blob: afe87554fe495700ca45d4edd6f3416f09a81983 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <fcntl.h>
#ifdef MAJOR_IN_SYSMACROS
#include <sys/sysmacros.h>
#endif
#include "util/disk_cache.h"
#include "util/hex.h"
#include "util/u_debug.h"
#include "radv_debug.h"
#include "radv_private.h"
#ifdef _WIN32
typedef void *drmDevicePtr;
#include <io.h>
#else
#include <amdgpu.h>
#include <xf86drm.h>
#include "drm-uapi/amdgpu_drm.h"
#include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
#endif
#include "git_sha1.h"
#include "winsys/null/radv_null_winsys_public.h"
#ifdef LLVM_AVAILABLE
#include "ac_llvm_util.h"
#endif
bool
radv_sqtt_enabled(void)
{
return debug_get_num_option("RADV_THREAD_TRACE", -1) >= 0 || getenv("RADV_THREAD_TRACE_TRIGGER");
}
static bool
radv_perf_query_supported(const struct radv_physical_device *pdev)
{
/* SQTT / SPM interfere with the register states for perf counters, and
* the code has only been tested on GFX10.3 */
return pdev->rad_info.gfx_level == GFX10_3 && !radv_sqtt_enabled();
}
static bool
radv_taskmesh_enabled(const struct radv_physical_device *pdevice)
{
return pdevice->use_ngg && !pdevice->use_llvm && pdevice->rad_info.gfx_level >= GFX10_3 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE) &&
pdevice->rad_info.has_gang_submit;
}
static bool
radv_vrs_attachment_enabled(const struct radv_physical_device *pdevice)
{
return pdevice->rad_info.gfx_level >= GFX11 ||
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_HIZ);
}
static bool
radv_NV_device_generated_commands_enabled(const struct radv_physical_device *device)
{
return device->rad_info.gfx_level >= GFX7 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_IBS) &&
driQueryOptionb(&device->instance->dri_options, "radv_dgc");
}
static bool
radv_is_conformant(const struct radv_physical_device *pdevice)
{
return pdevice->rad_info.gfx_level >= GFX8;
}
static void
parse_hex(char *out, const char *in, unsigned length)
{
for (unsigned i = 0; i < length; ++i)
out[i] = 0;
for (unsigned i = 0; i < 2 * length; ++i) {
unsigned v =
in[i] <= '9' ? in[i] - '0' : (in[i] >= 'a' ? (in[i] - 'a' + 10) : (in[i] - 'A' + 10));
out[i / 2] |= v << (4 * (1 - i % 2));
}
}
static int
radv_device_get_cache_uuid(struct radv_physical_device *pdevice, void *uuid)
{
enum radeon_family family = pdevice->rad_info.family;
struct mesa_sha1 ctx;
unsigned char sha1[20];
unsigned ptr_size = sizeof(void *);
memset(uuid, 0, VK_UUID_SIZE);
_mesa_sha1_init(&ctx);
#ifdef RADV_BUILD_ID_OVERRIDE
{
unsigned size = strlen(RADV_BUILD_ID_OVERRIDE) / 2;
char *data = alloca(size);
parse_hex(data, RADV_BUILD_ID_OVERRIDE, size);
_mesa_sha1_update(&ctx, data, size);
}
#else
if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx))
return -1;
#endif
#ifdef LLVM_AVAILABLE
if (pdevice->use_llvm &&
!disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
return -1;
#endif
_mesa_sha1_update(&ctx, &family, sizeof(family));
_mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
_mesa_sha1_final(&ctx, sha1);
memcpy(uuid, sha1, VK_UUID_SIZE);
return 0;
}
static void
radv_get_driver_uuid(void *uuid)
{
ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
}
static void
radv_get_device_uuid(const struct radeon_info *info, void *uuid)
{
ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
}
static void
radv_physical_device_init_queue_table(struct radv_physical_device *pdevice)
{
int idx = 0;
pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_GENERAL;
idx++;
for (unsigned i = 1; i < RADV_MAX_QUEUE_FAMILIES; i++)
pdevice->vk_queue_to_radv[i] = RADV_MAX_QUEUE_FAMILIES + 1;
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_COMPUTE;
idx++;
}
if (pdevice->instance->perftest_flags & RADV_PERFTEST_VIDEO_DECODE) {
if (pdevice->rad_info.ip[pdevice->vid_decode_ip].num_queues > 0) {
pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_VIDEO_DEC;
idx++;
}
}
pdevice->num_queues = idx;
}
enum radv_heap {
RADV_HEAP_VRAM = 1 << 0,
RADV_HEAP_GTT = 1 << 1,
RADV_HEAP_VRAM_VIS = 1 << 2,
RADV_HEAP_MAX = 1 << 3,
};
static uint64_t
radv_get_adjusted_vram_size(struct radv_physical_device *device)
{
int ov = driQueryOptioni(&device->instance->dri_options, "override_vram_size");
if (ov >= 0)
return MIN2((uint64_t)device->rad_info.vram_size_kb * 1024, (uint64_t)ov << 20);
return (uint64_t)device->rad_info.vram_size_kb * 1024;
}
static uint64_t
radv_get_visible_vram_size(struct radv_physical_device *device)
{
return MIN2(radv_get_adjusted_vram_size(device),
(uint64_t)device->rad_info.vram_vis_size_kb * 1024);
}
static uint64_t
radv_get_vram_size(struct radv_physical_device *device)
{
uint64_t total_size = radv_get_adjusted_vram_size(device);
return total_size - MIN2(total_size, (uint64_t)device->rad_info.vram_vis_size_kb * 1024);
}
static void
radv_physical_device_init_mem_types(struct radv_physical_device *device)
{
uint64_t visible_vram_size = radv_get_visible_vram_size(device);
uint64_t vram_size = radv_get_vram_size(device);
uint64_t gtt_size = (uint64_t)device->rad_info.gart_size_kb * 1024;
int vram_index = -1, visible_vram_index = -1, gart_index = -1;
device->memory_properties.memoryHeapCount = 0;
device->heaps = 0;
if (!device->rad_info.has_dedicated_vram) {
const uint64_t total_size = gtt_size + visible_vram_size;
if (device->instance->enable_unified_heap_on_apu) {
/* Some applications seem better when the driver exposes only one heap of VRAM on APUs. */
visible_vram_size = total_size;
gtt_size = 0;
} else {
/* On APUs, the carveout is usually too small for games that request a minimum VRAM size
* greater than it. To workaround this, we compute the total available memory size (GTT +
* visible VRAM size) and report 2/3 as VRAM and 1/3 as GTT.
*/
visible_vram_size = align64((total_size * 2) / 3, device->rad_info.gart_page_size);
gtt_size = total_size - visible_vram_size;
}
vram_size = 0;
}
/* Only get a VRAM heap if it is significant, not if it is a 16 MiB
* remainder above visible VRAM. */
if (vram_size > 0 && vram_size * 9 >= visible_vram_size) {
vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM;
device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap){
.size = vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
if (gtt_size > 0) {
gart_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_GTT;
device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap){
.size = gtt_size,
.flags = 0,
};
}
if (visible_vram_size) {
visible_vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM_VIS;
device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap){
.size = visible_vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
unsigned type_count = 0;
if (vram_index >= 0 || visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_32BIT;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_GTT_WC | RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = gart_index,
};
}
if (visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = visible_vram_index,
};
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_32BIT;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = gart_index,
};
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_32BIT;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = gart_index,
};
}
device->memory_properties.memoryTypeCount = type_count;
if (device->rad_info.has_l2_uncached) {
for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
if (((mem_type.propertyFlags &
(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
!(device->memory_flags[i] & RADEON_FLAG_32BIT)) {
VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
device->memory_domains[type_count] = device->memory_domains[i];
device->memory_flags[type_count] = device->memory_flags[i] | RADEON_FLAG_VA_UNCACHED;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = property_flags,
.heapIndex = mem_type.heapIndex,
};
}
}
device->memory_properties.memoryTypeCount = type_count;
}
for (unsigned i = 0; i < type_count; ++i) {
if (device->memory_flags[i] & RADEON_FLAG_32BIT)
device->memory_types_32bit |= BITFIELD_BIT(i);
}
}
uint32_t
radv_find_memory_index(const struct radv_physical_device *pdevice, VkMemoryPropertyFlags flags)
{
const VkPhysicalDeviceMemoryProperties *mem_properties = &pdevice->memory_properties;
for (uint32_t i = 0; i < mem_properties->memoryTypeCount; ++i) {
if (mem_properties->memoryTypes[i].propertyFlags == flags) {
return i;
}
}
unreachable("invalid memory properties");
}
static void
radv_get_binning_settings(const struct radv_physical_device *pdevice,
struct radv_binning_settings *settings)
{
settings->context_states_per_bin = 1;
settings->persistent_states_per_bin = 1;
settings->fpovs_per_batch = 63;
}
static void
radv_physical_device_get_supported_extensions(const struct radv_physical_device *device,
struct vk_device_extension_table *ext)
{
*ext = (struct vk_device_extension_table){
.KHR_8bit_storage = true,
.KHR_16bit_storage = true,
.KHR_acceleration_structure = radv_enable_rt(device, false),
.KHR_bind_memory2 = true,
.KHR_buffer_device_address = true,
.KHR_copy_commands2 = true,
.KHR_create_renderpass2 = true,
.KHR_dedicated_allocation = true,
.KHR_deferred_host_operations = true,
.KHR_depth_stencil_resolve = true,
.KHR_descriptor_update_template = true,
.KHR_device_group = true,
.KHR_draw_indirect_count = true,
.KHR_driver_properties = true,
.KHR_dynamic_rendering = true,
.KHR_external_fence = true,
.KHR_external_fence_fd = true,
.KHR_external_memory = true,
.KHR_external_memory_fd = true,
.KHR_external_semaphore = true,
.KHR_external_semaphore_fd = true,
.KHR_format_feature_flags2 = true,
.KHR_fragment_shader_barycentric = device->rad_info.gfx_level >= GFX10_3,
.KHR_fragment_shading_rate = device->rad_info.gfx_level >= GFX10_3,
.KHR_get_memory_requirements2 = true,
.KHR_global_priority = true,
.KHR_image_format_list = true,
.KHR_imageless_framebuffer = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_incremental_present = true,
#endif
.KHR_maintenance1 = true,
.KHR_maintenance2 = true,
.KHR_maintenance3 = true,
.KHR_maintenance4 = true,
.KHR_map_memory2 = true,
.KHR_multiview = true,
.KHR_performance_query = radv_perf_query_supported(device),
.KHR_pipeline_executable_properties = true,
.KHR_pipeline_library = !device->use_llvm,
/* Hide these behind dri configs for now since we cannot implement it reliably on
* all surfaces yet. There is no surface capability query for present wait/id,
* but the feature is useful enough to hide behind an opt-in mechanism for now.
* If the instance only enables surface extensions that unconditionally support present wait,
* we can also expose the extension that way. */
.KHR_present_id = driQueryOptionb(&device->instance->dri_options, "vk_khr_present_wait") ||
wsi_common_vk_instance_supports_present_wait(&device->instance->vk),
.KHR_present_wait = driQueryOptionb(&device->instance->dri_options, "vk_khr_present_wait") ||
wsi_common_vk_instance_supports_present_wait(&device->instance->vk),
.KHR_push_descriptor = true,
.KHR_ray_query = radv_enable_rt(device, false),
.KHR_ray_tracing_maintenance1 = radv_enable_rt(device, false),
.KHR_ray_tracing_pipeline = radv_enable_rt(device, true),
.KHR_relaxed_block_layout = true,
.KHR_sampler_mirror_clamp_to_edge = true,
.KHR_sampler_ycbcr_conversion = true,
.KHR_separate_depth_stencil_layouts = true,
.KHR_shader_atomic_int64 = true,
.KHR_shader_clock = true,
.KHR_shader_draw_parameters = true,
.KHR_shader_float16_int8 = true,
.KHR_shader_float_controls = true,
.KHR_shader_integer_dot_product = true,
.KHR_shader_non_semantic_info = true,
.KHR_shader_subgroup_extended_types = true,
.KHR_shader_subgroup_uniform_control_flow = true,
.KHR_shader_terminate_invocation = true,
.KHR_spirv_1_4 = true,
.KHR_storage_buffer_storage_class = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_swapchain = true,
.KHR_swapchain_mutable_format = true,
#endif
.KHR_synchronization2 = true,
.KHR_timeline_semaphore = true,
.KHR_uniform_buffer_standard_layout = true,
.KHR_variable_pointers = true,
.KHR_video_queue = !!(device->instance->perftest_flags & RADV_PERFTEST_VIDEO_DECODE),
.KHR_video_decode_queue = !!(device->instance->perftest_flags & RADV_PERFTEST_VIDEO_DECODE),
.KHR_video_decode_h264 =
VIDEO_CODEC_H264DEC && !!(device->instance->perftest_flags & RADV_PERFTEST_VIDEO_DECODE),
.KHR_video_decode_h265 =
VIDEO_CODEC_H265DEC && !!(device->instance->perftest_flags & RADV_PERFTEST_VIDEO_DECODE),
.KHR_vulkan_memory_model = true,
.KHR_workgroup_memory_explicit_layout = true,
.KHR_zero_initialize_workgroup_memory = true,
.EXT_4444_formats = true,
.EXT_attachment_feedback_loop_dynamic_state = true,
.EXT_attachment_feedback_loop_layout = true,
.EXT_border_color_swizzle = device->rad_info.gfx_level >= GFX10,
.EXT_buffer_device_address = true,
.EXT_calibrated_timestamps = RADV_SUPPORT_CALIBRATED_TIMESTAMPS &&
!(device->rad_info.family == CHIP_RAVEN ||
device->rad_info.family == CHIP_RAVEN2),
.EXT_color_write_enable = true,
.EXT_conditional_rendering = true,
.EXT_conservative_rasterization = device->rad_info.gfx_level >= GFX9,
.EXT_custom_border_color = true,
.EXT_debug_marker = radv_sqtt_enabled(),
.EXT_depth_clip_control = true,
.EXT_depth_clip_enable = true,
.EXT_depth_range_unrestricted = true,
.EXT_descriptor_buffer = true,
.EXT_descriptor_indexing = true,
.EXT_discard_rectangles = true,
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.EXT_display_control = true,
#endif
.EXT_dynamic_rendering_unused_attachments = true,
.EXT_extended_dynamic_state = true,
.EXT_extended_dynamic_state2 = true,
.EXT_extended_dynamic_state3 = true,
.EXT_external_memory_dma_buf = true,
.EXT_external_memory_host = device->rad_info.has_userptr,
.EXT_global_priority = true,
.EXT_global_priority_query = true,
.EXT_graphics_pipeline_library =
!device->use_llvm && !(device->instance->debug_flags & RADV_DEBUG_NO_GPL),
.EXT_host_query_reset = true,
.EXT_image_2d_view_of_3d = true,
.EXT_image_drm_format_modifier = device->rad_info.gfx_level >= GFX9,
.EXT_image_robustness = true,
.EXT_image_sliced_view_of_3d = device->rad_info.gfx_level >= GFX10,
.EXT_image_view_min_lod = true,
.EXT_index_type_uint8 = device->rad_info.gfx_level >= GFX8,
.EXT_inline_uniform_block = true,
.EXT_line_rasterization = true,
.EXT_load_store_op_none = true,
.EXT_memory_budget = true,
.EXT_memory_priority = true,
.EXT_mesh_shader = radv_taskmesh_enabled(device),
.EXT_multi_draw = true,
.EXT_mutable_descriptor_type = true, /* Trivial promotion from VALVE. */
.EXT_non_seamless_cube_map = true,
.EXT_pci_bus_info = true,
#ifndef _WIN32
.EXT_physical_device_drm = true,
#endif
.EXT_pipeline_creation_cache_control = true,
.EXT_pipeline_creation_feedback = true,
.EXT_pipeline_library_group_handles = radv_enable_rt(device, true),
.EXT_post_depth_coverage = device->rad_info.gfx_level >= GFX10,
.EXT_primitive_topology_list_restart = true,
.EXT_primitives_generated_query = true,
.EXT_private_data = true,
.EXT_provoking_vertex = true,
.EXT_queue_family_foreign = true,
.EXT_robustness2 = true,
.EXT_sample_locations = device->rad_info.gfx_level < GFX10,
.EXT_sampler_filter_minmax = true,
.EXT_scalar_block_layout = device->rad_info.gfx_level >= GFX7,
.EXT_separate_stencil_usage = true,
.EXT_shader_atomic_float = true,
.EXT_shader_atomic_float2 = true,
.EXT_shader_demote_to_helper_invocation = true,
.EXT_shader_image_atomic_int64 = true,
.EXT_shader_module_identifier = true,
.EXT_shader_stencil_export = true,
.EXT_shader_subgroup_ballot = true,
.EXT_shader_subgroup_vote = true,
.EXT_shader_viewport_index_layer = true,
.EXT_subgroup_size_control = true,
#ifdef RADV_USE_WSI_PLATFORM
.EXT_swapchain_maintenance1 = true,
#endif
.EXT_texel_buffer_alignment = true,
.EXT_tooling_info = true,
.EXT_transform_feedback = true,
.EXT_vertex_attribute_divisor = true,
.EXT_vertex_input_dynamic_state =
!device->use_llvm && !radv_NV_device_generated_commands_enabled(device),
.EXT_ycbcr_image_arrays = true,
.AMD_buffer_marker = true,
.AMD_device_coherent_memory = true,
.AMD_draw_indirect_count = true,
.AMD_gcn_shader = true,
.AMD_gpu_shader_half_float = device->rad_info.has_packed_math_16bit,
.AMD_gpu_shader_int16 = device->rad_info.has_packed_math_16bit,
.AMD_memory_overallocation_behavior = true,
.AMD_mixed_attachment_samples = true,
.AMD_rasterization_order = device->rad_info.has_out_of_order_rast,
.AMD_shader_ballot = true,
.AMD_shader_core_properties = true,
.AMD_shader_core_properties2 = true,
.AMD_shader_early_and_late_fragment_tests = true,
.AMD_shader_explicit_vertex_parameter = true,
.AMD_shader_fragment_mask = device->use_fmask,
.AMD_shader_image_load_store_lod = true,
.AMD_shader_trinary_minmax = true,
.AMD_texture_gather_bias_lod = device->rad_info.gfx_level < GFX11,
#ifdef ANDROID
.ANDROID_external_memory_android_hardware_buffer = RADV_SUPPORT_ANDROID_HARDWARE_BUFFER,
.ANDROID_native_buffer = true,
#endif
.GOOGLE_decorate_string = true,
.GOOGLE_hlsl_functionality1 = true,
.GOOGLE_user_type = true,
.INTEL_shader_integer_functions2 = true,
.NV_compute_shader_derivatives = true,
.NV_device_generated_commands = radv_NV_device_generated_commands_enabled(device),
/* Undocumented extension purely for vkd3d-proton. This check is to prevent anyone else from
* using it.
*/
.VALVE_descriptor_set_host_mapping =
device->vk.instance->app_info.engine_name &&
strcmp(device->vk.instance->app_info.engine_name, "vkd3d") == 0,
.VALVE_mutable_descriptor_type = true,
};
}
static void
radv_physical_device_get_features(const struct radv_physical_device *pdevice,
struct vk_features *features)
{
bool taskmesh_en = radv_taskmesh_enabled(pdevice);
bool has_perf_query = radv_perf_query_supported(pdevice);
bool has_shader_image_float_minmax = pdevice->rad_info.gfx_level != GFX8 &&
pdevice->rad_info.gfx_level != GFX9 &&
pdevice->rad_info.gfx_level != GFX11;
*features = (struct vk_features){
/* Vulkan 1.0 */
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = true,
.wideLines = true,
.largePoints = true,
.alphaToOne = false,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = radv_device_supports_etc(pdevice) || pdevice->emulate_etc2,
.textureCompressionASTC_LDR = false,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.vertexPipelineStoresAndAtomics = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderStorageImageReadWithoutFormat = true,
.shaderStorageImageWriteWithoutFormat = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = true,
.shaderInt64 = true,
.shaderInt16 = true,
.sparseBinding = true,
.sparseResidencyBuffer = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyImage2D = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyImage3D = pdevice->rad_info.gfx_level >= GFX9,
.sparseResidencyAliased = pdevice->rad_info.family >= CHIP_POLARIS10,
.variableMultisampleRate = true,
.shaderResourceMinLod = true,
.shaderResourceResidency = true,
.inheritedQueries = true,
/* Vulkan 1.1 */
.storageBuffer16BitAccess = true,
.uniformAndStorageBuffer16BitAccess = true,
.storagePushConstant16 = true,
.storageInputOutput16 = pdevice->rad_info.has_packed_math_16bit,
.multiview = true,
.multiviewGeometryShader = true,
.multiviewTessellationShader = true,
.variablePointersStorageBuffer = true,
.variablePointers = true,
.protectedMemory = false,
.samplerYcbcrConversion = true,
.shaderDrawParameters = true,
/* Vulkan 1.2 */
.samplerMirrorClampToEdge = true,
.drawIndirectCount = true,
.storageBuffer8BitAccess = true,
.uniformAndStorageBuffer8BitAccess = true,
.storagePushConstant8 = true,
.shaderBufferInt64Atomics = true,
.shaderSharedInt64Atomics = true,
.shaderFloat16 = pdevice->rad_info.has_packed_math_16bit,
.shaderInt8 = true,
.descriptorIndexing = true,
.shaderInputAttachmentArrayDynamicIndexing = true,
.shaderUniformTexelBufferArrayDynamicIndexing = true,
.shaderStorageTexelBufferArrayDynamicIndexing = true,
.shaderUniformBufferArrayNonUniformIndexing = true,
.shaderSampledImageArrayNonUniformIndexing = true,
.shaderStorageBufferArrayNonUniformIndexing = true,
.shaderStorageImageArrayNonUniformIndexing = true,
.shaderInputAttachmentArrayNonUniformIndexing = true,
.shaderUniformTexelBufferArrayNonUniformIndexing = true,
.shaderStorageTexelBufferArrayNonUniformIndexing = true,
.descriptorBindingUniformBufferUpdateAfterBind = true,
.descriptorBindingSampledImageUpdateAfterBind = true,
.descriptorBindingStorageImageUpdateAfterBind = true,
.descriptorBindingStorageBufferUpdateAfterBind = true,
.descriptorBindingUniformTexelBufferUpdateAfterBind = true,
.descriptorBindingStorageTexelBufferUpdateAfterBind = true,
.descriptorBindingUpdateUnusedWhilePending = true,
.descriptorBindingPartiallyBound = true,
.descriptorBindingVariableDescriptorCount = true,
.runtimeDescriptorArray = true,
.samplerFilterMinmax = true,
.scalarBlockLayout = pdevice->rad_info.gfx_level >= GFX7,
.imagelessFramebuffer = true,
.uniformBufferStandardLayout = true,
.shaderSubgroupExtendedTypes = true,
.separateDepthStencilLayouts = true,
.hostQueryReset = true,
.timelineSemaphore = true,
.bufferDeviceAddress = true,
.bufferDeviceAddressCaptureReplay = true,
.bufferDeviceAddressMultiDevice = false,
.vulkanMemoryModel = true,
.vulkanMemoryModelDeviceScope = true,
.vulkanMemoryModelAvailabilityVisibilityChains = false,
.shaderOutputViewportIndex = true,
.shaderOutputLayer = true,
.subgroupBroadcastDynamicId = true,
/* Vulkan 1.3 */
.robustImageAccess = true,
.inlineUniformBlock = true,
.descriptorBindingInlineUniformBlockUpdateAfterBind = true,
.pipelineCreationCacheControl = true,
.privateData = true,
.shaderDemoteToHelperInvocation = true,
.shaderTerminateInvocation = true,
.subgroupSizeControl = true,
.computeFullSubgroups = true,
.synchronization2 = true,
.textureCompressionASTC_HDR = false,
.shaderZeroInitializeWorkgroupMemory = true,
.dynamicRendering = true,
.shaderIntegerDotProduct = true,
.maintenance4 = true,
/* VK_EXT_conditional_rendering */
.conditionalRendering = true,
.inheritedConditionalRendering = false,
/* VK_EXT_vertex_attribute_divisor */
.vertexAttributeInstanceRateDivisor = true,
.vertexAttributeInstanceRateZeroDivisor = true,
/* VK_EXT_transform_feedback */
.transformFeedback = true,
.geometryStreams = true,
/* VK_EXT_memory_priority */
.memoryPriority = true,
/* VK_EXT_depth_clip_enable */
.depthClipEnable = true,
/* VK_NV_compute_shader_derivatives */
.computeDerivativeGroupQuads = false,
.computeDerivativeGroupLinear = true,
/* VK_EXT_ycbcr_image_arrays */
.ycbcrImageArrays = true,
/* VK_EXT_index_type_uint8 */
.indexTypeUint8 = pdevice->rad_info.gfx_level >= GFX8,
/* VK_KHR_pipeline_executable_properties */
.pipelineExecutableInfo = true,
/* VK_KHR_shader_clock */
.shaderSubgroupClock = true,
.shaderDeviceClock = pdevice->rad_info.gfx_level >= GFX8,
/* VK_EXT_texel_buffer_alignment */
.texelBufferAlignment = true,
/* VK_AMD_device_coherent_memory */
.deviceCoherentMemory = pdevice->rad_info.has_l2_uncached,
/* VK_EXT_line_rasterization */
.rectangularLines = true,
.bresenhamLines = true,
.smoothLines = true,
.stippledRectangularLines = false,
/* FIXME: Some stippled Bresenham CTS fails on Vega10
* but work on Raven.
*/
.stippledBresenhamLines = pdevice->rad_info.gfx_level != GFX9,
.stippledSmoothLines = false,
/* VK_EXT_robustness2 */
.robustBufferAccess2 = true,
.robustImageAccess2 = true,
.nullDescriptor = true,
/* VK_EXT_custom_border_color */
.customBorderColors = true,
.customBorderColorWithoutFormat = true,
/* VK_EXT_extended_dynamic_state */
.extendedDynamicState = true,
/* VK_EXT_shader_atomic_float */
.shaderBufferFloat32Atomics = true,
.shaderBufferFloat32AtomicAdd = pdevice->rad_info.gfx_level >= GFX11,
.shaderBufferFloat64Atomics = true,
.shaderBufferFloat64AtomicAdd = false,
.shaderSharedFloat32Atomics = true,
.shaderSharedFloat32AtomicAdd = pdevice->rad_info.gfx_level >= GFX8,
.shaderSharedFloat64Atomics = true,
.shaderSharedFloat64AtomicAdd = false,
.shaderImageFloat32Atomics = true,
.shaderImageFloat32AtomicAdd = false,
.sparseImageFloat32Atomics = true,
.sparseImageFloat32AtomicAdd = false,
/* VK_EXT_4444_formats */
.formatA4R4G4B4 = true,
.formatA4B4G4R4 = true,
/* VK_EXT_shader_image_atomic_int64 */
.shaderImageInt64Atomics = true,
.sparseImageInt64Atomics = true,
/* VK_EXT_mutable_descriptor_type */
.mutableDescriptorType = true,
/* VK_KHR_fragment_shading_rate */
.pipelineFragmentShadingRate = true,
.primitiveFragmentShadingRate = true,
.attachmentFragmentShadingRate = radv_vrs_attachment_enabled(pdevice),
/* VK_KHR_workgroup_memory_explicit_layout */
.workgroupMemoryExplicitLayout = true,
.workgroupMemoryExplicitLayoutScalarBlockLayout = true,
.workgroupMemoryExplicitLayout8BitAccess = true,
.workgroupMemoryExplicitLayout16BitAccess = true,
/* VK_EXT_provoking_vertex */
.provokingVertexLast = true,
.transformFeedbackPreservesProvokingVertex = true,
/* VK_EXT_extended_dynamic_state2 */
.extendedDynamicState2 = true,
.extendedDynamicState2LogicOp = true,
.extendedDynamicState2PatchControlPoints = true,
/* VK_EXT_global_priority_query */
.globalPriorityQuery = true,
/* VK_KHR_acceleration_structure */
.accelerationStructure = true,
.accelerationStructureCaptureReplay = true,
.accelerationStructureIndirectBuild = false,
.accelerationStructureHostCommands = false,
.descriptorBindingAccelerationStructureUpdateAfterBind = true,
/* VK_EXT_buffer_device_address */
.bufferDeviceAddressCaptureReplayEXT = true,
/* VK_KHR_shader_subgroup_uniform_control_flow */
.shaderSubgroupUniformControlFlow = true,
/* VK_EXT_multi_draw */
.multiDraw = true,
/* VK_EXT_color_write_enable */
.colorWriteEnable = true,
/* VK_EXT_shader_atomic_float2 */
.shaderBufferFloat16Atomics = false,
.shaderBufferFloat16AtomicAdd = false,
.shaderBufferFloat16AtomicMinMax = false,
.shaderBufferFloat32AtomicMinMax =
radv_has_shader_buffer_float_minmax(pdevice, 32),
.shaderBufferFloat64AtomicMinMax =
radv_has_shader_buffer_float_minmax(pdevice, 64),
.shaderSharedFloat16Atomics = false,
.shaderSharedFloat16AtomicAdd = false,
.shaderSharedFloat16AtomicMinMax = false,
.shaderSharedFloat32AtomicMinMax = true,
.shaderSharedFloat64AtomicMinMax = true,
.shaderImageFloat32AtomicMinMax = has_shader_image_float_minmax,
.sparseImageFloat32AtomicMinMax = has_shader_image_float_minmax,
/* VK_KHR_present_id */
.presentId = pdevice->vk.supported_extensions.KHR_present_id,
/* VK_KHR_present_wait */
.presentWait = pdevice->vk.supported_extensions.KHR_present_wait,
/* VK_EXT_primitive_topology_list_restart */
.primitiveTopologyListRestart = true,
.primitiveTopologyPatchListRestart = false,
/* VK_KHR_ray_query */
.rayQuery = true,
/* VK_EXT_pipeline_library_group_handles */
.pipelineLibraryGroupHandles = true,
/* VK_KHR_ray_tracing_pipeline */
.rayTracingPipeline = true,
.rayTracingPipelineShaderGroupHandleCaptureReplay = false,
.rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false,
.rayTracingPipelineTraceRaysIndirect = true,
.rayTraversalPrimitiveCulling = true,
/* VK_KHR_ray_tracing_maintenance1 */
.rayTracingMaintenance1 = true,
.rayTracingPipelineTraceRaysIndirect2 = radv_enable_rt(pdevice, true),
/* VK_EXT_vertex_input_dynamic_state */
.vertexInputDynamicState = true,
/* VK_EXT_image_view_min_lod */
.minLod = true,
/* VK_EXT_mesh_shader */
.meshShader = taskmesh_en,
.taskShader = taskmesh_en,
.multiviewMeshShader = taskmesh_en,
.primitiveFragmentShadingRateMeshShader = taskmesh_en,
.meshShaderQueries = false,
/* VK_VALVE_descriptor_set_host_mapping */
.descriptorSetHostMapping = true,
/* VK_EXT_depth_clip_control */
.depthClipControl = true,
/* VK_EXT_image_2d_view_of_3d */
.image2DViewOf3D = true,
.sampler2DViewOf3D = false,
/* VK_INTEL_shader_integer_functions2 */
.shaderIntegerFunctions2 = true,
/* VK_EXT_primitives_generated_query */
.primitivesGeneratedQuery = true,
.primitivesGeneratedQueryWithRasterizerDiscard = true,
.primitivesGeneratedQueryWithNonZeroStreams = true,
/* VK_EXT_non_seamless_cube_map */
.nonSeamlessCubeMap = true,
/* VK_EXT_border_color_swizzle */
.borderColorSwizzle = true,
.borderColorSwizzleFromImage = true,
/* VK_EXT_shader_module_identifier */
.shaderModuleIdentifier = true,
/* VK_KHR_performance_query */
.performanceCounterQueryPools = has_perf_query,
.performanceCounterMultipleQueryPools = has_perf_query,
/* VK_NV_device_generated_commands */
.deviceGeneratedCommands = true,
/* VK_EXT_attachment_feedback_loop_layout */
.attachmentFeedbackLoopLayout = true,
/* VK_EXT_graphics_pipeline_library */
.graphicsPipelineLibrary = true,
/* VK_EXT_extended_dynamic_state3 */
.extendedDynamicState3TessellationDomainOrigin = true,
.extendedDynamicState3PolygonMode = true,
.extendedDynamicState3SampleMask = true,
.extendedDynamicState3AlphaToCoverageEnable = pdevice->rad_info.gfx_level < GFX11,
.extendedDynamicState3LogicOpEnable = true,
.extendedDynamicState3LineStippleEnable = true,
.extendedDynamicState3ColorBlendEnable = true,
.extendedDynamicState3DepthClipEnable = true,
.extendedDynamicState3ConservativeRasterizationMode = pdevice->rad_info.gfx_level >= GFX9,
.extendedDynamicState3DepthClipNegativeOneToOne = true,
.extendedDynamicState3ProvokingVertexMode = true,
.extendedDynamicState3DepthClampEnable = true,
.extendedDynamicState3ColorWriteMask = true,
.extendedDynamicState3RasterizationSamples = true,
.extendedDynamicState3ColorBlendEquation = true,
.extendedDynamicState3SampleLocationsEnable = pdevice->rad_info.gfx_level < GFX10,
.extendedDynamicState3LineRasterizationMode = true,
.extendedDynamicState3ExtraPrimitiveOverestimationSize = false,
.extendedDynamicState3AlphaToOneEnable = false,
.extendedDynamicState3RasterizationStream = false,
.extendedDynamicState3ColorBlendAdvanced = false,
.extendedDynamicState3ViewportWScalingEnable = false,
.extendedDynamicState3ViewportSwizzle = false,
.extendedDynamicState3CoverageToColorEnable = false,
.extendedDynamicState3CoverageToColorLocation = false,
.extendedDynamicState3CoverageModulationMode = false,
.extendedDynamicState3CoverageModulationTableEnable = false,
.extendedDynamicState3CoverageModulationTable = false,
.extendedDynamicState3CoverageReductionMode = false,
.extendedDynamicState3RepresentativeFragmentTestEnable = false,
.extendedDynamicState3ShadingRateImageEnable = false,
/* VK_EXT_descriptor_buffer */
.descriptorBuffer = true,
.descriptorBufferCaptureReplay = false,
.descriptorBufferImageLayoutIgnored = true,
.descriptorBufferPushDescriptors = true,
/* VK_AMD_shader_early_and_late_fragment_tests */
.shaderEarlyAndLateFragmentTests = true,
/* VK_EXT_image_sliced_view_of_3d */
.imageSlicedViewOf3D = true,
#ifdef RADV_USE_WSI_PLATFORM
/* VK_EXT_swapchain_maintenance1 */
.swapchainMaintenance1 = true,
#endif
/* VK_EXT_attachment_feedback_loop_dynamic_state */
.attachmentFeedbackLoopDynamicState = true,
/* VK_EXT_dynamic_rendering_unused_attachments */
.dynamicRenderingUnusedAttachments = true,
/* VK_KHR_fragment_shader_barycentric */
.fragmentShaderBarycentric = true,
};
}
static size_t
radv_max_descriptor_set_size()
{
/* make sure that the entire descriptor set is addressable with a signed
* 32-bit int. So the sum of all limits scaled by descriptor size has to
* be at most 2 GiB. the combined image & samples object count as one of
* both. This limit is for the pipeline layout, not for the set layout, but
* there is no set limit, so we just set a pipeline limit. I don't think
* any app is going to hit this soon. */
return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
64 /* storage image */);
}
static uint32_t
radv_uniform_buffer_offset_alignment(const struct radv_physical_device *pdevice)
{
uint32_t uniform_offset_alignment =
driQueryOptioni(&pdevice->instance->dri_options, "radv_override_uniform_offset_alignment");
if (!util_is_power_of_two_or_zero(uniform_offset_alignment)) {
fprintf(stderr,
"ERROR: invalid radv_override_uniform_offset_alignment setting %d:"
"not a power of two\n",
uniform_offset_alignment);
uniform_offset_alignment = 0;
}
/* Take at least the hardware limit. */
return MAX2(uniform_offset_alignment, 4);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSampleCountFlags sample_counts = 0xf;
size_t max_descriptor_set_size = radv_max_descriptor_set_size();
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = UINT32_MAX,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 1,
.sparseAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE, /* buffer max size */
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_descriptor_set_size,
.maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
.maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
.maxPerStageDescriptorSampledImages = max_descriptor_set_size,
.maxPerStageDescriptorStorageImages = max_descriptor_set_size,
.maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
.maxPerStageResources = max_descriptor_set_size,
.maxDescriptorSetSamplers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
.maxDescriptorSetStorageBuffers = max_descriptor_set_size,
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
.maxDescriptorSetSampledImages = max_descriptor_set_size,
.maxDescriptorSetStorageImages = max_descriptor_set_size,
.maxDescriptorSetInputAttachments = max_descriptor_set_size,
.maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
.maxVertexInputBindings = MAX_VBS,
.maxVertexInputAttributeOffset = UINT32_MAX,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 120,
.maxTessellationControlTotalOutputComponents = 4096,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 127,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = max_descriptor_set_size,
.maxComputeSharedMemorySize = pdevice->max_shared_size,
.maxComputeWorkGroupCount = {65535, 65535, 65535},
.maxComputeWorkGroupInvocations = 1024,
.maxComputeWorkGroupSize = {1024, 1024, 1024},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = {(1 << 14), (1 << 14)},
.viewportBoundsRange = {INT16_MIN, INT16_MAX},
.viewportSubPixelBits = 8,
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 4,
.minUniformBufferOffsetAlignment = radv_uniform_buffer_offset_alignment(pdevice),
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -32,
.maxTexelOffset = 31,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -2,
.maxInterpolationOffset = 2,
.subPixelInterpolationOffsetBits = 8,
.maxFramebufferWidth = MAX_FRAMEBUFFER_WIDTH,
.maxFramebufferHeight = MAX_FRAMEBUFFER_HEIGHT,
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = sample_counts,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = {0.0, 8191.875},
.lineWidthRange = {0.0, 8.0},
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 8.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 1,
.optimalBufferCopyRowPitchAlignment = 1,
.nonCoherentAtomSize = 64,
};
VkPhysicalDeviceType device_type;
if (pdevice->rad_info.has_dedicated_vram) {
device_type = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
} else {
device_type = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
}
*pProperties = (VkPhysicalDeviceProperties){
.apiVersion = RADV_API_VERSION,
.driverVersion = vk_get_driver_version(),
.vendorID = ATI_VENDOR_ID,
.deviceID = pdevice->rad_info.pci_id,
.deviceType = device_type,
.limits = limits,
.sparseProperties =
{
.residencyNonResidentStrict = pdevice->rad_info.family >= CHIP_POLARIS10,
.residencyStandard2DBlockShape = pdevice->rad_info.family >= CHIP_POLARIS10,
.residencyStandard3DBlockShape = pdevice->rad_info.gfx_level >= GFX9,
},
};
strcpy(pProperties->deviceName, pdevice->marketing_name);
memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
}
static void
radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
/* The LUID is for Windows. */
p->deviceLUIDValid = false;
p->deviceNodeMask = 0;
p->subgroupSize = RADV_SUBGROUP_SIZE;
p->subgroupSupportedStages = VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT;
if (radv_taskmesh_enabled(pdevice))
p->subgroupSupportedStages |= VK_SHADER_STAGE_MESH_BIT_EXT | VK_SHADER_STAGE_TASK_BIT_EXT;
if (radv_enable_rt(pdevice, true))
p->subgroupSupportedStages |= RADV_RT_STAGE_BITS;
p->subgroupSupportedOperations =
VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
p->subgroupQuadOperationsInAllStages = true;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
p->maxMultiviewViewCount = MAX_VIEWS;
p->maxMultiviewInstanceIndex = INT_MAX;
p->protectedNoFault = false;
p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
static const char *
radv_get_compiler_string(struct radv_physical_device *pdevice)
{
if (!pdevice->use_llvm) {
/* Some games like SotTR apply shader workarounds if the LLVM
* version is too old or if the LLVM version string is
* missing. This gives 2-5% performance with SotTR and ACO.
*/
if (driQueryOptionb(&pdevice->instance->dri_options, "radv_report_llvm9_version_string")) {
return " (LLVM 9.0.1)";
}
return "";
}
#ifdef LLVM_AVAILABLE
return " (LLVM " MESA_LLVM_VERSION_STRING ")";
#else
unreachable("LLVM is not available");
#endif
}
static void
radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_MESA_RADV;
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 "%s",
radv_get_compiler_string(pdevice));
if (radv_is_conformant(pdevice)) {
if (pdevice->rad_info.gfx_level >= GFX10_3) {
p->conformanceVersion = (VkConformanceVersion){
.major = 1,
.minor = 3,
.subminor = 0,
.patch = 0,
};
} else {
p->conformanceVersion = (VkConformanceVersion){
.major = 1,
.minor = 2,
.subminor = 7,
.patch = 1,
};
}
} else {
p->conformanceVersion = (VkConformanceVersion){
.major = 0,
.minor = 0,
.subminor = 0,
.patch = 0,
};
}
/* On AMD hardware, denormals and rounding modes for fp16/fp64 are
* controlled by the same config register.
*/
if (pdevice->rad_info.has_packed_math_16bit) {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
} else {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
}
/* With LLVM, do not allow both preserving and flushing denorms because
* different shaders in the same pipeline can have different settings and
* this won't work for merged shaders. To make it work, this requires LLVM
* support for changing the register. The same logic applies for the
* rounding modes because they are configured with the same config
* register.
*/
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = !pdevice->use_llvm;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat16 =
pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderDenormPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTZFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderDenormFlushToZeroFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
p->shaderDenormPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->shaderRoundingModeRTZFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = false;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = true;
p->quadDivergentImplicitLod = false;
size_t max_descriptor_set_size = radv_max_descriptor_set_size();
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT | VK_RESOLVE_MODE_AVERAGE_BIT |
VK_RESOLVE_MODE_MIN_BIT | VK_RESOLVE_MODE_MAX_BIT;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes =
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT | VK_RESOLVE_MODE_MIN_BIT | VK_RESOLVE_MODE_MAX_BIT;
p->independentResolveNone = true;
p->independentResolve = true;
/* GFX6-8 only support single channel min/max filter. */
p->filterMinmaxImageComponentMapping = pdevice->rad_info.gfx_level >= GFX9;
p->filterMinmaxSingleComponentFormats = true;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
}
static void
radv_get_physical_device_properties_1_3(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES);
p->minSubgroupSize = 64;
p->maxSubgroupSize = 64;
p->maxComputeWorkgroupSubgroups = UINT32_MAX;
p->requiredSubgroupSizeStages = 0;
if (pdevice->rad_info.gfx_level >= GFX10) {
/* Only GFX10+ supports wave32. */
p->minSubgroupSize = 32;
p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
}
p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
p->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
p->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
p->maxInlineUniformTotalSize = UINT16_MAX;
bool accel = pdevice->rad_info.has_accelerated_dot_product;
bool gfx11plus = pdevice->rad_info.gfx_level >= GFX11;
p->integerDotProduct8BitUnsignedAccelerated = accel;
p->integerDotProduct8BitSignedAccelerated = accel;
p->integerDotProduct8BitMixedSignednessAccelerated = accel && gfx11plus;
p->integerDotProduct4x8BitPackedUnsignedAccelerated = accel;
p->integerDotProduct4x8BitPackedSignedAccelerated = accel;
p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = accel && gfx11plus;
p->integerDotProduct16BitUnsignedAccelerated = accel && !gfx11plus;
p->integerDotProduct16BitSignedAccelerated = accel && !gfx11plus;
p->integerDotProduct16BitMixedSignednessAccelerated = false;
p->integerDotProduct32BitUnsignedAccelerated = false;
p->integerDotProduct32BitSignedAccelerated = false;
p->integerDotProduct32BitMixedSignednessAccelerated = false;
p->integerDotProduct64BitUnsignedAccelerated = false;
p->integerDotProduct64BitSignedAccelerated = false;
p->integerDotProduct64BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = accel && gfx11plus;
p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated =
accel && gfx11plus;
p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = accel && !gfx11plus;
p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = accel && !gfx11plus;
p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
p->storageTexelBufferOffsetAlignmentBytes = 4;
p->storageTexelBufferOffsetSingleTexelAlignment = true;
p->uniformTexelBufferOffsetAlignmentBytes = 4;
p->uniformTexelBufferOffsetSingleTexelAlignment = true;
p->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Properties core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES,
};
radv_get_physical_device_properties_1_3(pdevice, &core_1_3);
vk_foreach_struct(ext, pProperties->pNext)
{
if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *)ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
(VkPhysicalDeviceDiscardRectanglePropertiesEXT *)ext;
properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *)ext;
properties->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
VkPhysicalDeviceShaderCorePropertiesAMD *properties =
(VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
/* Shader engines. */
properties->shaderEngineCount = pdevice->rad_info.max_se;
properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sa_per_se;
properties->computeUnitsPerShaderArray = pdevice->rad_info.min_good_cu_per_sa;
properties->simdPerComputeUnit = pdevice->rad_info.num_simd_per_compute_unit;
properties->wavefrontsPerSimd = pdevice->rad_info.max_wave64_per_simd;
properties->wavefrontSize = 64;
/* SGPR. */
properties->sgprsPerSimd = pdevice->rad_info.num_physical_sgprs_per_simd;
properties->minSgprAllocation = pdevice->rad_info.min_sgpr_alloc;
properties->maxSgprAllocation = pdevice->rad_info.max_sgpr_alloc;
properties->sgprAllocationGranularity = pdevice->rad_info.sgpr_alloc_granularity;
/* VGPR. */
properties->vgprsPerSimd = pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
properties->minVgprAllocation = pdevice->rad_info.min_wave64_vgpr_alloc;
properties->maxVgprAllocation = pdevice->rad_info.max_vgpr_alloc;
properties->vgprAllocationGranularity = pdevice->rad_info.wave64_vgpr_alloc_granularity;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
VkPhysicalDeviceShaderCoreProperties2AMD *properties =
(VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
properties->shaderCoreFeatures = 0;
properties->activeComputeUnitCount = pdevice->rad_info.num_cu;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
properties->maxVertexAttribDivisor = UINT32_MAX;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
properties->primitiveOverestimationSize = 0;
properties->maxExtraPrimitiveOverestimationSize = 0;
properties->extraPrimitiveOverestimationSizeGranularity = 0;
properties->primitiveUnderestimation = true;
properties->conservativePointAndLineRasterization = false;
properties->degenerateTrianglesRasterized = true;
properties->degenerateLinesRasterized = false;
properties->fullyCoveredFragmentShaderInputVariable = true;
properties->conservativeRasterizationPostDepthCoverage = false;
break;
}
#ifndef _WIN32
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->bus_info.domain;
properties->pciBus = pdevice->bus_info.bus;
properties->pciDevice = pdevice->bus_info.dev;
properties->pciFunction = pdevice->bus_info.func;
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
properties->maxTransformFeedbackBufferSize = UINT32_MAX;
properties->maxTransformFeedbackStreamDataSize = 512;
properties->maxTransformFeedbackBufferDataSize = 512;
properties->maxTransformFeedbackBufferDataStride = 512;
properties->transformFeedbackQueries = true;
properties->transformFeedbackStreamsLinesTriangles = true;
properties->transformFeedbackRasterizationStreamSelect = false;
properties->transformFeedbackDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
properties->sampleLocationSampleCounts =
VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT;
properties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
properties->sampleLocationCoordinateRange[0] = 0.0f;
properties->sampleLocationCoordinateRange[1] = 0.9375f;
properties->sampleLocationSubPixelBits = 4;
properties->variableSampleLocations = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
VkPhysicalDeviceRobustness2PropertiesEXT *properties =
(VkPhysicalDeviceRobustness2PropertiesEXT *)ext;
properties->robustStorageBufferAccessSizeAlignment = 4;
properties->robustUniformBufferAccessSizeAlignment = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
VkPhysicalDeviceCustomBorderColorPropertiesEXT *props =
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
props->maxCustomBorderColorSamplers = RADV_BORDER_COLOR_COUNT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
(VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
if (radv_vrs_attachment_enabled(pdevice)) {
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
} else {
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){0, 0};
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){0, 0};
}
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
props->primitiveFragmentShadingRateWithMultipleViewports = true;
props->layeredShadingRateAttachments = false; /* TODO */
props->fragmentShadingRateNonTrivialCombinerOps = true;
props->maxFragmentSize = (VkExtent2D){2, 2};
props->maxFragmentSizeAspectRatio = 2;
props->maxFragmentShadingRateCoverageSamples = 32;
props->maxFragmentShadingRateRasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
props->fragmentShadingRateWithShaderDepthStencilWrites =
!pdevice->rad_info.has_vrs_ds_export_bug;
props->fragmentShadingRateWithSampleMask = true;
props->fragmentShadingRateWithShaderSampleMask = false;
props->fragmentShadingRateWithConservativeRasterization = true;
props->fragmentShadingRateWithFragmentShaderInterlock = false;
props->fragmentShadingRateWithCustomSampleLocations = false;
props->fragmentShadingRateStrictMultiplyCombiner = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
VkPhysicalDeviceProvokingVertexPropertiesEXT *props =
(VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
props->provokingVertexModePerPipeline = true;
props->transformFeedbackPreservesTriangleFanProvokingVertex = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
VkPhysicalDeviceAccelerationStructurePropertiesKHR *props =
(VkPhysicalDeviceAccelerationStructurePropertiesKHR *)ext;
props->maxGeometryCount = (1 << 24) - 1;
props->maxInstanceCount = (1 << 24) - 1;
props->maxPrimitiveCount = (1 << 29) - 1;
props->maxPerStageDescriptorAccelerationStructures =
pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures =
pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
props->maxDescriptorSetAccelerationStructures =
pProperties->properties.limits.maxDescriptorSetStorageBuffers;
props->maxDescriptorSetUpdateAfterBindAccelerationStructures =
pProperties->properties.limits.maxDescriptorSetStorageBuffers;
props->minAccelerationStructureScratchOffsetAlignment = 128;
break;
}
#ifndef _WIN32
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
VkPhysicalDeviceDrmPropertiesEXT *props = (VkPhysicalDeviceDrmPropertiesEXT *)ext;
if (pdevice->available_nodes & (1 << DRM_NODE_PRIMARY)) {
props->hasPrimary = true;
props->primaryMajor = (int64_t)major(pdevice->primary_devid);
props->primaryMinor = (int64_t)minor(pdevice->primary_devid);
} else {
props->hasPrimary = false;
}
if (pdevice->available_nodes & (1 << DRM_NODE_RENDER)) {
props->hasRender = true;
props->renderMajor = (int64_t)major(pdevice->render_devid);
props->renderMinor = (int64_t)minor(pdevice->render_devid);
} else {
props->hasRender = false;
}
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
VkPhysicalDeviceMultiDrawPropertiesEXT *props =
(VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
props->maxMultiDrawCount = 2048;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR: {
VkPhysicalDeviceRayTracingPipelinePropertiesKHR *props =
(VkPhysicalDeviceRayTracingPipelinePropertiesKHR *)ext;
props->shaderGroupHandleSize = RADV_RT_HANDLE_SIZE;
props->maxRayRecursionDepth = 31; /* Minimum allowed for DXR. */
props->maxShaderGroupStride = 16384; /* dummy */
/* This isn't strictly necessary, but Doom Eternal breaks if the
* alignment is any lower. */
props->shaderGroupBaseAlignment = RADV_RT_HANDLE_SIZE;
props->shaderGroupHandleCaptureReplaySize = RADV_RT_HANDLE_SIZE;
props->maxRayDispatchInvocationCount = 1024 * 1024 * 64;
props->shaderGroupHandleAlignment = 16;
props->maxRayHitAttributeSize = RADV_MAX_HIT_ATTRIB_SIZE;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: {
VkPhysicalDeviceMaintenance4Properties *properties =
(VkPhysicalDeviceMaintenance4Properties *)ext;
properties->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *properties =
(VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext;
STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
memcpy(properties->shaderModuleIdentifierAlgorithmUUID,
vk_shaderModuleIdentifierAlgorithmUUID,
sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
(VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
properties->allowCommandBufferQueryCopies = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_PROPERTIES_NV: {
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *properties =
(VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *)ext;
properties->maxIndirectCommandsStreamCount = 1;
properties->maxIndirectCommandsStreamStride = UINT32_MAX;
properties->maxIndirectCommandsTokenCount = UINT32_MAX;
properties->maxIndirectCommandsTokenOffset = UINT16_MAX;
properties->minIndirectCommandsBufferOffsetAlignment = 4;
properties->minSequencesCountBufferOffsetAlignment = 4;
properties->minSequencesIndexBufferOffsetAlignment = 4;
/* Don't support even a shader group count = 1 until we support shader
* overrides during pipeline creation. */
properties->maxGraphicsShaderGroupCount = 0;
/* MSB reserved for signalling indirect count enablement. */
properties->maxIndirectSequenceCount = UINT32_MAX >> 1;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_PROPERTIES_EXT: {
VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT *props =
(VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT *)ext;
props->graphicsPipelineLibraryFastLinking = true;
props->graphicsPipelineLibraryIndependentInterpolationDecoration = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_EXT: {
VkPhysicalDeviceMeshShaderPropertiesEXT *properties =
(VkPhysicalDeviceMeshShaderPropertiesEXT *)ext;
properties->maxTaskWorkGroupTotalCount = 4194304; /* 2^22 min required */
properties->maxTaskWorkGroupCount[0] = 65535;
properties->maxTaskWorkGroupCount[1] = 65535;
properties->maxTaskWorkGroupCount[2] = 65535;
properties->maxTaskWorkGroupInvocations = 1024;
properties->maxTaskWorkGroupSize[0] = 1024;
properties->maxTaskWorkGroupSize[1] = 1024;
properties->maxTaskWorkGroupSize[2] = 1024;
properties->maxTaskPayloadSize = 16384; /* 16K min required */
properties->maxTaskSharedMemorySize = 65536;
properties->maxTaskPayloadAndSharedMemorySize = 65536;
properties->maxMeshWorkGroupTotalCount = 4194304; /* 2^22 min required */
properties->maxMeshWorkGroupCount[0] = 65535;
properties->maxMeshWorkGroupCount[1] = 65535;
properties->maxMeshWorkGroupCount[2] = 65535;
properties->maxMeshWorkGroupInvocations = 256; /* Max NGG HW limit */
properties->maxMeshWorkGroupSize[0] = 256;
properties->maxMeshWorkGroupSize[1] = 256;
properties->maxMeshWorkGroupSize[2] = 256;
properties->maxMeshOutputMemorySize = 32 * 1024; /* 32K min required */
properties->maxMeshSharedMemorySize = 28672; /* 28K min required */
properties->maxMeshPayloadAndSharedMemorySize =
properties->maxTaskPayloadSize +
properties->maxMeshSharedMemorySize; /* 28K min required */
properties->maxMeshPayloadAndOutputMemorySize =
properties->maxTaskPayloadSize +
properties->maxMeshOutputMemorySize; /* 47K min required */
properties->maxMeshOutputComponents = 128; /* 32x vec4 min required */
properties->maxMeshOutputVertices = 256;
properties->maxMeshOutputPrimitives = 256;
properties->maxMeshOutputLayers = 8;
properties->maxMeshMultiviewViewCount = MAX_VIEWS;
properties->meshOutputPerVertexGranularity = 1;
properties->meshOutputPerPrimitiveGranularity = 1;
properties->maxPreferredTaskWorkGroupInvocations = 64;
properties->maxPreferredMeshWorkGroupInvocations = 128;
properties->prefersLocalInvocationVertexOutput = true;
properties->prefersLocalInvocationPrimitiveOutput = true;
properties->prefersCompactVertexOutput = true;
properties->prefersCompactPrimitiveOutput = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_PROPERTIES_EXT: {
VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *properties =
(VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *)ext;
properties->dynamicPrimitiveTopologyUnrestricted = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_PROPERTIES_EXT: {
VkPhysicalDeviceDescriptorBufferPropertiesEXT *properties =
(VkPhysicalDeviceDescriptorBufferPropertiesEXT *)ext;
properties->combinedImageSamplerDescriptorSingleArray = true;
properties->bufferlessPushDescriptors = true;
properties->allowSamplerImageViewPostSubmitCreation = false;
properties->descriptorBufferOffsetAlignment = 4;
properties->maxDescriptorBufferBindings = MAX_SETS;
properties->maxResourceDescriptorBufferBindings = MAX_SETS;
properties->maxSamplerDescriptorBufferBindings = MAX_SETS;
properties->maxEmbeddedImmutableSamplerBindings = MAX_SETS;
properties->maxEmbeddedImmutableSamplers = radv_max_descriptor_set_size();
properties->bufferCaptureReplayDescriptorDataSize = 0;
properties->imageCaptureReplayDescriptorDataSize = 0;
properties->imageViewCaptureReplayDescriptorDataSize = 0;
properties->samplerCaptureReplayDescriptorDataSize = 0;
properties->accelerationStructureCaptureReplayDescriptorDataSize = 0;
properties->samplerDescriptorSize = 16;
properties->combinedImageSamplerDescriptorSize = 96;
properties->sampledImageDescriptorSize = 64;
properties->storageImageDescriptorSize = 32;
properties->uniformTexelBufferDescriptorSize = 16;
properties->robustUniformTexelBufferDescriptorSize = 16;
properties->storageTexelBufferDescriptorSize = 16;
properties->robustStorageTexelBufferDescriptorSize = 16;
properties->uniformBufferDescriptorSize = 16;
properties->robustUniformBufferDescriptorSize = 16;
properties->storageBufferDescriptorSize = 16;
properties->robustStorageBufferDescriptorSize = 16;
properties->inputAttachmentDescriptorSize = 64;
properties->accelerationStructureDescriptorSize = 16;
properties->maxSamplerDescriptorBufferRange = UINT32_MAX;
properties->maxResourceDescriptorBufferRange = UINT32_MAX;
properties->samplerDescriptorBufferAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
properties->resourceDescriptorBufferAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
properties->descriptorBufferAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_BARYCENTRIC_PROPERTIES_KHR: {
VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR *properties =
(VkPhysicalDeviceFragmentShaderBarycentricPropertiesKHR *)ext;
properties->triStripVertexOrderIndependentOfProvokingVertex = false;
break;
}
default:
break;
}
}
}
static VkResult
radv_physical_device_try_create(struct radv_instance *instance, drmDevicePtr drm_device,
struct radv_physical_device **device_out)
{
VkResult result;
int fd = -1;
int master_fd = -1;
#ifdef _WIN32
assert(drm_device == NULL);
#else
if (drm_device) {
const char *path = drm_device->nodes[DRM_NODE_RENDER];
drmVersionPtr version;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER, "Could not open device %s: %m",
path);
}
version = drmGetVersion(fd);
if (!version) {
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Could not get the kernel driver version for device %s: %m", path);
}
if (strcmp(version->name, "amdgpu")) {
drmFreeVersion(version);
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Device '%s' is not using the AMDGPU kernel driver: %m", path);
}
drmFreeVersion(version);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
fprintf(stderr, "radv: info: Found compatible device '%s'.\n", path);
}
#endif
struct radv_physical_device *device = vk_zalloc2(&instance->vk.alloc, NULL, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!device) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
struct vk_physical_device_dispatch_table dispatch_table;
vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
&radv_physical_device_entrypoints, true);
vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
&wsi_physical_device_entrypoints, false);
result = vk_physical_device_init(&device->vk, &instance->vk, NULL, NULL, &dispatch_table);
if (result != VK_SUCCESS) {
goto fail_alloc;
}
device->instance = instance;
#ifdef _WIN32
device->ws = radv_null_winsys_create();
#else
if (drm_device) {
bool reserve_vmid = radv_sqtt_enabled();
device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags,
reserve_vmid);
} else {
device->ws = radv_null_winsys_create();
}
#endif
if (!device->ws) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "failed to initialize winsys");
goto fail_base;
}
device->vk.supported_sync_types = device->ws->get_sync_types(device->ws);
#ifndef _WIN32
if (drm_device && instance->vk.enabled_extensions.KHR_display) {
master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
uint32_t accel_working = 0;
struct drm_amdgpu_info request = {.return_pointer = (uintptr_t)&accel_working,
.return_size = sizeof(accel_working),
.query = AMDGPU_INFO_ACCEL_WORKING};
if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof(struct drm_amdgpu_info)) <
0 ||
!accel_working) {
close(master_fd);
master_fd = -1;
}
}
}
#endif
device->master_fd = master_fd;
device->local_fd = fd;
device->ws->query_info(device->ws, &device->rad_info);
device->use_llvm = instance->debug_flags & RADV_DEBUG_LLVM;
#ifndef LLVM_AVAILABLE
if (device->use_llvm) {
fprintf(stderr, "ERROR: LLVM compiler backend selected for radv, but LLVM support was not "
"enabled at build time.\n");
abort();
}
#endif
#ifdef ANDROID
device->emulate_etc2 = !radv_device_supports_etc(device);
#else
device->emulate_etc2 = !radv_device_supports_etc(device) &&
driQueryOptionb(&device->instance->dri_options, "radv_require_etc2");
#endif
snprintf(device->name, sizeof(device->name), "AMD RADV %s%s", device->rad_info.name,
radv_get_compiler_string(device));
const char *marketing_name = device->ws->get_chip_name(device->ws);
snprintf(device->marketing_name, sizeof(device->name), "%s (RADV %s%s)",
marketing_name ? marketing_name : "AMD Unknown", device->rad_info.name,
radv_get_compiler_string(device));
if (radv_device_get_cache_uuid(device, device->cache_uuid)) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID");
goto fail_wsi;
}
/* The gpu id is already embedded in the uuid so we just pass "radv"
* when creating the cache.
*/
char buf[VK_UUID_SIZE * 2 + 1];
mesa_bytes_to_hex(buf, device->cache_uuid, VK_UUID_SIZE);
device->vk.disk_cache = disk_cache_create(device->name, buf, 0);
if (!radv_is_conformant(device))
vk_warn_non_conformant_implementation("radv");
radv_get_driver_uuid(&device->driver_uuid);
radv_get_device_uuid(&device->rad_info, &device->device_uuid);
device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
device->use_fmask =
device->rad_info.gfx_level < GFX11 && !(device->instance->debug_flags & RADV_DEBUG_NO_FMASK);
device->use_ngg =
(device->rad_info.gfx_level >= GFX10 && device->rad_info.family != CHIP_NAVI14 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGG)) ||
device->rad_info.gfx_level >= GFX11;
/* TODO: Investigate if NGG culling helps on GFX11. */
device->use_ngg_culling = device->use_ngg && device->rad_info.max_render_backends > 1 &&
(device->rad_info.gfx_level == GFX10_3 ||
(device->instance->perftest_flags & RADV_PERFTEST_NGGC)) &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGGC);
device->use_ngg_streamout =
device->use_ngg && (device->rad_info.gfx_level >= GFX11 ||
(device->instance->perftest_flags & RADV_PERFTEST_NGG_STREAMOUT));
device->emulate_ngg_gs_query_pipeline_stat =
device->use_ngg && device->rad_info.gfx_level < GFX11;
/* Determine the number of threads per wave for all stages. */
device->cs_wave_size = 64;
device->ps_wave_size = 64;
device->ge_wave_size = 64;
device->rt_wave_size = 64;
if (device->rad_info.gfx_level >= GFX10) {
if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
device->cs_wave_size = 32;
/* For pixel shaders, wave64 is recommended. */
if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
device->ps_wave_size = 32;
if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
device->ge_wave_size = 32;
/* Default to 32 on RDNA1-2 as that gives better perf due to less issues with divergence.
* However, on GFX11 default to wave64 as ACO does not support VOPD yet, and with the VALU
* dependence wave32 would likely be a net-loss (as well as the SALU count becoming more
* problematic)
*/
if (!(device->instance->perftest_flags & RADV_PERFTEST_RT_WAVE_64) &&
device->rad_info.gfx_level < GFX11)
device->rt_wave_size = 32;
}
device->max_shared_size = device->rad_info.gfx_level >= GFX7 ? 65536 : 32768;
radv_physical_device_init_mem_types(device);
radv_physical_device_get_supported_extensions(device, &device->vk.supported_extensions);
radv_physical_device_get_features(device, &device->vk.supported_features);
radv_get_nir_options(device);
#ifndef _WIN32
if (drm_device) {
struct stat primary_stat = {0}, render_stat = {0};
device->available_nodes = drm_device->available_nodes;
device->bus_info = *drm_device->businfo.pci;
if ((drm_device->available_nodes & (1 << DRM_NODE_PRIMARY)) &&
stat(drm_device->nodes[DRM_NODE_PRIMARY], &primary_stat) != 0) {
result =
vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"failed to stat DRM primary node %s", drm_device->nodes[DRM_NODE_PRIMARY]);
goto fail_perfcounters;
}
device->primary_devid = primary_stat.st_rdev;
if ((drm_device->available_nodes & (1 << DRM_NODE_RENDER)) &&
stat(drm_device->nodes[DRM_NODE_RENDER], &render_stat) != 0) {
result =
vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "failed to stat DRM render node %s",
drm_device->nodes[DRM_NODE_RENDER]);
goto fail_perfcounters;
}
device->render_devid = render_stat.st_rdev;
}
#endif
if ((device->instance->debug_flags & RADV_DEBUG_INFO))
ac_print_gpu_info(&device->rad_info, stdout);
radv_physical_device_init_queue_table(device);
/* We don't check the error code, but later check if it is initialized. */
ac_init_perfcounters(&device->rad_info, false, false, &device->ac_perfcounters);
radv_init_physical_device_decoder(device);
/* The WSI is structured as a layer on top of the driver, so this has
* to be the last part of initialization (at least until we get other
* semi-layers).
*/
result = radv_init_wsi(device);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail_perfcounters;
}
device->gs_table_depth =
ac_get_gs_table_depth(device->rad_info.gfx_level, device->rad_info.family);
ac_get_hs_info(&device->rad_info, &device->hs);
ac_get_task_info(&device->rad_info, &device->task_info);
radv_get_binning_settings(device, &device->binning_settings);
*device_out = device;
return VK_SUCCESS;
fail_perfcounters:
ac_destroy_perfcounters(&device->ac_perfcounters);
disk_cache_destroy(device->vk.disk_cache);
fail_wsi:
device->ws->destroy(device->ws);
fail_base:
vk_physical_device_finish(&device->vk);
fail_alloc:
vk_free(&instance->vk.alloc, device);
fail_fd:
if (fd != -1)
close(fd);
if (master_fd != -1)
close(master_fd);
return result;
}
VkResult
create_null_physical_device(struct vk_instance *vk_instance)
{
struct radv_instance *instance = container_of(vk_instance, struct radv_instance, vk);
struct radv_physical_device *pdevice;
VkResult result = radv_physical_device_try_create(instance, NULL, &pdevice);
if (result != VK_SUCCESS)
return result;
list_addtail(&pdevice->vk.link, &instance->vk.physical_devices.list);
return VK_SUCCESS;
}
VkResult
create_drm_physical_device(struct vk_instance *vk_instance, struct _drmDevice *device,
struct vk_physical_device **out)
{
#ifndef _WIN32
if (!(device->available_nodes & (1 << DRM_NODE_RENDER)) || device->bustype != DRM_BUS_PCI ||
device->deviceinfo.pci->vendor_id != ATI_VENDOR_ID)
return VK_ERROR_INCOMPATIBLE_DRIVER;
return radv_physical_device_try_create((struct radv_instance *)vk_instance, device,
(struct radv_physical_device **)out);
#else
return VK_SUCCESS;
#endif
}
void
radv_physical_device_destroy(struct vk_physical_device *vk_device)
{
struct radv_physical_device *device = container_of(vk_device, struct radv_physical_device, vk);
radv_finish_wsi(device);
ac_destroy_perfcounters(&device->ac_perfcounters);
device->ws->destroy(device->ws);
disk_cache_destroy(device->vk.disk_cache);
if (device->local_fd != -1)
close(device->local_fd);
if (device->master_fd != -1)
close(device->master_fd);
vk_physical_device_finish(&device->vk);
vk_free(&device->instance->vk.alloc, device);
}
static void
radv_get_physical_device_queue_family_properties(struct radv_physical_device *pdevice,
uint32_t *pCount,
VkQueueFamilyProperties **pQueueFamilyProperties)
{
int num_queue_families = 1;
int idx;
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
num_queue_families++;
if (pdevice->instance->perftest_flags & RADV_PERFTEST_VIDEO_DECODE) {
if (pdevice->rad_info.ip[pdevice->vid_decode_ip].num_queues > 0)
num_queue_families++;
}
if (pQueueFamilyProperties == NULL) {
*pCount = num_queue_families;
return;
}
if (!*pCount)
return;
idx = 0;
if (*pCount >= 1) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = 1,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
if (*pCount > idx) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags =
VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
}
if (pdevice->instance->perftest_flags & RADV_PERFTEST_VIDEO_DECODE) {
if (pdevice->rad_info.ip[pdevice->vid_decode_ip].num_queues > 0) {
if (*pCount > idx) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags = VK_QUEUE_VIDEO_DECODE_BIT_KHR,
.queueCount = pdevice->rad_info.ip[pdevice->vid_decode_ip].num_queues,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
}
}
*pCount = idx;
}
static const VkQueueGlobalPriorityKHR radv_global_queue_priorities[] = {
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
};
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkQueueFamilyProperties2 *pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
&pQueueFamilyProperties[0].queueFamilyProperties,
&pQueueFamilyProperties[1].queueFamilyProperties,
&pQueueFamilyProperties[2].queueFamilyProperties,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
for (uint32_t i = 0; i < *pCount; i++) {
vk_foreach_struct(ext, pQueueFamilyProperties[i].pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: {
VkQueueFamilyGlobalPriorityPropertiesKHR *prop =
(VkQueueFamilyGlobalPriorityPropertiesKHR *)ext;
STATIC_ASSERT(ARRAY_SIZE(radv_global_queue_priorities) <=
VK_MAX_GLOBAL_PRIORITY_SIZE_KHR);
prop->priorityCount = ARRAY_SIZE(radv_global_queue_priorities);
memcpy(&prop->priorities, radv_global_queue_priorities,
sizeof(radv_global_queue_priorities));
break;
}
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_QUERY_RESULT_STATUS_PROPERTIES_KHR: {
VkQueueFamilyQueryResultStatusPropertiesKHR *prop =
(VkQueueFamilyQueryResultStatusPropertiesKHR *)ext;
prop->queryResultStatusSupport = VK_FALSE;
break;
}
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_VIDEO_PROPERTIES_KHR: {
VkQueueFamilyVideoPropertiesKHR *prop = (VkQueueFamilyVideoPropertiesKHR *)ext;
if (pQueueFamilyProperties[i].queueFamilyProperties.queueFlags &
VK_QUEUE_VIDEO_DECODE_BIT_KHR)
prop->videoCodecOperations = VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR |
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR;
break;
}
default:
break;
}
}
}
}
static void
radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
{
RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
/* For all memory heaps, the computation of budget is as follow:
* heap_budget = heap_size - global_heap_usage + app_heap_usage
*
* The Vulkan spec 1.1.97 says that the budget should include any
* currently allocated device memory.
*
* Note that the application heap usages are not really accurate (eg.
* in presence of shared buffers).
*/
if (!device->rad_info.has_dedicated_vram) {
if (device->instance->enable_unified_heap_on_apu) {
/* When the heaps are unified, only the visible VRAM heap is exposed on APUs. */
assert(device->heaps == RADV_HEAP_VRAM_VIS);
assert(device->memory_properties.memoryHeaps[0].flags == VK_MEMORY_HEAP_DEVICE_LOCAL_BIT);
const uint8_t vram_vis_heap_idx = 0;
/* Get the total heap size which is the visible VRAM heap size. */
uint64_t total_heap_size = device->memory_properties.memoryHeaps[vram_vis_heap_idx].size;
/* Get the different memory usages. */
uint64_t vram_vis_internal_usage =
device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS) +
device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
uint64_t gtt_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
uint64_t total_internal_usage = vram_vis_internal_usage + gtt_internal_usage;
uint64_t total_system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
device->ws->query_value(device->ws, RADEON_GTT_USAGE);
uint64_t total_usage = MAX2(total_internal_usage, total_system_usage);
/* Compute the total free space that can be allocated for this process across all heaps. */
uint64_t total_free_space = total_heap_size - MIN2(total_heap_size, total_usage);
memoryBudget->heapBudget[vram_vis_heap_idx] = total_free_space + total_internal_usage;
memoryBudget->heapUsage[vram_vis_heap_idx] = total_internal_usage;
} else {
/* On APUs, the driver exposes fake heaps to the application because usually the carveout
* is too small for games but the budgets need to be redistributed accordingly.
*/
assert(device->heaps == (RADV_HEAP_GTT | RADV_HEAP_VRAM_VIS));
assert(device->memory_properties.memoryHeaps[0].flags == 0); /* GTT */
assert(device->memory_properties.memoryHeaps[1].flags == VK_MEMORY_HEAP_DEVICE_LOCAL_BIT);
const uint8_t gtt_heap_idx = 0, vram_vis_heap_idx = 1;
/* Get the visible VRAM/GTT heap sizes and internal usages. */
uint64_t gtt_heap_size = device->memory_properties.memoryHeaps[gtt_heap_idx].size;
uint64_t vram_vis_heap_size =
device->memory_properties.memoryHeaps[vram_vis_heap_idx].size;
uint64_t vram_vis_internal_usage =
device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS) +
device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
uint64_t gtt_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
/* Compute the total heap size, internal and system usage. */
uint64_t total_heap_size = vram_vis_heap_size + gtt_heap_size;
uint64_t total_internal_usage = vram_vis_internal_usage + gtt_internal_usage;
uint64_t total_system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
device->ws->query_value(device->ws, RADEON_GTT_USAGE);
uint64_t total_usage = MAX2(total_internal_usage, total_system_usage);
/* Compute the total free space that can be allocated for this process across all heaps. */
uint64_t total_free_space = total_heap_size - MIN2(total_heap_size, total_usage);
/* Compute the remaining visible VRAM size for this process. */
uint64_t vram_vis_free_space =
vram_vis_heap_size - MIN2(vram_vis_heap_size, vram_vis_internal_usage);
/* Distribute the total free space (2/3rd as VRAM and 1/3rd as GTT) to match the heap
* sizes, and align down to the page size to be conservative.
*/
vram_vis_free_space = ROUND_DOWN_TO(MIN2((total_free_space * 2) / 3, vram_vis_free_space),
device->rad_info.gart_page_size);
uint64_t gtt_free_space = total_free_space - vram_vis_free_space;
memoryBudget->heapBudget[vram_vis_heap_idx] =
vram_vis_free_space + vram_vis_internal_usage;
memoryBudget->heapUsage[vram_vis_heap_idx] = vram_vis_internal_usage;
memoryBudget->heapBudget[gtt_heap_idx] = gtt_free_space + gtt_internal_usage;
memoryBudget->heapUsage[gtt_heap_idx] = gtt_internal_usage;
}
} else {
unsigned mask = device->heaps;
unsigned heap = 0;
while (mask) {
uint64_t internal_usage = 0, system_usage = 0;
unsigned type = 1u << u_bit_scan(&mask);
switch (type) {
case RADV_HEAP_VRAM:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
system_usage = device->ws->query_value(device->ws, RADEON_VRAM_USAGE);
break;
case RADV_HEAP_VRAM_VIS:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS);
if (!(device->heaps & RADV_HEAP_VRAM))
internal_usage += device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE);
break;
case RADV_HEAP_GTT:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
system_usage = device->ws->query_value(device->ws, RADEON_GTT_USAGE);
break;
}
uint64_t total_usage = MAX2(internal_usage, system_usage);
uint64_t free_space = device->memory_properties.memoryHeaps[heap].size -
MIN2(device->memory_properties.memoryHeaps[heap].size, total_usage);
memoryBudget->heapBudget[heap] = free_space + internal_usage;
memoryBudget->heapUsage[heap] = internal_usage;
++heap;
}
assert(heap == memory_properties->memoryHeapCount);
}
/* The heapBudget and heapUsage values must be zero for array elements
* greater than or equal to
* VkPhysicalDeviceMemoryProperties::memoryHeapCount.
*/
for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
memoryBudget->heapBudget[i] = 0;
memoryBudget->heapUsage[i] = 0;
}
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
pMemoryProperties->memoryProperties = pdevice->memory_properties;
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
vk_find_struct(pMemoryProperties->pNext, PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
if (memory_budget)
radv_get_memory_budget_properties(physicalDevice, memory_budget);
}
static const VkTimeDomainEXT radv_time_domains[] = {
VK_TIME_DOMAIN_DEVICE_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
#ifdef CLOCK_MONOTONIC_RAW
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
#endif
};
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,
uint32_t *pTimeDomainCount,
VkTimeDomainEXT *pTimeDomains)
{
int d;
VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
vk_outarray_append_typed(VkTimeDomainEXT, &out, i)
{
*i = radv_time_domains[d];
}
}
return vk_outarray_status(&out);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,
VkSampleCountFlagBits samples,
VkMultisamplePropertiesEXT *pMultisampleProperties)
{
VkSampleCountFlagBits supported_samples =
VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT;
if (samples & supported_samples) {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
} else {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){0, 0};
}
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPhysicalDeviceFragmentShadingRatesKHR(
VkPhysicalDevice physicalDevice, uint32_t *pFragmentShadingRateCount,
VkPhysicalDeviceFragmentShadingRateKHR *pFragmentShadingRates)
{
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out, pFragmentShadingRates,
pFragmentShadingRateCount);
#define append_rate(w, h, s) \
{ \
VkPhysicalDeviceFragmentShadingRateKHR rate = { \
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR, \
.sampleCounts = s, \
.fragmentSize = {.width = w, .height = h}, \
}; \
vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, r) *r = rate; \
}
for (uint32_t x = 2; x >= 1; x--) {
for (uint32_t y = 2; y >= 1; y--) {
VkSampleCountFlagBits samples;
if (x == 1 && y == 1) {
samples = ~0;
} else {
samples = VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
VK_SAMPLE_COUNT_8_BIT;
}
append_rate(x, y, samples);
}
}
#undef append_rate
return vk_outarray_status(&out);
}
/* VK_EXT_tooling_info */
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPhysicalDeviceToolProperties(VkPhysicalDevice physicalDevice, uint32_t *pToolCount,
VkPhysicalDeviceToolProperties *pToolProperties)
{
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceToolProperties, out, pToolProperties, pToolCount);
bool rgp_enabled, rmv_enabled, rra_enabled;
uint32_t tool_count = 0;
/* RGP */
rgp_enabled = radv_sqtt_enabled();
if (rgp_enabled)
tool_count++;
/* RMV */
rmv_enabled = vk_memory_trace_enabled();
if (rmv_enabled)
tool_count++;
/* RRA */
rra_enabled = radv_rra_trace_enabled();
if (rra_enabled)
tool_count++;
if (!pToolProperties) {
*pToolCount = tool_count;
return VK_SUCCESS;
}
if (rgp_enabled) {
VkPhysicalDeviceToolProperties tool = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES,
.name = "Radeon GPU Profiler",
.version = "1.15",
.description = "A ground-breaking low-level optimization tool that provides detailed "
"information on Radeon GPUs.",
.purposes = VK_TOOL_PURPOSE_PROFILING_BIT | VK_TOOL_PURPOSE_TRACING_BIT |
/* VK_EXT_debug_marker is only exposed if SQTT is enabled. */
VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT | VK_TOOL_PURPOSE_DEBUG_MARKERS_BIT_EXT,
};
vk_outarray_append_typed(VkPhysicalDeviceToolProperties, &out, t) *t = tool;
}
if (rmv_enabled) {
VkPhysicalDeviceToolProperties tool = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES,
.name = "Radeon Memory Visualizer",
.version = "1.6",
.description = "A tool to allow you to gain a deep understanding of how your application "
"uses memory for graphics resources.",
.purposes = VK_TOOL_PURPOSE_PROFILING_BIT | VK_TOOL_PURPOSE_TRACING_BIT,
};
vk_outarray_append_typed(VkPhysicalDeviceToolProperties, &out, t) *t = tool;
}
if (rra_enabled) {
VkPhysicalDeviceToolProperties tool = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES,
.name = "Radeon Raytracing Analyzer",
.version = "1.2",
.description = "A tool to investigate the performance of your ray tracing applications and "
"highlight potential bottlenecks.",
.purposes = VK_TOOL_PURPOSE_PROFILING_BIT | VK_TOOL_PURPOSE_TRACING_BIT,
};
vk_outarray_append_typed(VkPhysicalDeviceToolProperties, &out, t) *t = tool;
}
return vk_outarray_status(&out);
}