, with_opt_barrier);
ret =
LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), "");
}
} else {
ret = _ac_build_readlane(ctx, src, lane, with_opt_barrier);
}
if (LLVMGetTypeKind(src_type) == LLVMPointerTypeKind)
return LLVMBuildIntToPtr(ctx->builder, ret, src_type, "");
return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
}
/**
* Builds the "llvm.amdgcn.readlane" or "llvm.amdgcn.readfirstlane" intrinsic.
*
* The optimization barrier is not needed if the value is the same in all lanes
* or if this is called in the outermost block.
*
* @param ctx
* @param src
* @param lane - id of the lane or NULL for the first active lane
* @return value of the lane
*/
LLVMValueRef ac_build_readlane_no_opt_barrier(struct ac_llvm_context *ctx, LLVMValueRef src,
LLVMValueRef lane)
{
return ac_build_readlane_common(ctx, src, lane, false);
}
LLVMValueRef ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef lane)
{
return ac_build_readlane_common(ctx, src, lane, true);
}
LLVMValueRef ac_build_writelane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef value,
LLVMValueRef lane)
{
return ac_build_intrinsic(ctx, "llvm.amdgcn.writelane", ctx->i32,
(LLVMValueRef[]){value, lane, src}, 3,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
}
LLVMValueRef ac_build_mbcnt(struct ac_llvm_context *ctx, LLVMValueRef mask)
{
if (ctx->wave_size == 32) {
return ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.lo", ctx->i32,
(LLVMValueRef[]){mask, ctx->i32_0}, 2, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef mask_vec = LLVMBuildBitCast(ctx->builder, mask, ctx->v2i32, "");
LLVMValueRef mask_lo = LLVMBuildExtractElement(ctx->builder, mask_vec, ctx->i32_0, "");
LLVMValueRef mask_hi = LLVMBuildExtractElement(ctx->builder, mask_vec, ctx->i32_1, "");
LLVMValueRef val =
ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.lo", ctx->i32,
(LLVMValueRef[]){mask_lo, ctx->i32_0}, 2, AC_FUNC_ATTR_READNONE);
val = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi", ctx->i32, (LLVMValueRef[]){mask_hi, val},
2, AC_FUNC_ATTR_READNONE);
return val;
}
enum dpp_ctrl
{
_dpp_quad_perm = 0x000,
_dpp_row_sl = 0x100,
_dpp_row_sr = 0x110,
_dpp_row_rr = 0x120,
dpp_wf_sl1 = 0x130,
dpp_wf_rl1 = 0x134,
dpp_wf_sr1 = 0x138,
dpp_wf_rr1 = 0x13C,
dpp_row_mirror = 0x140,
dpp_row_half_mirror = 0x141,
dpp_row_bcast15 = 0x142,
dpp_row_bcast31 = 0x143
};
static inline enum dpp_ctrl dpp_quad_perm(unsigned lane0, unsigned lane1, unsigned lane2,
unsigned lane3)
{
assert(lane0 < 4 && lane1 < 4 && lane2 < 4 && lane3 < 4);
return _dpp_quad_perm | lane0 | (lane1 << 2) | (lane2 << 4) | (lane3 << 6);
}
static inline enum dpp_ctrl dpp_row_sl(unsigned amount)
{
assert(amount > 0 && amount < 16);
return _dpp_row_sl | amount;
}
static inline enum dpp_ctrl dpp_row_sr(unsigned amount)
{
assert(amount > 0 && amount < 16);
return _dpp_row_sr | amount;
}
static LLVMValueRef _ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src,
enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask,
bool bound_ctrl)
{
LLVMTypeRef type = LLVMTypeOf(src);
LLVMValueRef res;
old = LLVMBuildZExt(ctx->builder, old, ctx->i32, "");
src = LLVMBuildZExt(ctx->builder, src, ctx->i32, "");
res = ac_build_intrinsic(
ctx, "llvm.amdgcn.update.dpp.i32", ctx->i32,
(LLVMValueRef[]){old, src, LLVMConstInt(ctx->i32, dpp_ctrl, 0),
LLVMConstInt(ctx->i32, row_mask, 0), LLVMConstInt(ctx->i32, bank_mask, 0),
LLVMConstInt(ctx->i1, bound_ctrl, 0)},
6, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
return LLVMBuildTrunc(ctx->builder, res, type, "");
}
static LLVMValueRef ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src,
enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask,
bool bound_ctrl)
{
LLVMTypeRef src_type = LLVMTypeOf(src);
src = ac_to_integer(ctx, src);
old = ac_to_integer(ctx, old);
unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
LLVMValueRef ret;
if (bits > 32) {
assert(bits % 32 == 0);
LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, "");
LLVMValueRef old_vector = LLVMBuildBitCast(ctx->builder, old, vec_type, "");
ret = LLVMGetUndef(vec_type);
for (unsigned i = 0; i < bits / 32; i++) {
src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), "");
old = LLVMBuildExtractElement(ctx->builder, old_vector, LLVMConstInt(ctx->i32, i, 0), "");
LLVMValueRef ret_comp =
_ac_build_dpp(ctx, old, src, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
ret =
LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), "");
}
} else {
ret = _ac_build_dpp(ctx, old, src, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
}
return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
}
static LLVMValueRef _ac_build_permlane16(struct ac_llvm_context *ctx, LLVMValueRef src,
uint64_t sel, bool exchange_rows, bool bound_ctrl)
{
LLVMTypeRef type = LLVMTypeOf(src);
LLVMValueRef result;
src = LLVMBuildZExt(ctx->builder, src, ctx->i32, "");
LLVMValueRef args[6] = {
src,
src,
LLVMConstInt(ctx->i32, sel, false),
LLVMConstInt(ctx->i32, sel >> 32, false),
ctx->i1true, /* fi */
bound_ctrl ? ctx->i1true : ctx->i1false,
};
result =
ac_build_intrinsic(ctx, exchange_rows ? "llvm.amdgcn.permlanex16" : "llvm.amdgcn.permlane16",
ctx->i32, args, 6, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
return LLVMBuildTrunc(ctx->builder, result, type, "");
}
static LLVMValueRef ac_build_permlane16(struct ac_llvm_context *ctx, LLVMValueRef src, uint64_t sel,
bool exchange_rows, bool bound_ctrl)
{
LLVMTypeRef src_type = LLVMTypeOf(src);
src = ac_to_integer(ctx, src);
unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
LLVMValueRef ret;
if (bits > 32) {
assert(bits % 32 == 0);
LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, "");
ret = LLVMGetUndef(vec_type);
for (unsigned i = 0; i < bits / 32; i++) {
src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), "");
LLVMValueRef ret_comp = _ac_build_permlane16(ctx, src, sel, exchange_rows, bound_ctrl);
ret =
LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), "");
}
} else {
ret = _ac_build_permlane16(ctx, src, sel, exchange_rows, bound_ctrl);
}
return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
}
static inline unsigned ds_pattern_bitmode(unsigned and_mask, unsigned or_mask, unsigned xor_mask)
{
assert(and_mask < 32 && or_mask < 32 && xor_mask < 32);
return and_mask | (or_mask << 5) | (xor_mask << 10);
}
static LLVMValueRef _ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src,
unsigned mask)
{
LLVMTypeRef src_type = LLVMTypeOf(src);
LLVMValueRef ret;
src = LLVMBuildZExt(ctx->builder, src, ctx->i32, "");
ret = ac_build_intrinsic(ctx, "llvm.amdgcn.ds.swizzle", ctx->i32,
(LLVMValueRef[]){src, LLVMConstInt(ctx->i32, mask, 0)}, 2,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
return LLVMBuildTrunc(ctx->builder, ret, src_type, "");
}
LLVMValueRef ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned mask)
{
LLVMTypeRef src_type = LLVMTypeOf(src);
src = ac_to_integer(ctx, src);
unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
LLVMValueRef ret;
if (bits > 32) {
assert(bits % 32 == 0);
LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, "");
ret = LLVMGetUndef(vec_type);
for (unsigned i = 0; i < bits / 32; i++) {
src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), "");
LLVMValueRef ret_comp = _ac_build_ds_swizzle(ctx, src, mask);
ret =
LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), "");
}
} else {
ret = _ac_build_ds_swizzle(ctx, src, mask);
}
return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
}
static LLVMValueRef ac_build_wwm(struct ac_llvm_context *ctx, LLVMValueRef src)
{
LLVMTypeRef src_type = LLVMTypeOf(src);
unsigned bitsize = ac_get_elem_bits(ctx, src_type);
char name[32], type[8];
LLVMValueRef ret;
src = ac_to_integer(ctx, src);
if (bitsize < 32)
src = LLVMBuildZExt(ctx->builder, src, ctx->i32, "");
ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type));
snprintf(name, sizeof(name), "llvm.amdgcn.wwm.%s", type);
ret = ac_build_intrinsic(ctx, name, LLVMTypeOf(src), (LLVMValueRef[]){src}, 1,
AC_FUNC_ATTR_READNONE);
if (bitsize < 32)
ret = LLVMBuildTrunc(ctx->builder, ret, ac_to_integer_type(ctx, src_type), "");
return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
}
static LLVMValueRef ac_build_set_inactive(struct ac_llvm_context *ctx, LLVMValueRef src,
LLVMValueRef inactive)
{
char name[33], type[8];
LLVMTypeRef src_type = LLVMTypeOf(src);
unsigned bitsize = ac_get_elem_bits(ctx, src_type);
src = ac_to_integer(ctx, src);
inactive = ac_to_integer(ctx, inactive);
if (bitsize < 32) {
src = LLVMBuildZExt(ctx->builder, src, ctx->i32, "");
inactive = LLVMBuildZExt(ctx->builder, inactive, ctx->i32, "");
}
ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type));
snprintf(name, sizeof(name), "llvm.amdgcn.set.inactive.%s", type);
LLVMValueRef ret =
ac_build_intrinsic(ctx, name, LLVMTypeOf(src), (LLVMValueRef[]){src, inactive}, 2,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
if (bitsize < 32)
ret = LLVMBuildTrunc(ctx->builder, ret, src_type, "");
return ret;
}
static LLVMValueRef get_reduction_identity(struct ac_llvm_context *ctx, nir_op op,
unsigned type_size)
{
if (type_size == 0) {
switch (op) {
case nir_op_ior:
case nir_op_ixor:
return LLVMConstInt(ctx->i1, 0, 0);
case nir_op_iand:
return LLVMConstInt(ctx->i1, 1, 0);
default:
unreachable("bad reduction intrinsic");
}
} else if (type_size == 1) {
switch (op) {
case nir_op_iadd:
return ctx->i8_0;
case nir_op_imul:
return ctx->i8_1;
case nir_op_imin:
return LLVMConstInt(ctx->i8, INT8_MAX, 0);
case nir_op_umin:
return LLVMConstInt(ctx->i8, UINT8_MAX, 0);
case nir_op_imax:
return LLVMConstInt(ctx->i8, INT8_MIN, 0);
case nir_op_umax:
return ctx->i8_0;
case nir_op_iand:
return LLVMConstInt(ctx->i8, -1, 0);
case nir_op_ior:
return ctx->i8_0;
case nir_op_ixor:
return ctx->i8_0;
default:
unreachable("bad reduction intrinsic");
}
} else if (type_size == 2) {
switch (op) {
case nir_op_iadd:
return ctx->i16_0;
case nir_op_fadd:
return ctx->f16_0;
case nir_op_imul:
return ctx->i16_1;
case nir_op_fmul:
return ctx->f16_1;
case nir_op_imin:
return LLVMConstInt(ctx->i16, INT16_MAX, 0);
case nir_op_umin:
return LLVMConstInt(ctx->i16, UINT16_MAX, 0);
case nir_op_fmin:
return LLVMConstReal(ctx->f16, INFINITY);
case nir_op_imax:
return LLVMConstInt(ctx->i16, INT16_MIN, 0);
case nir_op_umax:
return ctx->i16_0;
case nir_op_fmax:
return LLVMConstReal(ctx->f16, -INFINITY);
case nir_op_iand:
return LLVMConstInt(ctx->i16, -1, 0);
case nir_op_ior:
return ctx->i16_0;
case nir_op_ixor:
return ctx->i16_0;
default:
unreachable("bad reduction intrinsic");
}
} else if (type_size == 4) {
switch (op) {
case nir_op_iadd:
return ctx->i32_0;
case nir_op_fadd:
return ctx->f32_0;
case nir_op_imul:
return ctx->i32_1;
case nir_op_fmul:
return ctx->f32_1;
case nir_op_imin:
return LLVMConstInt(ctx->i32, INT32_MAX, 0);
case nir_op_umin:
return LLVMConstInt(ctx->i32, UINT32_MAX, 0);
case nir_op_fmin:
return LLVMConstReal(ctx->f32, INFINITY);
case nir_op_imax:
return LLVMConstInt(ctx->i32, INT32_MIN, 0);
case nir_op_umax:
return ctx->i32_0;
case nir_op_fmax:
return LLVMConstReal(ctx->f32, -INFINITY);
case nir_op_iand:
return LLVMConstInt(ctx->i32, -1, 0);
case nir_op_ior:
return ctx->i32_0;
case nir_op_ixor:
return ctx->i32_0;
default:
unreachable("bad reduction intrinsic");
}
} else { /* type_size == 64bit */
switch (op) {
case nir_op_iadd:
return ctx->i64_0;
case nir_op_fadd:
return ctx->f64_0;
case nir_op_imul:
return ctx->i64_1;
case nir_op_fmul:
return ctx->f64_1;
case nir_op_imin:
return LLVMConstInt(ctx->i64, INT64_MAX, 0);
case nir_op_umin:
return LLVMConstInt(ctx->i64, UINT64_MAX, 0);
case nir_op_fmin:
return LLVMConstReal(ctx->f64, INFINITY);
case nir_op_imax:
return LLVMConstInt(ctx->i64, INT64_MIN, 0);
case nir_op_umax:
return ctx->i64_0;
case nir_op_fmax:
return LLVMConstReal(ctx->f64, -INFINITY);
case nir_op_iand:
return LLVMConstInt(ctx->i64, -1, 0);
case nir_op_ior:
return ctx->i64_0;
case nir_op_ixor:
return ctx->i64_0;
default:
unreachable("bad reduction intrinsic");
}
}
}
static LLVMValueRef ac_build_alu_op(struct ac_llvm_context *ctx, LLVMValueRef lhs, LLVMValueRef rhs,
nir_op op)
{
bool _64bit = ac_get_type_size(LLVMTypeOf(lhs)) == 8;
bool _32bit = ac_get_type_size(LLVMTypeOf(lhs)) == 4;
switch (op) {
case nir_op_iadd:
return LLVMBuildAdd(ctx->builder, lhs, rhs, "");
case nir_op_fadd:
return LLVMBuildFAdd(ctx->builder, lhs, rhs, "");
case nir_op_imul:
return LLVMBuildMul(ctx->builder, lhs, rhs, "");
case nir_op_fmul:
return LLVMBuildFMul(ctx->builder, lhs, rhs, "");
case nir_op_imin:
return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntSLT, lhs, rhs, ""),
lhs, rhs, "");
case nir_op_umin:
return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntULT, lhs, rhs, ""),
lhs, rhs, "");
case nir_op_fmin:
return ac_build_intrinsic(
ctx, _64bit ? "llvm.minnum.f64" : _32bit ? "llvm.minnum.f32" : "llvm.minnum.f16",
_64bit ? ctx->f64 : _32bit ? ctx->f32 : ctx->f16, (LLVMValueRef[]){lhs, rhs}, 2,
AC_FUNC_ATTR_READNONE);
case nir_op_imax:
return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntSGT, lhs, rhs, ""),
lhs, rhs, "");
case nir_op_umax:
return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntUGT, lhs, rhs, ""),
lhs, rhs, "");
case nir_op_fmax:
return ac_build_intrinsic(
ctx, _64bit ? "llvm.maxnum.f64" : _32bit ? "llvm.maxnum.f32" : "llvm.maxnum.f16",
_64bit ? ctx->f64 : _32bit ? ctx->f32 : ctx->f16, (LLVMValueRef[]){lhs, rhs}, 2,
AC_FUNC_ATTR_READNONE);
case nir_op_iand:
return LLVMBuildAnd(ctx->builder, lhs, rhs, "");
case nir_op_ior:
return LLVMBuildOr(ctx->builder, lhs, rhs, "");
case nir_op_ixor:
return LLVMBuildXor(ctx->builder, lhs, rhs, "");
default:
unreachable("bad reduction intrinsic");
}
}
/**
* \param src The value to shift.
* \param identity The value to use the first lane.
* \param maxprefix specifies that the result only needs to be correct for a
* prefix of this many threads
* \return src, shifted 1 lane up, and identity shifted into lane 0.
*/
static LLVMValueRef ac_wavefront_shift_right_1(struct ac_llvm_context *ctx, LLVMValueRef src,
LLVMValueRef identity, unsigned maxprefix)
{
if (ctx->chip_class >= GFX10) {
/* wavefront shift_right by 1 on GFX10 (emulate dpp_wf_sr1) */
LLVMValueRef active, tmp1, tmp2;
LLVMValueRef tid = ac_get_thread_id(ctx);
tmp1 = ac_build_dpp(ctx, identity, src, dpp_row_sr(1), 0xf, 0xf, false);
tmp2 = ac_build_permlane16(ctx, src, (uint64_t)~0, true, false);
if (maxprefix > 32) {
active =
LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, LLVMConstInt(ctx->i32, 32, false), "");
tmp2 = LLVMBuildSelect(ctx->builder, active,
ac_build_readlane(ctx, src, LLVMConstInt(ctx->i32, 31, false)),
tmp2, "");
active = LLVMBuildOr(
ctx->builder, active,
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0x1f, false), ""),
LLVMConstInt(ctx->i32, 0x10, false), ""),
"");
return LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, "");
} else if (maxprefix > 16) {
active =
LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, LLVMConstInt(ctx->i32, 16, false), "");
return LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, "");
}
} else if (ctx->chip_class >= GFX8) {
return ac_build_dpp(ctx, identity, src, dpp_wf_sr1, 0xf, 0xf, false);
}
/* wavefront shift_right by 1 on SI/CI */
LLVMValueRef active, tmp1, tmp2;
LLVMValueRef tid = ac_get_thread_id(ctx);
tmp1 = ac_build_ds_swizzle(ctx, src, (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
tmp2 = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x18, 0x03, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0x7, 0), ""),
LLVMConstInt(ctx->i32, 0x4, 0), "");
tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, "");
tmp2 = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x10, 0x07, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0xf, 0), ""),
LLVMConstInt(ctx->i32, 0x8, 0), "");
tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, "");
tmp2 = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x00, 0x0f, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0x1f, 0), ""),
LLVMConstInt(ctx->i32, 0x10, 0), "");
tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, "");
tmp2 = ac_build_readlane(ctx, src, LLVMConstInt(ctx->i32, 31, 0));
active = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, LLVMConstInt(ctx->i32, 32, 0), "");
tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, "");
active = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, LLVMConstInt(ctx->i32, 0, 0), "");
return LLVMBuildSelect(ctx->builder, active, identity, tmp1, "");
}
/**
* \param maxprefix specifies that the result only needs to be correct for a
* prefix of this many threads
*/
static LLVMValueRef ac_build_scan(struct ac_llvm_context *ctx, nir_op op, LLVMValueRef src,
LLVMValueRef identity, unsigned maxprefix, bool inclusive)
{
LLVMValueRef result, tmp;
if (!inclusive)
src = ac_wavefront_shift_right_1(ctx, src, identity, maxprefix);
result = src;
if (ctx->chip_class <= GFX7) {
assert(maxprefix == 64);
LLVMValueRef tid = ac_get_thread_id(ctx);
LLVMValueRef active;
tmp = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x1e, 0x00, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntNE,
LLVMBuildAnd(ctx->builder, tid, ctx->i32_1, ""), ctx->i32_0, "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1c, 0x01, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntNE,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 2, 0), ""),
ctx->i32_0, "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x18, 0x03, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntNE,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 4, 0), ""),
ctx->i32_0, "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x10, 0x07, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntNE,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 8, 0), ""),
ctx->i32_0, "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x00, 0x0f, 0x00));
active = LLVMBuildICmp(ctx->builder, LLVMIntNE,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 16, 0), ""),
ctx->i32_0, "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
tmp = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 31, 0));
active = LLVMBuildICmp(ctx->builder, LLVMIntNE,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 32, 0), ""),
ctx->i32_0, "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
return result;
}
if (maxprefix <= 1)
return result;
tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(1), 0xf, 0xf, false);
result = ac_build_alu_op(ctx, result, tmp, op);
if (maxprefix <= 2)
return result;
tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(2), 0xf, 0xf, false);
result = ac_build_alu_op(ctx, result, tmp, op);
if (maxprefix <= 3)
return result;
tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(3), 0xf, 0xf, false);
result = ac_build_alu_op(ctx, result, tmp, op);
if (maxprefix <= 4)
return result;
tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(4), 0xf, 0xe, false);
result = ac_build_alu_op(ctx, result, tmp, op);
if (maxprefix <= 8)
return result;
tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(8), 0xf, 0xc, false);
result = ac_build_alu_op(ctx, result, tmp, op);
if (maxprefix <= 16)
return result;
if (ctx->chip_class >= GFX10) {
LLVMValueRef tid = ac_get_thread_id(ctx);
LLVMValueRef active;
tmp = ac_build_permlane16(ctx, result, ~(uint64_t)0, true, false);
active = LLVMBuildICmp(ctx->builder, LLVMIntNE,
LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 16, false), ""),
ctx->i32_0, "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
if (maxprefix <= 32)
return result;
tmp = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 31, false));
active = LLVMBuildICmp(ctx->builder, LLVMIntUGE, tid, LLVMConstInt(ctx->i32, 32, false), "");
tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, "");
result = ac_build_alu_op(ctx, result, tmp, op);
return result;
}
tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false);
result = ac_build_alu_op(ctx, result, tmp, op);
if (maxprefix <= 32)
return result;
tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false);
result = ac_build_alu_op(ctx, result, tmp, op);
return result;
}
LLVMValueRef ac_build_inclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op)
{
LLVMValueRef result;
if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) {
LLVMBuilderRef builder = ctx->builder;
src = LLVMBuildZExt(builder, src, ctx->i32, "");
result = ac_build_ballot(ctx, src);
result = ac_build_mbcnt(ctx, result);
result = LLVMBuildAdd(builder, result, src, "");
return result;
}
ac_build_optimization_barrier(ctx, &src);
LLVMValueRef identity = get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src)));
result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity),
LLVMTypeOf(identity), "");
result = ac_build_scan(ctx, op, result, identity, ctx->wave_size, true);
return ac_build_wwm(ctx, result);
}
LLVMValueRef ac_build_exclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op)
{
LLVMValueRef result;
if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) {
LLVMBuilderRef builder = ctx->builder;
src = LLVMBuildZExt(builder, src, ctx->i32, "");
result = ac_build_ballot(ctx, src);
result = ac_build_mbcnt(ctx, result);
return result;
}
ac_build_optimization_barrier(ctx, &src);
LLVMValueRef identity = get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src)));
result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity),
LLVMTypeOf(identity), "");
result = ac_build_scan(ctx, op, result, identity, ctx->wave_size, false);
return ac_build_wwm(ctx, result);
}
LLVMValueRef ac_build_reduce(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op,
unsigned cluster_size)
{
if (cluster_size == 1)
return src;
ac_build_optimization_barrier(ctx, &src);
LLVMValueRef result, swap;
LLVMValueRef identity = get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src)));
result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity),
LLVMTypeOf(identity), "");
swap = ac_build_quad_swizzle(ctx, result, 1, 0, 3, 2);
result = ac_build_alu_op(ctx, result, swap, op);
if (cluster_size == 2)
return ac_build_wwm(ctx, result);
swap = ac_build_quad_swizzle(ctx, result, 2, 3, 0, 1);
result = ac_build_alu_op(ctx, result, swap, op);
if (cluster_size == 4)
return ac_build_wwm(ctx, result);
if (ctx->chip_class >= GFX8)
swap = ac_build_dpp(ctx, identity, result, dpp_row_half_mirror, 0xf, 0xf, false);
else
swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x04));
result = ac_build_alu_op(ctx, result, swap, op);
if (cluster_size == 8)
return ac_build_wwm(ctx, result);
if (ctx->chip_class >= GFX8)
swap = ac_build_dpp(ctx, identity, result, dpp_row_mirror, 0xf, 0xf, false);
else
swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x08));
result = ac_build_alu_op(ctx, result, swap, op);
if (cluster_size == 16)
return ac_build_wwm(ctx, result);
if (ctx->chip_class >= GFX10)
swap = ac_build_permlane16(ctx, result, 0, true, false);
else if (ctx->chip_class >= GFX8 && cluster_size != 32)
swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false);
else
swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x10));
result = ac_build_alu_op(ctx, result, swap, op);
if (cluster_size == 32)
return ac_build_wwm(ctx, result);
if (ctx->chip_class >= GFX8) {
if (ctx->wave_size == 64) {
if (ctx->chip_class >= GFX10)
swap = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 31, false));
else
swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false);
result = ac_build_alu_op(ctx, result, swap, op);
result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 63, 0));
}
return ac_build_wwm(ctx, result);
} else {
swap = ac_build_readlane(ctx, result, ctx->i32_0);
result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 32, 0));
result = ac_build_alu_op(ctx, result, swap, op);
return ac_build_wwm(ctx, result);
}
}
/**
* "Top half" of a scan that reduces per-wave values across an entire
* workgroup.
*
* The source value must be present in the highest lane of the wave, and the
* highest lane must be live.
*/
void ac_build_wg_wavescan_top(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
{
if (ws->maxwaves <= 1)
return;
const LLVMValueRef last_lane = LLVMConstInt(ctx->i32, ctx->wave_size - 1, false);
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef tid = ac_get_thread_id(ctx);
LLVMValueRef tmp;
tmp = LLVMBuildICmp(builder, LLVMIntEQ, tid, last_lane, "");
ac_build_ifcc(ctx, tmp, 1000);
LLVMBuildStore(builder, ws->src, LLVMBuildGEP(builder, ws->scratch, &ws->waveidx, 1, ""));
ac_build_endif(ctx, 1000);
}
/**
* "Bottom half" of a scan that reduces per-wave values across an entire
* workgroup.
*
* The caller must place a barrier between the top and bottom halves.
*/
void ac_build_wg_wavescan_bottom(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
{
const LLVMTypeRef type = LLVMTypeOf(ws->src);
const LLVMValueRef identity = get_reduction_identity(ctx, ws->op, ac_get_type_size(type));
if (ws->maxwaves <= 1) {
ws->result_reduce = ws->src;
ws->result_inclusive = ws->src;
ws->result_exclusive = identity;
return;
}
assert(ws->maxwaves <= 32);
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef tid = ac_get_thread_id(ctx);
LLVMBasicBlockRef bbs[2];
LLVMValueRef phivalues_scan[2];
LLVMValueRef tmp, tmp2;
bbs[0] = LLVMGetInsertBlock(builder);
phivalues_scan[0] = LLVMGetUndef(type);
if (ws->enable_reduce)
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, ws->numwaves, "");
else if (ws->enable_inclusive)
tmp = LLVMBuildICmp(builder, LLVMIntULE, tid, ws->waveidx, "");
else
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, ws->waveidx, "");
ac_build_ifcc(ctx, tmp, 1001);
{
tmp = LLVMBuildLoad(builder, LLVMBuildGEP(builder, ws->scratch, &tid, 1, ""), "");
ac_build_optimization_barrier(ctx, &tmp);
bbs[1] = LLVMGetInsertBlock(builder);
phivalues_scan[1] = ac_build_scan(ctx, ws->op, tmp, identity, ws->maxwaves, true);
}
ac_build_endif(ctx, 1001);
const LLVMValueRef scan = ac_build_phi(ctx, type, 2, phivalues_scan, bbs);
if (ws->enable_reduce) {
tmp = LLVMBuildSub(builder, ws->numwaves, ctx->i32_1, "");
ws->result_reduce = ac_build_readlane(ctx, scan, tmp);
}
if (ws->enable_inclusive)
ws->result_inclusive = ac_build_readlane(ctx, scan, ws->waveidx);
if (ws->enable_exclusive) {
tmp = LLVMBuildSub(builder, ws->waveidx, ctx->i32_1, "");
tmp = ac_build_readlane(ctx, scan, tmp);
tmp2 = LLVMBuildICmp(builder, LLVMIntEQ, ws->waveidx, ctx->i32_0, "");
ws->result_exclusive = LLVMBuildSelect(builder, tmp2, identity, tmp, "");
}
}
/**
* Inclusive scan of a per-wave value across an entire workgroup.
*
* This implies an s_barrier instruction.
*
* Unlike ac_build_inclusive_scan, the caller \em must ensure that all threads
* of the workgroup are live. (This requirement cannot easily be relaxed in a
* useful manner because of the barrier in the algorithm.)
*/
void ac_build_wg_wavescan(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
{
ac_build_wg_wavescan_top(ctx, ws);
ac_build_s_barrier(ctx);
ac_build_wg_wavescan_bottom(ctx, ws);
}
/**
* "Top half" of a scan that reduces per-thread values across an entire
* workgroup.
*
* All lanes must be active when this code runs.
*/
void ac_build_wg_scan_top(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
{
if (ws->enable_exclusive) {
ws->extra = ac_build_exclusive_scan(ctx, ws->src, ws->op);
if (LLVMTypeOf(ws->src) == ctx->i1 && ws->op == nir_op_iadd)
ws->src = LLVMBuildZExt(ctx->builder, ws->src, ctx->i32, "");
ws->src = ac_build_alu_op(ctx, ws->extra, ws->src, ws->op);
} else {
ws->src = ac_build_inclusive_scan(ctx, ws->src, ws->op);
}
bool enable_inclusive = ws->enable_inclusive;
bool enable_exclusive = ws->enable_exclusive;
ws->enable_inclusive = false;
ws->enable_exclusive = ws->enable_exclusive || enable_inclusive;
ac_build_wg_wavescan_top(ctx, ws);
ws->enable_inclusive = enable_inclusive;
ws->enable_exclusive = enable_exclusive;
}
/**
* "Bottom half" of a scan that reduces per-thread values across an entire
* workgroup.
*
* The caller must place a barrier between the top and bottom halves.
*/
void ac_build_wg_scan_bottom(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
{
bool enable_inclusive = ws->enable_inclusive;
bool enable_exclusive = ws->enable_exclusive;
ws->enable_inclusive = false;
ws->enable_exclusive = ws->enable_exclusive || enable_inclusive;
ac_build_wg_wavescan_bottom(ctx, ws);
ws->enable_inclusive = enable_inclusive;
ws->enable_exclusive = enable_exclusive;
/* ws->result_reduce is already the correct value */
if (ws->enable_inclusive)
ws->result_inclusive = ac_build_alu_op(ctx, ws->result_inclusive, ws->src, ws->op);
if (ws->enable_exclusive)
ws->result_exclusive = ac_build_alu_op(ctx, ws->result_exclusive, ws->extra, ws->op);
}
/**
* A scan that reduces per-thread values across an entire workgroup.
*
* The caller must ensure that all lanes are active when this code runs
* (WWM is insufficient!), because there is an implied barrier.
*/
void ac_build_wg_scan(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
{
ac_build_wg_scan_top(ctx, ws);
ac_build_s_barrier(ctx);
ac_build_wg_scan_bottom(ctx, ws);
}
LLVMValueRef ac_build_quad_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned lane0,
unsigned lane1, unsigned lane2, unsigned lane3)
{
unsigned mask = dpp_quad_perm(lane0, lane1, lane2, lane3);
if (ctx->chip_class >= GFX8) {
return ac_build_dpp(ctx, src, src, mask, 0xf, 0xf, false);
} else {
return ac_build_ds_swizzle(ctx, src, (1 << 15) | mask);
}
}
LLVMValueRef ac_build_shuffle(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef index)
{
LLVMTypeRef type = LLVMTypeOf(src);
LLVMValueRef result;
index = LLVMBuildMul(ctx->builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
src = LLVMBuildZExt(ctx->builder, src, ctx->i32, "");
result =
ac_build_intrinsic(ctx, "llvm.amdgcn.ds.bpermute", ctx->i32, (LLVMValueRef[]){index, src}, 2,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
return LLVMBuildTrunc(ctx->builder, result, type, "");
}
LLVMValueRef ac_build_frexp_exp(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize)
{
LLVMTypeRef type;
char *intr;
if (bitsize == 16) {
intr = "llvm.amdgcn.frexp.exp.i16.f16";
type = ctx->i16;
} else if (bitsize == 32) {
intr = "llvm.amdgcn.frexp.exp.i32.f32";
type = ctx->i32;
} else {
intr = "llvm.amdgcn.frexp.exp.i32.f64";
type = ctx->i32;
}
LLVMValueRef params[] = {
src0,
};
return ac_build_intrinsic(ctx, intr, type, params, 1, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_frexp_mant(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize)
{
LLVMTypeRef type;
char *intr;
if (bitsize == 16) {
intr = "llvm.amdgcn.frexp.mant.f16";
type = ctx->f16;
} else if (bitsize == 32) {
intr = "llvm.amdgcn.frexp.mant.f32";
type = ctx->f32;
} else {
intr = "llvm.amdgcn.frexp.mant.f64";
type = ctx->f64;
}
LLVMValueRef params[] = {
src0,
};
return ac_build_intrinsic(ctx, intr, type, params, 1, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_canonicalize(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize)
{
LLVMTypeRef type;
char *intr;
if (bitsize == 16) {
intr = "llvm.canonicalize.f16";
type = ctx->f16;
} else if (bitsize == 32) {
intr = "llvm.canonicalize.f32";
type = ctx->f32;
} else {
intr = "llvm.canonicalize.f64";
type = ctx->f64;
}
LLVMValueRef params[] = {
src0,
};
return ac_build_intrinsic(ctx, intr, type, params, 1, AC_FUNC_ATTR_READNONE);
}
/*
* this takes an I,J coordinate pair,
* and works out the X and Y derivatives.
* it returns DDX(I), DDX(J), DDY(I), DDY(J).
*/
LLVMValueRef ac_build_ddxy_interp(struct ac_llvm_context *ctx, LLVMValueRef interp_ij)
{
LLVMValueRef result[4], a;
unsigned i;
for (i = 0; i < 2; i++) {
a = LLVMBuildExtractElement(ctx->builder, interp_ij, LLVMConstInt(ctx->i32, i, false), "");
result[i] = ac_build_ddxy(ctx, AC_TID_MASK_TOP_LEFT, 1, a);
result[2 + i] = ac_build_ddxy(ctx, AC_TID_MASK_TOP_LEFT, 2, a);
}
return ac_build_gather_values(ctx, result, 4);
}
LLVMValueRef ac_build_load_helper_invocation(struct ac_llvm_context *ctx)
{
LLVMValueRef result =
ac_build_intrinsic(ctx, "llvm.amdgcn.ps.live", ctx->i1, NULL, 0, AC_FUNC_ATTR_READNONE);
return LLVMBuildNot(ctx->builder, result, "");
}
LLVMValueRef ac_build_is_helper_invocation(struct ac_llvm_context *ctx)
{
if (!ctx->postponed_kill)
return ac_build_load_helper_invocation(ctx);
/* !(exact && postponed) */
LLVMValueRef exact =
ac_build_intrinsic(ctx, "llvm.amdgcn.ps.live", ctx->i1, NULL, 0, AC_FUNC_ATTR_READNONE);
LLVMValueRef postponed = LLVMBuildLoad(ctx->builder, ctx->postponed_kill, "");
return LLVMBuildNot(ctx->builder, LLVMBuildAnd(ctx->builder, exact, postponed, ""), "");
}
LLVMValueRef ac_build_call(struct ac_llvm_context *ctx, LLVMValueRef func, LLVMValueRef *args,
unsigned num_args)
{
LLVMValueRef ret = LLVMBuildCall(ctx->builder, func, args, num_args, "");
LLVMSetInstructionCallConv(ret, LLVMGetFunctionCallConv(func));
return ret;
}
void ac_export_mrt_z(struct ac_llvm_context *ctx, LLVMValueRef depth, LLVMValueRef stencil,
LLVMValueRef samplemask, struct ac_export_args *args)
{
unsigned mask = 0;
unsigned format = ac_get_spi_shader_z_format(depth != NULL, stencil != NULL, samplemask != NULL);
assert(depth || stencil || samplemask);
memset(args, 0, sizeof(*args));
args->valid_mask = 1; /* whether the EXEC mask is valid */
args->done = 1; /* DONE bit */
/* Specify the target we are exporting */
args->target = V_008DFC_SQ_EXP_MRTZ;
args->compr = 0; /* COMP flag */
args->out[0] = LLVMGetUndef(ctx->f32); /* R, depth */
args->out[1] = LLVMGetUndef(ctx->f32); /* G, stencil test val[0:7], stencil op val[8:15] */
args->out[2] = LLVMGetUndef(ctx->f32); /* B, sample mask */
args->out[3] = LLVMGetUndef(ctx->f32); /* A, alpha to mask */
if (format == V_028710_SPI_SHADER_UINT16_ABGR) {
assert(!depth);
args->compr = 1; /* COMPR flag */
if (stencil) {
/* Stencil should be in X[23:16]. */
stencil = ac_to_integer(ctx, stencil);
stencil = LLVMBuildShl(ctx->builder, stencil, LLVMConstInt(ctx->i32, 16, 0), "");
args->out[0] = ac_to_float(ctx, stencil);
mask |= 0x3;
}
if (samplemask) {
/* SampleMask should be in Y[15:0]. */
args->out[1] = samplemask;
mask |= 0xc;
}
} else {
if (depth) {
args->out[0] = depth;
mask |= 0x1;
}
if (stencil) {
args->out[1] = stencil;
mask |= 0x2;
}
if (samplemask) {
args->out[2] = samplemask;
mask |= 0x4;
}
}
/* GFX6 (except OLAND and HAINAN) has a bug that it only looks
* at the X writemask component. */
if (ctx->chip_class == GFX6 && ctx->family != CHIP_OLAND && ctx->family != CHIP_HAINAN)
mask |= 0x1;
/* Specify which components to enable */
args->enabled_channels = mask;
}
/* Send GS Alloc Req message from the first wave of the group to SPI.
* Message payload is:
* - bits 0..10: vertices in group
* - bits 12..22: primitives in group
*/
void ac_build_sendmsg_gs_alloc_req(struct ac_llvm_context *ctx, LLVMValueRef wave_id,
LLVMValueRef vtx_cnt, LLVMValueRef prim_cnt)
{
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef tmp;
bool export_dummy_prim = false;
/* HW workaround for a GPU hang with 100% culling.
* We always have to export at least 1 primitive.
* Export a degenerate triangle using vertex 0 for all 3 vertices.
*/
if (prim_cnt == ctx->i32_0 && ctx->chip_class == GFX10) {
assert(vtx_cnt == ctx->i32_0);
prim_cnt = ctx->i32_1;
vtx_cnt = ctx->i32_1;
export_dummy_prim = true;
}
ac_build_ifcc(ctx, LLVMBuildICmp(builder, LLVMIntEQ, wave_id, ctx->i32_0, ""), 5020);
tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->i32, 12, false), "");
tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
ac_build_sendmsg(ctx, AC_SENDMSG_GS_ALLOC_REQ, tmp);
if (export_dummy_prim) {
struct ac_ngg_prim prim = {0};
/* The vertex indices are 0,0,0. */
prim.passthrough = ctx->i32_0;
struct ac_export_args pos = {0};
pos.out[0] = pos.out[1] = pos.out[2] = pos.out[3] = ctx->f32_0;
pos.target = V_008DFC_SQ_EXP_POS;
pos.enabled_channels = 0xf;
pos.done = true;
ac_build_ifcc(ctx, LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(ctx), ctx->i32_0, ""),
5021);
ac_build_export_prim(ctx, &prim);
ac_build_export(ctx, &pos);
ac_build_endif(ctx, 5021);
}
ac_build_endif(ctx, 5020);
}
LLVMValueRef ac_pack_prim_export(struct ac_llvm_context *ctx, const struct ac_ngg_prim *prim)
{
/* The prim export format is:
* - bits 0..8: index 0
* - bit 9: edge flag 0
* - bits 10..18: index 1
* - bit 19: edge flag 1
* - bits 20..28: index 2
* - bit 29: edge flag 2
* - bit 31: null primitive (skip)
*/
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef tmp = LLVMBuildZExt(builder, prim->isnull, ctx->i32, "");
LLVMValueRef result = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->i32, 31, false), "");
for (unsigned i = 0; i < prim->num_vertices; ++i) {
tmp = LLVMBuildShl(builder, prim->index[i], LLVMConstInt(ctx->i32, 10 * i, false), "");
result = LLVMBuildOr(builder, result, tmp, "");
tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->i32, "");
tmp = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->i32, 10 * i + 9, false), "");
result = LLVMBuildOr(builder, result, tmp, "");
}
return result;
}
void ac_build_export_prim(struct ac_llvm_context *ctx, const struct ac_ngg_prim *prim)
{
struct ac_export_args args;
if (prim->passthrough) {
args.out[0] = prim->passthrough;
} else {
args.out[0] = ac_pack_prim_export(ctx, prim);
}
args.out[0] = LLVMBuildBitCast(ctx->builder, args.out[0], ctx->f32, "");
args.out[1] = LLVMGetUndef(ctx->f32);
args.out[2] = LLVMGetUndef(ctx->f32);
args.out[3] = LLVMGetUndef(ctx->f32);
args.target = V_008DFC_SQ_EXP_PRIM;
args.enabled_channels = 1;
args.done = true;
args.valid_mask = false;
args.compr = false;
ac_build_export(ctx, &args);
}
static LLVMTypeRef arg_llvm_type(enum ac_arg_type type, unsigned size, struct ac_llvm_context *ctx)
{
if (type == AC_ARG_FLOAT) {
return size == 1 ? ctx->f32 : LLVMVectorType(ctx->f32, size);
} else if (type == AC_ARG_INT) {
return size == 1 ? ctx->i32 : LLVMVectorType(ctx->i32, size);
} else {
LLVMTypeRef ptr_type;
switch (type) {
case AC_ARG_CONST_PTR:
ptr_type = ctx->i8;
break;
case AC_ARG_CONST_FLOAT_PTR:
ptr_type = ctx->f32;
break;
case AC_ARG_CONST_PTR_PTR:
ptr_type = ac_array_in_const32_addr_space(ctx->i8);
break;
case AC_ARG_CONST_DESC_PTR:
ptr_type = ctx->v4i32;
break;
case AC_ARG_CONST_IMAGE_PTR:
ptr_type = ctx->v8i32;
break;
default:
unreachable("unknown arg type");
}
if (size == 1) {
return ac_array_in_const32_addr_space(ptr_type);
} else {
assert(size == 2);
return ac_array_in_const_addr_space(ptr_type);
}
}
}
LLVMValueRef ac_build_main(const struct ac_shader_args *args, struct ac_llvm_context *ctx,
enum ac_llvm_calling_convention convention, const char *name,
LLVMTypeRef ret_type, LLVMModuleRef module)
{
LLVMTypeRef arg_types[AC_MAX_ARGS];
for (unsigned i = 0; i < args->arg_count; i++) {
arg_types[i] = arg_llvm_type(args->args[i].type, args->args[i].size, ctx);
}
LLVMTypeRef main_function_type = LLVMFunctionType(ret_type, arg_types, args->arg_count, 0);
LLVMValueRef main_function = LLVMAddFunction(module, name, main_function_type);
LLVMBasicBlockRef main_function_body =
LLVMAppendBasicBlockInContext(ctx->context, main_function, "main_body");
LLVMPositionBuilderAtEnd(ctx->builder, main_function_body);
LLVMSetFunctionCallConv(main_function, convention);
for (unsigned i = 0; i < args->arg_count; ++i) {
LLVMValueRef P = LLVMGetParam(main_function, i);
if (args->args[i].file != AC_ARG_SGPR)
continue;
ac_add_function_attr(ctx->context, main_function, i + 1, AC_FUNC_ATTR_INREG);
if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
ac_add_function_attr(ctx->context, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
ac_add_attr_dereferenceable(P, UINT64_MAX);
ac_add_attr_alignment(P, 32);
}
}
ctx->main_function = main_function;
if (LLVM_VERSION_MAJOR >= 11) {
/* Enable denormals for FP16 and FP64: */
LLVMAddTargetDependentFunctionAttr(main_function, "denormal-fp-math", "ieee,ieee");
/* Disable denormals for FP32: */
LLVMAddTargetDependentFunctionAttr(main_function, "denormal-fp-math-f32",
"preserve-sign,preserve-sign");
}
return main_function;
}
void ac_build_s_endpgm(struct ac_llvm_context *ctx)
{
LLVMTypeRef calltype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
LLVMValueRef code = LLVMConstInlineAsm(calltype, "s_endpgm", "", true, false);
LLVMBuildCall(ctx->builder, code, NULL, 0, "");
}
LLVMValueRef ac_prefix_bitcount(struct ac_llvm_context *ctx, LLVMValueRef mask, LLVMValueRef index)
{
LLVMBuilderRef builder = ctx->builder;
LLVMTypeRef type = LLVMTypeOf(mask);
LLVMValueRef bit =
LLVMBuildShl(builder, LLVMConstInt(type, 1, 0), LLVMBuildZExt(builder, index, type, ""), "");
LLVMValueRef prefix_bits = LLVMBuildSub(builder, bit, LLVMConstInt(type, 1, 0), "");
LLVMValueRef prefix_mask = LLVMBuildAnd(builder, mask, prefix_bits, "");
return ac_build_bit_count(ctx, prefix_mask);
}
/* Compute the prefix sum of the "mask" bit array with 128 elements (bits). */
LLVMValueRef ac_prefix_bitcount_2x64(struct ac_llvm_context *ctx, LLVMValueRef mask[2],
LLVMValueRef index)
{
LLVMBuilderRef builder = ctx->builder;
#if 0
/* Reference version using i128. */
LLVMValueRef input_mask =
LLVMBuildBitCast(builder, ac_build_gather_values(ctx, mask, 2), ctx->i128, "");
return ac_prefix_bitcount(ctx, input_mask, index);
#else
/* Optimized version using 2 64-bit masks. */
LLVMValueRef is_hi, is_0, c64, c128, all_bits;
LLVMValueRef prefix_mask[2], shift[2], mask_bcnt0, prefix_bcnt[2];
/* Compute the 128-bit prefix mask. */
c64 = LLVMConstInt(ctx->i32, 64, 0);
c128 = LLVMConstInt(ctx->i32, 128, 0);
all_bits = LLVMConstInt(ctx->i64, UINT64_MAX, 0);
/* The first index that can have non-zero high bits in the prefix mask is 65. */
is_hi = LLVMBuildICmp(builder, LLVMIntUGT, index, c64, "");
is_0 = LLVMBuildICmp(builder, LLVMIntEQ, index, ctx->i32_0, "");
mask_bcnt0 = ac_build_bit_count(ctx, mask[0]);
for (unsigned i = 0; i < 2; i++) {
shift[i] = LLVMBuildSub(builder, i ? c128 : c64, index, "");
/* For i==0, index==0, the right shift by 64 doesn't give the desired result,
* so we handle it by the is_0 select.
* For i==1, index==64, same story, so we handle it by the last is_hi select.
* For i==0, index==64, we shift by 0, which is what we want.
*/
prefix_mask[i] =
LLVMBuildLShr(builder, all_bits, LLVMBuildZExt(builder, shift[i], ctx->i64, ""), "");
prefix_mask[i] = LLVMBuildAnd(builder, mask[i], prefix_mask[i], "");
prefix_bcnt[i] = ac_build_bit_count(ctx, prefix_mask[i]);
}
prefix_bcnt[0] = LLVMBuildSelect(builder, is_0, ctx->i32_0, prefix_bcnt[0], "");
prefix_bcnt[0] = LLVMBuildSelect(builder, is_hi, mask_bcnt0, prefix_bcnt[0], "");
prefix_bcnt[1] = LLVMBuildSelect(builder, is_hi, prefix_bcnt[1], ctx->i32_0, "");
return LLVMBuildAdd(builder, prefix_bcnt[0], prefix_bcnt[1], "");
#endif
}
/**
* Convert triangle strip indices to triangle indices. This is used to decompose
* triangle strips into triangles.
*/
void ac_build_triangle_strip_indices_to_triangle(struct ac_llvm_context *ctx, LLVMValueRef is_odd,
LLVMValueRef flatshade_first,
LLVMValueRef index[3])
{
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef out[3];
/* We need to change the vertex order for odd triangles to get correct
* front/back facing by swapping 2 vertex indices, but we also have to
* keep the provoking vertex in the same place.
*
* If the first vertex is provoking, swap index 1 and 2.
* If the last vertex is provoking, swap index 0 and 1.
*/
out[0] = LLVMBuildSelect(builder, flatshade_first, index[0],
LLVMBuildSelect(builder, is_odd, index[1], index[0], ""), "");
out[1] = LLVMBuildSelect(builder, flatshade_first,
LLVMBuildSelect(builder, is_odd, index[2], index[1], ""),
LLVMBuildSelect(builder, is_odd, index[0], index[1], ""), "");
out[2] = LLVMBuildSelect(builder, flatshade_first,
LLVMBuildSelect(builder, is_odd, index[1], index[2], ""), index[2], "");
memcpy(index, out, sizeof(out));
}